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1.1 Gestion des phases d’un mélange compositionnel . ... ... .. .. 2
1.1.1 Simulation des écoulements polyphasiques multiconstituants . . . . . . . 2
1.1.2  Apports et revers des conditions de complémentarité . . . . . . . . ... 5
1.1.3 Objectifsdelathese . . . . . ... ... .. L L 8
1.2 Meéthodes existantes pour les conditions de complémentarité . . . . 9
1.2.1 Méthodes de Newton non-lisses . . . . . . . .. .. .. ... .. ..... 9
1.2.2  Meéthodes de régularisation . . . . . . .. .. ... ... 10
1.3 Démarche, contributions et plan du mémoire. . . . . . . . . ... .. 13
1.3.1 Etude du probleme de I’équilibre des phases . . . . . . . . ... ..... 13
1.3.2  Analyse de convexité des lois simples et prolongement des lois cubiques 14
1.3.3 Elaboration de la méthode des points intérieurs non-paramétrique . . . 15
1.3.4 Comparaison numérique de plusieurs méthodes sur plusieurs modeles . . 16

Ce chapitre présente les motivations de la thése ainsi que les principales contributions. 1l fait aussi office
de “résumé en francais” requis par I’Ecole Doctorale, d’ou la différence dans la langue de rédaction avec
les autres chapitres.

Nous décrivons d’abord en §1.1 le contexte général en partant de l'application métier a l'origine du
probléme, a savoir la simulation de réservoir. Nous y donnons un apercu des modeéles physiques utilisés et
de leurs difficultés mathématiques au regard de la gestion de l'apparition et de la disparition des phases.
Un accent particulier est mis sur la formulation unfiée, ou l’emploi des conditions de complémentarité
permet de gagner en clarté et confort au priz de nouvelles difficultés d’ordre numérique, voire théorique
pour certaines lois thermodynamiques comme les équations d’état cubiques.

Une synthese de l’état de ’art est ensuite fournie en §1.2 sur les méthodes de résolution numérique
des systémes algébriques contenant des conditions de complémentarité. Celles-ci sont divisées en deux
catégories. La premiére comporte les méthodes non-lisses et semi-lisses dont fait partie Newton-min,
lalgorithme par défaut actuel dans les codes d’IFPEN. La seconde regroupe les méthodes de régularisation
par les 0-fonctions de lissage ainsi que les méthodes de points intérieurs.

Enfin, la derniere section §1.3 explique notre démarche et récapitule les résultats obtenus. Ce sera
également l’occasion d’exposer le plan du mémoire.



2 Chapter 1. Introduction

1.1 Gestion des phases d’un mélange compositionnel

1.1.1 Simulation des écoulements polyphasiques multiconstituants

La simulation de réservoir est I'art d’utiliser les techniques numériques pour prédire le comporte-
ment des écoulements de fluides dans les milieux poreux, connaissant les conditions initiales et
aux limites appropriées [8]. Née il y a plus d’un demi-siecle avec I’avénement des ordinateurs, elle
est aujourd’hui devenue une technologie mature, avec un abondant catalogue de modeles adaptés
aux différents besoins et une vaste panoplie de méthodes numeériques performantes [26,28]. Jadis
dédiées a la récupération des hydrocarbures dans le sous-sol, les mémes équations sont depuis
une décennie orientées vers des enjeux plus conformes a notre époque, comme la séquestration
du dioxide de carbone dans les aquiféres salines, le stockage de gaz dans les réservoirs géologiques
ou l'enfouissement des déchets radioactifs...

Apercu des options de stockage géologique Pétrole ou gaz produit
1. Gisements de pétrole ou de gaz épuisés wssnssmssnessness GO, INjecté

2. Utilisation pour la récupération assistée du pétrole et du gaz B  CO. stocke
3. Formations salines profondes: a) en mer, b) sur la terre ferme

4. Utilisation pour la récupération assistée du méthane

Figure 1.1: Diverses options de stockage sous-terrain. (©) GIEC 2005

Que ce soit pour le pétrole ou pour des finalités plus modernes, une caractéristique commune
dans le cahier des charges que doit remplir un simulateur est sa capacité a traiter des cas
“réalistes” faisant intervenir des dizaines ou des centaines d’espéces chimiques différentes. Méme
lorsque ces especes ne réagissent pas entre elles, les lois régissant leur équilibre thermodynamique
font que chaque espece — ou chaque constituant — peut se retrouver sous une ou plusieurs
phases différentes. Le concept de phase correspond grossiérement a l'intuition que nous avons
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des états de la matiere (gaz, liquide, solide), mais pas toujours (par exemple, I’huile est considérée
comme phase distincte de I'eau). Les modeles qui prennent en compte cet aspect sont qualifiés
de polyphasiques compositionnels ou polyphasiques multiconstituants. Dans la hiérarchie des
modeles d’écoulement en milieu poreux, ce sont de loin les plus complexes!.

La difficulté avec un mélange polyphasique compositionnel est que nous ne pouvons prévoir ni
oll et quand une nouvelle phase va apparaitre, ni o1 et quand une ancienne phase va disparaitre.
Tout au mieux pouvons-nous poser les équations correspondant aux lois physiques considérées
et “attendre que cela se passe”. Or, la maniére méme de poser les équations fait débat. Pour
expliquer ce point avec précision, nous allons introduire quelques notations en vue d’écrire... des
équations. Soit

K={LII,...,K}, K=>2, (1.1)

I’ensemble des constituants, et
2 ={1,2,..., P}, P>2, (1.2)

I’ensemble des phases virtuellement envisageables. S’il existe au moins une espéce ¢ € K dans
la phase a € 2, celle-ci est dite présente. Le sous-ensemble I'(x,t) € & des phases présentes
A une position x € R3 donnée et a un instant ¢t € R, donné est appelé contexte. Ce dernier
dépend ainsi de ’espace et du temps. Pour chaque phase présente a € I', on définit les fractions
partielles 27, pour tout j € K, fonctions de (x,t). Celles-ci mesurent I'importance relative de
chaque constituant au sein de la phase présente «.

Considérons le modele d’écoulement polyphasique compositionnel en milieu poreux suivant,
qui est tres simpliste mais qui contient ’essence de la difficulté.

ETANT DONNES
¢, {petaez, {Ph}iaiekxzs Aatacs
CHERCHER
I'c 2, {Sataer =0, {zh}iaexxr =0, {uataer, P
fonctions de (x,t) € Dy, x Ry, ou D, < R3 est un domaine borné, satisfaisant

e les lois de conservation massique

a o 7 . o 1 .
qﬁa Z PaSpxs + divy Z paraus =0, Vie K, (1.3a)
Bel Bel'
e les relations bilans

diSg—1=0, (1.3b)
Bel’
Zx£—1=0, VaeTl ; (1.3c)
Jex

o les égalités de fugacité
z! @ (24, P) — x%@%(xg, P) =0, V(i,a,8) e CxT' xT, (1.3d)

oit ¢, = (z1, ..., 2K71) e RE~! est le vecteur des fractions partielles indépendantes ;

'bien plus que le modele de black-oil, mieux connu du grand public mais qui n’en est qu’un cas trés particulier.
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e les lois de Darcy-Muskat
Uq = —Aa VP, Vael. (1.3e)

e les conditions de Neumann homogenes sur le bord JD, .

La quantité ¢ représente le champ de porosité, supposé connu en fonction de I’espace x. Les
quantités pg, représentent les densités (ou masse volumique) des phases, ici supposées constantes,
ce qui correspond & un écoulement incompressible. Il n’y a ni gravité ni capillarité (une pression
par phase) dans le modele (1.3).

Les équations aux dérivées partielles (1.3a) expriment les lois fondamentales de conservation
de chaque constituant i € K. Ces bilans matiere sont suppléés par les identités (1.3b)—(1.3¢) qui
découlent de la définition des fractions partielles x% et des saturations Sg, qui mesurent le taux

de présence globale des phases et qui sont des inconnues. Les égalités de fugacité (1.3d) sont
encore appelées relations d’équilibre, car traduisent 1’équilibre thermodynamique pour chaque
constituant i € K & travers deux phases présentes. Les fonctions données ®¢, sont les coefficients
de fugacité. Elles impliquent la pression P, qui est aussi un champ inconnu. Le gradient de
ce champ apparait dans les lois de Darcy-Muskat (1.3e) donnant empiriquement la vitesse de
filtration u, de chaque phase. Le coefficient de proportionnalité A, entre V,P et u, est une
fonction donnée de la saturation S, et de la composition partielle {z° };cxc. Elle encapsule la
perméabilité absolue, la perméabilité relative et la viscosité de la phase [26].

Si le contexte I' est connu, on peut vérifier qu’il y a |T'|K + 4|T'| + 1 équations scalaires
pour |[['|K + 4|T'| + 1 inconnues scalaires, ot |I'| désigne le cardinal de I'. Ceci montre que le
systeme (1.3) est fermé. Le plus génant est que le contexte I' est aussi une inconnue, fonction
de I'espace et du temps, alors qu’il n’y a pas vraiment d’équation qui permette de le déterminer
sans ambiguité. C’est 1a qu'il faut exploiter les conditions de positivité sur S, et x!. Lorsqu’on
se donne une partie I'(x, t) quelconque de & et qu’on résout le systéme, rien ne garantit que
les saturations et les fractions partielles sont toutes positives. Le “bon” contexte — a supposer
qu’il soit unique — est celui pour lequel S, = 0 et 2%, = 0 pour tout a € T'.

La plus mauvaise méthode pour trouver I'(x,t) serait d’essayer de maniére combinatoire
tous les sous-ensembles de Z2. Ici, cela est tout & fait exclu puisque ce sous-ensemble dépend
des variables continues (x,t). Méme apres discrétisation en espace et en temps, le nombre de
configurations a essayer serait astronomique ! Il vaut mieux partir d’une approximation initiale
de I'(x, t) qu'on corrige au fur et & mesure, en tenant compte des informations a priori dont on
dispose sur 1’écoulement. Souvent, une approximation initiale “raisonnable” peut étre obtenue
au moyen d'un flash négatif [1,117] : on commence par supposer que toutes les phases sont
présentes, i.e., I'(x,t) = & ; on résout le systeme et détecte pour chaque (x,t) les phases
pour lesquelles la condition de positivité est respectée et ne garde que celles-ci dans le contexte
actualisé.

Nous convenons d’appeler (1.3) la formulation en wvariables naturelles ou formulation de
Coats, malgré un léger abus de vocabulaire. En fait, ce que les ingénieurs entendent par “formu-
lation” n’est pas seulement un ensemble d’équations. L’usage de ce mot inclut aussi un choix de
variables primaires et d’équations primaires, par opposition aux variables secondaires qui seront
éliminées grace aux équations secondaires. Le choix préconisé par Coats [30] est de prendre
comme inconnues primaires P, {Sq }aer et {22, }aer et comme équations primaires (1.3a)—(1.3d).
Les inconnues secondaires u,, sont éliminées soit préalablement soit au niveau du systéme linéaire
a l'intérieur de Newton par I’équation secondaire (1.3e). Cette étape n’est certes pas essentielle
pour notre probléme cible, qui est la gestion des changements de phase. Néanmoins, il demeure
important dans les calculs pratiques parce qu’en diminuant la taille du systeme algébrique a
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résoudre a chaque pas de temps, il permet de réduire notablement le temps de calcul. Il ex-
iste un grand nombre d’autres formulations possibles. Une revue assez compléete a été effectuée
dans [25,116].

La formulation en variables naturelles ou de Coats est celle implantée actuellement dans
les logiciels d’TFPEN. Elle porte aussi le nom de formulation en wvariable switching. En effet,
le jeu d’inconnues et d’équations n’est pas fixe et doit étre constamment ajusté en fonction
des changements locaux de contexte. Autrement dit, le “switching” se produit sans cesse pour
chaque maille et & chaque pas de temps selon que les hypotheses émises sur le contexte sont
violées ou non, a l'instar d’'une méthode de type active set en optimisation sous contraintes. Il
se produit méme d’une itération de Newton a l'autre, en cas de négativité des saturations ou des
fractions partielles, ce qui laisse de sérieux doutes au niveau théorique quant au systéme qu’on
veut vraiment résoudre. Au niveau informatique, cette gestion dynamique est lourde & mettre
en ceuvre et consommatrice en temps de calcul. C’est 1a son inconvénient majeur.

1.1.2 Apports et revers des conditions de complémentarité

En 2011, une nouvelle formulation proposée par Lauser et al. [78] a retenu l'attention de la com-

munauté des numériciens en écoulements polyphasiques compositionnels. A laide d’une notion
de fractions partielles étendues et surtout des conditions de complémentarité, les auteurs parvi-
ennent & donner un traitement unifié aux phases présentes et absentes, d’ou la dénomimation
de formulation unifiée. Voici ce que devient (1.3) dans la formulation unifiée.

ETANT DONNES
¢, {potaez, {Ph}iaexxzs {Aatacs
CHERCHER
{Satacz, {€i}Ga)ekxss {Uatacz, P
fonctions de (x,t) € R3 x R, satisfaisant
e les lois de conservation massique

a le} 7 . 0 ~1 .
(ba Z paSpés + divy Z paépus = 0, Vie K ; (1.4a)
peP BeP

e la conservation du volume

dSs—1=0; (1.4b)
peP
e les égalités de fugacité étendue
&P (40, P) = 05 (wp,P) =0, V(i,a,p) e K x P x 2, (1.4c)

I

Lo, 281 e RE=1 sont définies comme

b S ; (1.4d)

o -
ZjelC fé

ou les composantes de &, = (x
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e les conditions de complémentarité

min (sg, 1-> g%) -0, VBeZ; (1.4e)

JeEK

e les lois de Darcy-Muskat
Uq = —Aa V4P, YVae Z. (1.4f)

Les fractions partielles ¢, auparavant définies seulement pour les phases présentes a € I, sont
désormais remplacées par les fractions étendues ¢, définies pour toutes les phases a € Z. Le
contexte I' s’est totalement éclipsé du nouveau systeme. Si 'on veut le retrouver a posteriori, il
suffit de chercher les phases « telles que S, > 0. Dans les relations d’équilibre étendues (1.4c),
notons que le premier argument du coefficient de fugacité ®%, doit étre le vecteur des fractions
étendues renormalisées par (1.4d), de sorte que les 2%, ainsi calculés jouent encore le role de
fractions partielles “classiques”.

La véritable nouveauté réside dans les conditions de complémentarité (1.4e), qui expriment
au fond que

Sg=0, 1-> ¢ >0, Sﬂ<1—252>=0, (1.5a)

jexk jek
ce qui peut encore s’écrire plus savamment comme

0<SsL1-> ¢ >0 (1.5b)
jex

Autrement dit, au moins 'une des deux quantités est nulle tandis que 'autre doit garder le
signe positif. Concretement, si Sg > 0, a savoir si la phase  est présente, alors nécessairement
Z]’e]c ff; = 1. Il en résulte par (1.4c) que 523 = x%, c’est-a-dire que les fractions étendues de la
phase coincident avec les fractions partielles classiques. Si Sg = 0, a savoir si la phase 3 est
absente, on a a priori 3 x fé < 1. Dans le sous-cas ek 5% < 1, on parle d’absence stricte

pour la phase /3. Dans le sous-cas contraire, si Y| ek fé =1, on a affaire & un point de transition

qui marque la frontiére entre la présence et ’absence de la phase (.

La formulation unifiée présente I’énorme avantage de travailler avec un jeu fixe d’équations
et d’inconnues. Indiscutablement, ce confort est non-négligeable pour I'implémentation pratique.
Sur le plan théorique, le cadre semble aussi plus satisfaisant, dans la mesure ol les changements
de phase sont automatiquement pris en charge par les conditions de complémentarité, ce qui
évite entre autres d’avoir a recourir au flash négatif. Il en va ainsi dans de nombreux domaines,
notamment en mécanique et en électronique [2], o les conditions de complémentarité s’imposent
comme la fagon la plus efficace pour exprimer un va-et-vient entre deux régimes de fonction-
nement possibles pour un systéme. Un exemple récent & IFPEN ot les conditions de complémen-
tarité ont apporté une réelle avancée concerne la modélisation stratigraphique [102,103]. Nous
en étudierons un modele treés réduit en tant que banc d’essai pour nos méthodes numériques.

Plusieurs équipes se sont intéressées a la formulation unifiée pour les écoulements polypha-
siques compositionnels. Outre I’Université de Stuttgart ot 'idée a pris naissance, on peut citer
Inria avec les travaux doctoraux de Ben Gharbia [11,17] sur des lois de fugacité relativement
simples, I'Université de Nice avec les travaux de Masson et ses co-auteurs [9,86,87] sur des lois de
fugacité également simples mais en évoluant vers des modeles non-isothermes avec couplage. De
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son coté, IFPEN s’est attaché a réaliser des comparaisons entre la formulation de Coats et celle de
Lauser sur des cas d’écoulements réalistes, utilisant des coefficients de fugacité associés a des lois
d’état cubiques [12,13,84,101]. Ces comparaisons visent d’abord a valider les résultats obtenus
par la formulation unifiée, puis a jauger de sa performance du point de vue de la robustesse
(qui se manifeste notamment par la convergence de 'algorithme de résolution numérique). On
observe qu’en cas de convergence pour la formulation unifiée, le temps de calcul est nettement
meilleur, le facteur de gain se situant entre 3 et 10.

La thermodynamique serait-elle une nouvelle terre de conquéte pour les conditions de com-
plémentarité 7 Nous n’en sommes pas encore la. Si les premiers succes sont prometteurs, ils
s’accompagnent aussi d’un certain nombre de défauts mis en évidence lors des travaux précités.
Le premier est imputable a la non-différentiabilité des conditions de complémentarité, ce qui
empéche l'acces a la méthode de Newton classique. Bien entendu, on peut employer une variante
de Newton avec une notion plus faible pour la matrice jacobienne. En 'occurrence, compte tenu
de la fonction min pour exprimer la complémentarité (1.4e), c’est naturellement vers la méthode
de Newton-min [3,72] que se sont tournées toutes les équipes précédentes. Les détails de la
méthode seront données en §1.2.1 et §4.2.3. Pour le moment, faisons le constat que sur certains
cas difficiles, par exemple quand le pas de temps est trop grand, Newton-min souffre d’un
phénomene de cyclage : les itérés oscillent de maniere périodique entre quelques états, souvent
deux ou trois. Cette pathologie s’explique directement a partir de la discontinuité des dérivées sur
des exemples “jouets”, comme en §4.4. En somme, & moins de disposer d’une meilleure méthode
de résolution du systéme en formulation unifiée, on n’a fait que reporter la difficulté du probleme
de départ sur les épaules du solveur non-linéaire.

En marge de cette obstruction générique, commune & tous les systémes non-différentiables,
le déploiement de la formulation unifiée (1.4) se heurte également & un obstacle plus subtil,
spécifique a certaines lois de fugacité pourtant couramment utilisées en thermodynamique. A
vrai dire, nous n’en étions pas conscients au début et ne I’avons découvert que suite aux nombreux
“plantages” du code. Mais il est utile de I’évoquer ici afin de compléter le tableau des difficultés.

Soit

Qz{mz(:vl,...,xK_l)eRK_l|xI>O,...,xK_l>0,17x17...7xK_1>0} (1.6)

le domaine du vecteur des fractions partielles indépendantes et considérons les mélanges dipha-
siques, ol les phases de & = {G, L} sont le gaz et le liquide. Dans la famille des équations d’état
cubiques, les coefficients de fugacité ®% (x) et % (z) — pour alléger, on omet la dépendance par
rapport a la pression P — sont définies par I'intermédiaire d’une équation du troisieme degré.
Prenons 'exemple de la loi de Van der Waals, ot cette équation s’écrit

Z3(x) — [B(x) + 1] Z%(x) + A(x)Z(x) — A(x)B(x) = 0, (1.7)

ou les fonctions A(-), B(-) sont données. Lorsque 1’équation admet trois racines réelles, on les
nomme
ZL(ac) < Z[(m) < Z(;(a:).

Cette définition de Zg(-) et Z1(-) permet de calculer les coefficients de fugacité par
B(z) + V4B(zx) - (6' — )
B(x)

N [B(a:) + VzB(x) - (6" — x) _ 2A(x) + VaA(z) - (6% — a:)} A(x)
B(x) A(x)

In®! (x) = [Zo(x) — 1] — In[Zo(z) — B(x)]
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pour i € K et a € {G, L}, ol les composantes de §° = (0i1, ..., 0ik—1) sont des symboles de
Kronecker. Malheureusement, la région des & € 2 ol la cubique (1.7) possede trois racines réelles
ne couvre pas tout 2. Elle n’en est qu'une modeste partie. Dans le reste de €2, soit on ne peut
définir que Z7 (x) mais pas Zg(x), soit vice-versa. Par conséquent, lorsqu’on décrete une égalité
de type

{Pa(wa) — 1P (@) =0, (1.9)
deux scénarios peuvent grosso modo se produire. Si les deux phases sont présentes, chaque
vecteur x,, se trouve dans le domaine de définition de Z,, et des @fx. Les deux fugacités étendues
au premier membre sont bien définies et 'on peut espérer ’existence d’une solution. Si I'une des
phase est absente, disons G, alors seul x;, se trouve dans le domaine de définition de Zj, et la
valeur de £! ®% (1) peut ne pas se trouver dans I'ensemble image de £5®% (z). Dans ce cas, il
n’y a pas de solution au systeme. Pour tenter de satisfaire ’égalité, il faudra faire sortir ¢ du
domaine de Zg, ce qui ne pourra se faire sans un prolongement de la fonction @DE.

L’explication que nous venons de faire s’appuie sur les coefficients de fugacité dans le but
d’eétre la plus courte possible. En §3.3.1, un éclairage supplémentaire sera fourni en termes
de fonctions de Gibbs et de leurs gradients, qui sont des grandeurs plus fondamentales et qui
permettront d’approfondir notre compréhension de cette difficulté.

Il peut étre soutenu que le méme défaut des lois cubiques devrait causer le méme préjudice a
la formulation en variables naturelles. Il n’en est rien. Dans la formulation de Coats, si le contexte
est correctement deviné, nous n’avons pas besoin de calculer quoi que ce soit en rapport avec la
phase évanescente. En I'absence d’une phase, I’équation (1.9) n’existe pas dans le systeme et le
probléme ci-dessus n’est pas pertinent. Si le contexte est mal deviné, nous avons la possibilité de
nous rattraper en changeant le contexte. La formulation en variables naturelles n’a pas a aller
chercher l'information 1 ou celle-ci n’existe pas. La formulation unifiée s’inflige cette mission
impossible, de par sa vocation — ou sa prétention — a traiter toutes les phases sur un pied
d’égalité.

Nous avons dit plus haut qu’une “formulation” vient avec un choix de variables primaires et
d’équations primaires. Dans la formulation de Lauser, les variables primaires sont P, {Sy}ac o,
{¢'}ickc, ot ¢° est la valeur commune de la fugacité étendue de l’espece i & travers les phases.
Les fractions étendues & sont alors prééliminées par I'inversion du systéme local K x K

0L (xa) = ¢, i€k, (1.10)

dans chaque phase a. Pour les mémes raisons qu’avant, & cause de la construction par équation
d’état cubique des @, a € {G, L}, le systeme (1.10) n’a pas toujours de solution pour tout

Y = (4,01, ey goK). Les essais numériques de [84,101] corroborent cette remarque.

1.1.3 Objectifs de la these

En dépit de ces deux difficultés majeures, nous avons la conviction que la formulation unifiée
présente un fort potentiel pour améliorer la performance des simulateurs d’écoulement polypha-
sique compositionnel. En soi, formuler de maniére unifiée le probléme au niveau continu est déja
un progres considérable. Il serait dommage de s’arréter en si bon chemin. Pour “transformer
I’essai” et aller au bout de I'intérét de la formulation unifiée, nous devons relever deux défis :

1. Mettre au point une méthode de résolution numérique des systémes d’équations contenant
des conditions de complémentarité, en remplacement de Newton-min. La nouvelle méthode
doit avoir une meilleure garantie de convergence et étre aussi robuste que possible par
rapport aux parametres du probléme, ainsi qu’au point initial.
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2. Mettre en place des remedes éventuellement ad hoc pour contourner la difficulté inhérente
aux équations d’état cubiques, indépendamment de toute méthode numérique de réso-
lution. Le cas échéant, préciser les conditions mathématiques favorables & 'existence et
I'unicité d’une solution dans la formulation unifiée.

Sur le deuxieéme objectif, il n’y a & notre connaissance aucun travail antérieur, la difficulté
ayant été identifiée “en cours de route”. Sur le premier objectif, en revanche, il y a une volumineuse
littérature.

1.2 Meéthodes existantes pour les conditions de complémentar-
ité
Apres discrétisation de (1.4) par un schéma Euler implicite en temps et un schéma de type

volumes finis en espace sur un domaine borné muni de conditions aux limites appropriées, nous
devons résoudre a chaque pas de temps un systéme de la forme

A(X)
min(G(X), H(X))

0, (1.11a)
0, (1.11b)

dans laquelle X € R™ est 'inconnue et A: Dc R 5 RECE™ G: Dc RS R et H: D
R’ — R™ sont des fonctions continiiment différentiables sur le domaine ouvert D. Rappelons
que la fonction min dans (1.11b), qui agit composante par composante, n’est quune astuce
algébrique commode pour exprimer la complémentarité

0<G(X)LH(X)=0.

Pour étre encore plus concis, posons

F(X) = A(X) } R, (1.12a)

[miH(G(X), H(X))
de sorte que le systéme a résoudre devient
F(X) =0, (1.12b)

ol F n’est pas différentiable partout. Nous distinguons deux catégories de méthodes pour la
résolution de (1.12), que nous passons rapidement en revue ci-aprés en faisant référence au
chapitre §4 pour de plus amples détails.

1.2.1 Meéthodes de Newton non-lisses

Pour une fonction F' contintiment différentiable, la méthode de Newton
XH = XF — [VE(XP)TF(XR) (1.13)
correspond & la recherche d’un zéro du modele d’approximation locale

X — F(X)+ VF(X") (X - x%) (1.14)
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au voisinage de X*. Il existe une théorie de Newton non-lisse [47, §7.2] qui généralise le modele
local (1.14) en un schéma d’approximation de Newton

X — F(X" +T(XF X — XP), (1.15)

ou chaque T'(X,-) provient d’un ensemble 7 (X) soumis a des conditions techniques [Définition
4.5] qui garantissent le caractere bien défini et la convergence locale [Théoreme 4.2] & taux
quadratique [Théoréme 4.3] de l'algorithme généralisé [Algorithme 4.1]. Le lecteur trouvera les
énoncés précis de cette théorie en §4.2.1. En réalité, cette théorie de Newton non-lisse est avant
tout un cadre opérationnel abstrait qui ne donne pas lieu & un algorithme concret. On ne
demande méme pas que T(X*, -) soit linéaire !

Pour avoir un objet plus “palpable”, il faut se restreindre aux fonctions F' lipschitziennes
pour lesquelles on peut définir la sous-différentielle de Bouligand 0 F et celle de Clarke 0F
[Définition 4.7], qui est ’enveloppe convexe de la premiere. Cela ouvre la voie & ’approximation
locale linéaire

X — F(X)+ M*(X - x%) (1.16)

oit M* € 0F(XF¥). Cependant, on ne peut vérifier les hypothéses techniques du cadre non-lisse
[Définition 4.5] que pour une sous-classes de fonctions lipschitziennes, définies alors [Définition
4.8] comme les fonctions semi-lisses [92, 105]. Dans ce cas, on parle de méthode de Newton
semi-lisse [Algorithme 4.2], avec le caractére bien défini [Théoremes 4.4] et les bons résultats de
convergence [Théoreme 4.5]. La encore, les énoncés précis se trouvent en §4.2.2.

Un cas particulier important d’algorithme semi-lisse est la méthode de Newton-min [Algo-
rithm 4.3]. Dans le cas du systéme (1.12), il est en effet possible de montrer [Proposition 4.2]
que les matrices de dpF'(X) sont de la forme

M= {VAng)] ., YeR™ (1.17a)

dans laquelle la a-iéme ligne de ¥ pour o € {1,...,m} est
VG, (X) if Go(X) < Ho(X),
Va =13 VGa(X) or VHa(X) if Go(X) = Hy(X), (1.17b)
VH,(X) if Go(X) > Hy(X).

Les défauts de la méthode Newton-min ont été soulignés en §1.1.2. Ils ont été également formal-
isés dans [11,14]. Un autre inconvénient avec Newton-min est qu’il est difficile de le “globaliser”
par une recherche linéaire afin d’atteindre un comportement globalement convergent.

1.2.2 Meéthodes de régularisation

A l'opposé des méthodes non-lisses ou semi-lisses, les méthodes de régularisation tentent d’abord
de lisser la fonction F', ce qui introduit un parametre de régularisation qu’il faudra faire tendre
vers 0. Une régularisation de F est la donnée d’une famille de fonctions

{F(5v): DcR' SR v>0} (1.18)
telle que : (i) F(-;v) soit contintiment différentiable en X pour tout v > 0 ; (i) F(-;v) soit
continue par rapport a v, selon un certain sens fonctionnel ; (iii) lim, o F'(-;v) = F(-), toujours

selon un certain sens fonctionnel. A partir d’une valeur courante pour le couple (X* vF), la
stratégie consiste a :
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1. Résoudre F (X k+1 ;uk) = 0 en linconnue X**1 par la méthode de Newton classique,
utilisant X* comme point initial. Trés souvent, pour gagner en temps de calcul, on ne fait
qu’une seule itération de Newton.

k

2. Diminuer le parametre de régularisation de v* & v**1 & ’aide d’une régle heuristique.

Recommencer jusqu’a ce que F(X*+1) = 0.
Parmi les nombreuses régularisations possibles d’une condition de complémentarité

0<vlw>=0, (1.19)

ol v et w sont des scalaires, celles utilisant les #-fonctions sont particulierement élégantes. Elles
consistent & traduire d’abord (1.19) sous I'une des formes équivalentes [Lemmes 4.2 et 4.3]

v =0, w =0, Sw)+6((w)<1 (1.20a)
ou
v =0, w =0, S(v) + 6(w) = S(v + w), (1.20Db)
dans lesquelles
0 ift=0
G(t) = ’ 1.21
®) {1 if £>0. ( )

est la fonction saut?. Ensuite, on approche (1.20a)—(1.20b) par
v =0, w =0, 0,(v) + 0, (w) =1 (1.22a)

ou
v =0, w =0, 0,(v) + 0, (w) =0,(v+ w), (1.22Db)

en utilisant

t
0,(t) := 9(), v >0, (1.23)
v
comme régularisation de &, obtenue par contraction d’une fonction “pere” 6 : Ry — [0,1)
continue, croissante, concave et vérifiant [Définition 4.11]

6(0) =0, tEToog(t) = 1. (1.24)
Initiée par Haddou et ses co-auteurs [7,55], approximation de la complémentarité par les 6-
fonctions ont trouvé un usage polyvalent dans de nombreux problemes appliqués [19, 56, 57,
93]. En pratique, pour appliquer cette régularisation au probleme (1.12), il est recommandé

d’introduire les variables d’écart V' = G(X) et W = H(X) avant de considérer le systeme
régularisé

A(X) =0, (1.25a)

G(X)—V =0, (1.25b)
H(X)—W =0, (1.25¢)

v [0,(V) + 6, (W) — 1] = 0. (1.25d)

2step function en anglais.
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Dans la derniére équation, la fonction 6 agit composante par composante, tandis que la prémul-
tiplication par v sert & prévenir I’explosion les dérivées lorsque v | 0.

Les méthodes de points intérieurs [54,118], réputées pour leur grande efficacité en program-
mation linéaire grace notamment a leur complexité polynomiale, peuvent s’interpréter comme des
méthodes de régularisation. Nous nous intéressons plus particulierement aux méthodes primales-
duales [119], dans lesquelles les variables primales (inconnues de départ) et duales (multiplica-
teurs de Lagrange) jouissent du méme statut. Lorsqu’'on décortique une méthode de points
intérieurs de type primal-dual, on s’apercoit qu’il s’agit au fond d’une méthode de résolution du
systeme algébrique des conditions d’optimalité de Karush-Kuhn-Tucker (KKT). Le fait que ce
systeme provient d’un probléme de minimisation sous contraintes d’inégalité compte finalement
peu dans la méthode. Cela laisse donc entrevoir la perspective de transposer ces méthodes au
cas d’'un systéme général contenant des conditions de complémentarité.

Le probleme de départ (1.12) est remplacé par la suite des problemes régularisés

A(X) =0, (1.26a)
G(X)-V =0, (1.26D)
H(X)—W =0, (1.26¢)
VOW —vl =0, (1.26d)

ol ® désigne le produit composante par composante et 1 € R™ est le vecteur dont toutes les
composantes sont égales & 1. De manieére plus concise, ce probléme s’écrit

F(X;v) =0, (1.27a)
avec
X A(X)
G(X)-V
_ L+2m . _ £+2m
X = ;/V e R4 F(X;v) = Hix)_w| SR (1.27D)
VoW -l

La méthode génere alors une suite X¥ = (X%, V¥ W*) ainsi qu’une suite auxiliaire ¥ > 0 telles
que - ~ -
(X* vE Wk - (X, G(X), HX)), *—o0,

ol X est un zéro de F. De surcroit, la premiere suite doit satisfaire la condition de stricte
positivité
vk >0, Wk >0,

pour tout k& > 0.

De ce principe général, plusieurs méthodes peuvent étre déduites. La plus simple est celle dite
a un pas [Algorithme 4.5], dont 'esprit est fidele & celui des méthodes de régularisation : on fait
une itération de Newton & v/* fixé pour trouver X* 1, puis on met & jour v**! “4 la louche” selon
I'une des regles empiriques (4.77) ou une autre. Une méthode plus sophistiquée, qui comporte
deux étapes [Algorithme 4.6], est inspirée de 'algorithme de Mehrotra [88], référence incon-
tournable en optimisation. Dans cet algorithme, le paramétre v* est toujours égal & la mesure de
centralité (V¥ W*)/m de litéré courant, ot1 (-, -» désigne le produit scalaire. A la premidre étape,
surnommée prédicteur, on fait fi de v* et cherche & atteindre immédiatement la cible ultime, qui
correspond a v = 0, en faisant un pas de Newton (4.78) puis en tronquant la direction obtenue
pour respecter la positivité. Quelle que soit I'issue de cette tentative audacieuse, un facteur de
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recentrage o est évalué par heuristique (4.82) afin de viser I'objectif mieux adapté v = okvk
dans la seconde étape, appelée correcteur. Ce facteur d’adaptation o® est un ingrédient essentiel
de I'algorithme. La derniére étape incorpore également une correction du second ordre dans les
équations dans le but de gagner en précision et se termine par une autre troncature, toujours en

vue de rester dans le domaine strictement intérieur.

1.3 Démarche, contributions et plan du mémoire

Dans cette theése, nous avons pris le parti de nous focaliser sur le sous-probleme de 1’ équilibre des
phases, extrait d’'un modele d’écoulement complet comme (1.4). L’avantage d’étudier d’abord
ce sous-probléme est qu’il est plus petit et qu’il ne dépend pas de (x,t). En escamotant ainsi
I’écoulement, on peut mieux se concentrer sur la thermodynamique pure. Une fois les difficultés
appréhendées et résolues, nous reviendrons bien entendu au modele d’écoulement complet dans
les simulations numériques.

1.3.1 Etude du probléeme de I’équilibre des phases

Les deux premieéres sections du chapitre §2 introduisent ce sous-probléme de 1’équilibre des
phases, de maniére délibérément indépendante du modele d’écoulement complet retenu puisqu’il
peut y en avoir plusieurs. Montrons ici le lien entre le sous-probleme de I’équilibre de phases et
le modele (1.4). Soit

o= 3 s (1.25)
aeP

la densité totale. Définissons les fractions de phase

P3S
Y;=220 geop, (1.29)
p
ainsi que les compositions
1 .
== Z PSsEs ie k. (1.30)
peP

Il est alors facile de voir que ces deux types de fractions sont reliées par la relation bilan

¢ =) Yp&h,  Viek (1.31)
pBeP

Drautre part, a cause de (1.29) et comme p3/p > 0, la condition de complémentarité (1.4e)

équivaut encore a

min (Yﬁ, 1-) 52) =0, VBe2. (1.32)
jexk
Les relations (1.31), (1.32) auxquelles se joignent les relations d’équilibre étendues (1.4c) forment
un systéme qui n’est autre que la formulation unifiée (2.37)—(2.39) du probleme de 1’équilibre
des phases. La scission avec le modeéle complet d’écoulement est réalisée en considérant que les
compositions {c'};cic ainsi que la pression P sont données.
La section §2.3 regroupe plusieurs résultats originaux concernant la formulation unifiée du
probleme de I'équilibre des phases. Ces résultats s’expriment le plus naturellement lorsqu’on
utilise les fonctions d’énergie de Gibbs, dont le role central est ainsi mis en exergue.
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e En §2.3.1, nous montrons qu’elle permet de retrouver rigoureusement le critére du plan
tangent [Théoreme 2.1], certes connu des physiciens mais dont la démonstration dans les
ouvrages de thermodynamique suit un cheminement tout a fait différent.

e En §2.3.2, nous mettons en avant un lien fort et jusqu’a présent méconnu entre la formu-
lation unifiée et la minimisation d’une énergie de Gibbs modifiée du mélange, exprimée
directement en fonction des fractions étendues [Théoremes 2.3 et 2.4]. Il n’y a pas équiva-
lence parfaite, mais nous prouvons que la formulation unifiée correspond & un choix pour
les fractions des phases absentes parmi une infinité possible de minimiseurs. Ce choix est
de surcroit naturel, puisqu’il est obtenu par limite continue de solutions dans lesquelles les
phases sont présentes.

e En §2.3.3, nous émettons des hypotheses raisonnables [Hypotheses 2.2] afin d’assurer
I'existence et 1'unicité des fractions étendues dans deux configurations particulieres mais
importantes. Elles requiérent notamment la stricte convexité des fonctions de Gibbs et
seront indispensables pour la suite des développements théoriques.

A partir de la section §2.4, nous nous restreignons & un mélange diphasique. En §2.4.1, nous
définissons deux notions de dégénérescence pour les solutions, a savoir les points de transition et
les points azéotropiques, qui seront exclues plus tard des théorémes. En §2.4.2, nous examinons
le cas particulier d’'un mélange binaire (& deux composantes), pour lequel nous démontrons
I’existence et 'unicité d’une solution pour la formulation unifiée.

1.3.2 Analyse de convexité des lois simples et prolongement des lois cubiques

Le chapitre §3 pousse plus loin I’étude du probleme de I’équilibre des phases en prenant en
compte I'expression explicite de quelques lois physiques spécifiques habituellement utilisées par
la fonction d’énergie de Gibbs. La premiére section §3.1 s’intéresse & la question de savoir si les
Hypotheses 2.2 sont satisfaites pour certaines lois simples. La réponse est positive incondition-
nellement pour la loi de Henry [Proposition 3.1], conditionnellement pour les lois de Margules
[Proposition 3.2] et Van Laar [Proposition 3.3]. Pour ces derniéres, nous déterminons la région
dans I'espace des parametres pour laquelle la fonction de Gibbs associée est strictement convexe.

Les lois d’état cubiques, trés prisées par les ingénieurs réservoir pour leur précision, font
I’objet de la section §3.2. Comme cela est rappelé en §3.2.1, leur construction passe par une
équation du troisiéme degré dépendant de deux parametres. Nous examinons plus en profondeur
la loi de Van der Waals en §3.2.2 et celle de Peng-Robinson en §3.2.3. Pour chaque loi,

e nous donnons ’expression des coefficients de fugacité pour une loi de mélange générale
[Théorémes 3.1 et 3.4] en supposant que la racine de I’équation cubique correspondant &
la phase considérée existe ;

e nous élucidons le comportement de l’équation cubique en fonction de la criticité des
parametres [Théoremes 3.2 et 3.5], & partir de quoi nous énoncons les régles permettant
d’attribuer une phase a une racine [Définitions 3.2 et 3.3] en régime sous-critique ;

e nous identifions dans le plan des parametres la frontieére entre la zone & une racine réelle
et celle a trois racines réelles [Théoremes 3.3 et 3.6], ce qui sera extrémement utile pour la
suite.
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Le troisieme point est tout & fait nouveau. Le matériel des deux premiers points existe plus
ou moins dans les livres de thermodynamique, mais nous en avons cherché des démonstrations
plus rigoureuses. Ceci nous a conduit notamment a déterminer la valeur exacte des parametres
critiques de Peng-Robinson, dont la littérature ne donne en général que des approximations
décimales.

Vu la complexité des lois cubiques, la question de la stricte convexité des fonctions de Gibbs
associées ne sera guere abordée. A la place, nous examinons dans la section §3.3 une question
plus urgente et plus vitale concernant la limitation des domaines de définition des fonctions
de Gibbs. En effet, comme expliqué rapidement en §1.1.2 et repris pas & pas en §3.3.1, cette
particularité des lois d’état cubiques est un handicap sérieux pour la formulation unifiée, car elle
est susceptible de mettre en défaut ’existence d’une solution quand 1’'une des phases est absente.

Nous proposons d’y remédier en prolongeant les fonctions de Gibbs a tout le domaine des
fractions par deux méthodes. La premieére, dite directe et détaillée en §3.3.2, est trop intimement
liée au cas binaire et se généralise difficilement au cas d’un nombre quelconque d’espeéces. La
seconde, dite indirecte et développée en §3.3.3, manipule les racines au lieu des fractions et s’avere
mieux adaptée au cas multicompositionnel. L’idée de base est que quand la cubique n’a qu’une
seule racine réelle associée a une certaine phase, on peut utiliser la partie réelle (commune) des
deux autres racines complexes (conjuguées) comme “racine” associée a ’autre phase. En envoyant
cette valeur dans les formules de la fonction de Gibbs, on obtient un prolongement continu. Cette
stratégie, justifiée par des propriétés favorables [Lemmes 3.4 et 3.5], donne d’excellents résultats
numériques.

1.3.3 Elaboration de la méthode des points intérieurs non-paramétrique

Les méthodes de régularisation évoquées en §1.2.2 et détaillées en §4.3 sont séduisantes sur le
papier et donnent d’ailleurs des résultats acceptables la plupart du temps. Elles ont toutes néan-
moins un défaut en commun : il n’y pas de recette miracle pour piloter la suite des parametres de
régularisation v* vers 0. Une régle heuristique qui fonctionne bien sur un probleme peut échouer
piteusement sur un autre. L’utilisateur doit essayer plusieurs suites v* avant de savoir laquelle
convient le mieux & son probléme.

Ce constat nous incite a concevoir en §5.1 une nouvelle méthode, appelée nonparametric
interior-point method (NPIPM), dans laquelle la mise a jour de v est “automatique” et cou-
plée avec celle des inconnues X = (X, V,W). Pour cela, nous devons accomplir une nouvelle
“unification”, cette fois entre X et v. Concrétement, on pose

X F(X;v) ]
X = , F(X) = _ T 1.33a
o B PSP (1-33)
oll 7 > 0 est un petit parametre fixé une fois pour toutes et
V7% = Z min?(V,,0),  |[W~|? = Z min?(W,, 0), (1.33b)
et on cherche a résoudre
F(X) =0. (1.34)

La construction de IF est faite de sorte que tout zéro X = (X,7) de F tel que v > —n/2 vérifie

7=0, FX;00=0, V =W =0.
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Comme expliqué en détail en §5.1.1, la raison d’étre du terme linéaire nr dans la derniére
équation est d’éviter une racine double en ¥ = 0 et d’assurer ainsi une convergence quadratique.
Puisque I est différentiable, on peut appliquer la méthode de Newton classique

XFH = xk - [VF(XP)] T R (XF), (1.35)

combinée avec une recherche linéaire de type Armijo pour tenter d’assurer une convergence
globale [Algorithm 5.1]. La théorie de convergence globale a laquelle nous faisons appel, due
& Bonnans [21], est rappelée en §5.1.2. Elle repose de maniére essentielle sur ’hypothese de
régularité du zéro, par laquelle on entend que la matrice jacobienne VIF(X) est non-singulicre.

En application de cette théorie, nous nous attachons en §5.2 a vérifier la régularité des zéros
du probleme de I’équilibre des phases pour un mélange diphasique compositionnel en formulation
unifiée. Notre résultat principal [Théoreme 5.3], acquis au prix de laborieuses transformations de
déterminants, est que sous I’hypothese de stricte convexité des fonctions de Gibbs, toute solution
du probléme est réguliere a ’exception des points transitionnels et des points azéotropiques. En
marge de la preuve générale en §5.2.1, nous indiquons également une démonstration plus courte
pour le cas des lois de Henry en §5.2.2.

1.3.4 Comparaison numérique de plusieurs méthodes sur plusieurs modeles

Le chapitre §6 relate enfin les expériences numériques que nous avons menées sur plusieurs
modeles physiques avec conditions de complémentarité en utilisant plusieurs méthodes numéri-
ques. Les quatre premiers modeles, traités en §6.1, sont considérés comme “simples” du fait du
faible nombre d’équations et d’inconnues. Le premier d’entre eux, en §6.1.1, ne releve pas de la
thermodynamique mais de la géologie, et plus exactement de la stratigraphie dont nous avons
eu un apergu en §4.4. Les deux suivants, en §6.1.2-86.1.3, correspondent au modele (2.77) pour
l’équilibre d’'un mélange diphasique respectivement binaire (& deux constituants) et ternaire (&
trois constituants). Le dernier de la série des modeles “simples”; en §6.1.4, est une variante du
modele binaire avec une évolution temporelle imposée a la composition ¢ et ot la valeur du
pas de temps At influe sur la raideur du systeme & résoudre. C’est un avant-gott du modele
“complet” (6.42).

En ce qui concerne les méthodes numériques, nous procédons de la maniére suivante. En
partant du premier modele, nous essayons toutes les méthodes envisagées. Si une méthode ne
donne pas de résultat satisfaisant, elle est éliminée de la liste. Nous passons alors au modele
suivant et essayons les méthodes qui restent. Ainsi de suite...

La deuxiéme section §6.2 porte sur un modele d’écoulement “complet” dont nous présentons
seulement les équations algébriques et aux dérivées partielles au niveau continu, la discrétisation
spatiale par un schéma de volumes finis étant longue et pouvant étre consultée par ailleurs.
Ce modele est loin d’étre le plus réaliste : il manque plusieurs effets physiques importants
comme la gravité et la capillarité (différence de pression entre les deux phases). Néanmoins, il
est suffisamment complexe pour créer des difficultés & Newton-min et NPIPM. Contrairement
aux cas simples ou NPIPM surpasse sans conteste Newton-min, ici la situation est plus délicate.
Il y a certes quelques scénarios pour lesquels NPIPM converge sans que Newton-min ne le
fasse. Mais en général, 'amélioration apportée par NPIPM est faible et parfois NPIPM peut
faire légerement moins bien en nombre d’itérations. Nous avangons quelques explications a ces
observations en considérant la spécificité des probléemes d’évolution au regard de 'initialisation
des algorithmes.
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Phase equilibrium for
multicomponent mixtures
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Nous exposons le probleme de I’équilibre des phases pour un mélange polyphasique compositionnel, dont
la résolution numérique constitue la motivation de cette thése. Par rapport aux présentations usuelles en
thermodynamique, la notre se focalise sur les vraies inconnues que sont les fractions de phase et d’espéce,
omettant souvent d’indiquer les grandeurs fizées que sont la pression et la température.

Apres rappel de quelques notions préliminaires en §2.1, nous introduisons en §2.2 deux formula-
tions pour ce probléme. La premiére, dite formulation naturelle, fait appel a4 une gestion dynamique des
variables. La seconde, appelée formulation unifiée, permet de travailler avec un jeu fize d’inconnues et
d’équations au moyen des conditions de complémentarité. Nous établissons en §2.3 quelques propriétés
originales de la formulation unifiée, en particulier sa relation avec la minimisation de l’énergie de Gibbs.

En nous restreignant ensuite au cadre diphasique en §2.4, nous donnons la forme définitive au modeéle
a résoudre numériquement dans cette thése. Nous eraminons le cas particulier des mélanges a deuz
constituants, pour lesquels nous mettons en avant quelques propriétés supplémentaires, notamment la
construction géométrique par Gibbs de la solution exacte, que nous redémontrons rigoureusement a partir
de la formulation unifiée.
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2.1 Preliminary notions

We start by reviewing some prerequisites on the thermodynamics of multiphase multicomponent
mixtures. This also gives us the opportunity to introduce the mathematical notations that will
be used throughout this manuscript.

2.1.1 Material balance
2.1.1.1 Species, phases and context

A multicomponent mixture is a physical system consisting of several chemically distinct com-
ponents or species. Such a system arises in many real-life applications such as transport of
hydrocarbons or subsurface energy storage, where the components may be, for instance, hydro-
gen (Ha), water (H20), carbon dioxide (CO2), methane (CHy)... To think of the mixture in a
more abstract way, let us designate by

K={LI1I, ..., K}, K> 2, (2.1)

the set of its species, labeled by Roman numerals. The total number of components K = |K|
usually ranges from tens to hundreds, so that sometimes partial aggregation or lumping is
necessary to reduce complexity.

Each component ¢ € I may be present under one or many phases, hence the denomination
of multiphase multicomponent mixtures. Intuitively, a phase is more or less a state of matter,
e.g., gas (G), liquid (L), oil (O), solid (5)... However, this notion is more subtle, especially at
high pressure [39]. Again, to lay down an abstract framework, let us consider

2 ={1,2,..., P}, P>2, (2.2)

the set of all virtually possible phases, labeled by Arabic numerals. The choice of & within a
model is the (difficult) task of physicists: P should be large enough to take into account the
appearance of new phases in models with time evolution, but not too large for computations to
remain feasible. Most commonly, the maximum number of possible phases P = |Z?| is about 3
in IFPEN’s simulations.

Let n{, > 0 be the number of moles® of component i € K existing under phase o € . Then,

ne = 31, (2:3)

e

is the number moles of matter within phase a. If n, = 0, the phase « is said to be absent.
Indeed, it does not exist. If n, > 0, the phase « is said to be present. The subset of present
phases, namely,

F={aeZ| nga>0cZ (2.4)

is referred to as the context. Since the statement of the phase equilibrium problem in this chapter
is static and local, the context seems to share the same features. Nevertheless, in flow models
where the n!’s vary in time and space, the context also depends on time and space.

LA mole of substance is defined as exactly 6.02214076 - 10*® particles (atoms, molecules, ions, electrons), the
latter number being the Avogadro constant.
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2.1.1.2 Phasic, partial and global fractions

By summing (2.3) over the phases, we obtain

nzZna:Zan (2.5)

aeP aeP e

as the total number of moles of matter in the mixture. Naturally, it is assumed that n > 0;
otherwise, the system is empty. This allows us to define the phasic fraction

Ne 2
Y, = Do

b yerri [0,1] (2.6)

of phase a € &. Thus, the phase can be characterized as absent or present depending on whether
Y, =0orY, > 0. Of course,
dYa=1 (2.7)

ael’

If a phase « is present, that is, n, > 0 or equivalently Y, > 0, then it is possible to define

gi=la_ Mo o] (2.8)

(07
} J

as the partial fraction of component i € K within phase a € I'. From definition (2.8), it follows

that
dlak =1 (2.9)
ekl
for all « € I'. Note that this notion does not make sense for an absent phase a ¢ I', at least
from a quick inspection of (2.8), which gives rise to the indeterminate form 0/0. Surprisingly,
the unified formulation of §2.2.2 will enable us to assign a well-defined value to 2%, even for a
vanishing phase, subject to some technical conditions. This will be done in §2.3.3.
By reversing the order of summation in (2.5), we have

n = Z Z nt, = Z nt, (2.10)
ek ae s ekl

where the newly defined quantity ‘ ‘
n' = > nl (2.11)
ae
represents the total number of moles of component ¢ across all phases. Then,
c=—=——¢€[0,1] (2.12)
n Zje/C n’

is called the global fraction of component ¢ inside the mixture. Needless to say,

D=1 (2.13)

e

By dividing (2.11) by n, restricting summation in the right-hand sides to present phases and
artificially inserting n, in each summand, we end up with

¢ =) Yo, (2.14)

ael
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Given the context T', the phasic fractions {Yg}aer and the partial fractions {2} ; a)excx 2, it
is straightforward to calculate the global composition {c'},ex by (2.14). The phase equilibrium
problem takes exactly the opposite direction: given the global composition {c'};cx satisfying
(2.13), is it possible to find the context I', the phasic fractions {Y,}aer and the partial fractions
{xé}(i,a)elcxt@ satisfying (2.7), (2.9) and (2.14) beside positivity? Obviously, we do not have
enough equations yet. The missing ones are addressed below.

2.1.2 Chemical equilibrium

2.1.2.1 Gibbs energy, chemical potential and Gibbs-Duhem conditions

The behavior of each phase a € & is governed by a single fundamental function
G, : RE SR

known as the Gibbs free energy of the phase. The Gibbs energy is the Legendre-conjugate of
the internal energy with respect to volume and entropy [115], which makes it a function of the
number of moles, the pressure and the temperature. Therefore, it is well suited to the study of
systems at fixed pressure and temperature?. We require G, to be as smooth as necessary.

With respect to the number of moles, this function must be extensive. This actually means
that it must be homogeneous of degree 1, i.e.,

Go(AnL, Al X)) = G (nl, nll, ... 0k, for all A > 0. (2.15)

Then, Euler’s homogeneous function theorem —derived by differentiating (2.15) with respect to
A and by putting A = 1 in the result— asserts that

- 0G
Galnh nll ) = Yl Tl L), 216)
ek onl,
Furthermore, the functions
- 0G,
o= o (2.17)
can be shown to be homogeneous of degree 0, i.e.,
pd Ak, Al oo Ak = (], nll o nl), for all A > 0. (2.18)

Each function u& is the chemical potential of component j € K within phase oo € &. Note that
Go and the s are defined for all phases, present or absent, since here the n'’s are dummy
arguments.

Differentiating the Euler relation

Go = Y b (219)
e

with respect to nl, yields

. A - opl
pho= D Sty + Y b ——2,
el el ana

2This is also why we shall not explicitly write down the dependency of the Gibbs energy with respect to the
pressure P and the temperature T.
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from which it is deduced that

NA e _ o forall jeKk. (2.20)
el ané

Identity (2.20), called the Gibbs-Duhem condition, can be regarded as a compatibility require-
ment to be prescribed on K given 0-homogeneous functions u?, so that they can correctly play
the role of chemical potentials for a bona fide Gibbs energy function.

We now wish to express (2.19)-(2.20) in terms of the partial fractions ¢, defined in (2.8).
Again, since we are interested in functional relationships, we can put aside our concerns about
an absent phase and carry out calculations for all phases a € &. Plugging

1
A= —
nOé
into (2.15) and (2.18) results in
Ga(nl, nll ... nk) = ngGa(al, 211 ) k), (2.21a)
Ha(Mgs ey -5 10) = po (T, Tos -5 ) (2.21b)
Because of (2.9), the quantities z1, zII, ... 2 are not independent. We select the first K — 1
partial fractions
xo = (21, ... 287 eQc RE!

as independent variables. Whenever a xg turns up in any formula, it should be interpreted as

xgzl—xg—...—xff—l.
The domain of x, is the closure of
Qz{m:(xl,...,xK_l)eRK_l|:EI>O, Rt >, 1—$I—...—ZL‘K_1>0}, (2.22a)
namely,
ﬁz{wz(:cl,...,xK_l)eRK_l |zt >0,..., 281 >0, 1—x1—...—xK_1>O}. (2.22b)

Although this choice somehow breaks the symmetry, it is commonly resorted to in practice.
Introduce for each phase « the intensive or molar Gibbs energy and chemical potentials

o : Q> R, ,ufl:Q—>R,
defined as

Ja() = Go (2L, 2, ... 2K, (2.23a)
i (a) = (el o1, ), (2.23)

In (2.23b), we have slightly abused notation by reusing the same symbol pf in the left-hand
side. We require g, and pf, to be as smooth as necessary over €. Moreover, g, is assumed to be
extendable by continuity to the closure €, but not the x¢’s which usually blow up on 0S.

The following statement summarizes some identities between g, and p!, that would be most
helpful in the sequel.
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Lemma 2.1 (Connection between molar Gibbs energy and chemical potentials). For all . € Q-

1. The molar Gibbs energy is related to the chemical potentials by
K . .
Ga(To) = Z xh, pt (xo). (2.24a)
i=I

2. Fach chemical potential can be deduced from the molar Gibbs energy by
1(x0) = go(Ta) + Vo, ga(xa) - (87 — x4), for all jeK, (2.24Db)
where the Kronecker vector 8° is defined as & = (0,1, 052, - .-, OjK—1) € REK-L,

3. The gradient of the molar Gibbs energy is given from the chemical potentials by

gg?(%) = ph(xa) = po(xa),  for all je K\{K}. (2.24c)
Lo

4. The gradients of the chemical potentials satisfy the Gibbs-Duhem condition
K . .
Dl Va, i (@a) = 0. (2.24d)
i=I

Chiing minh. To prove (2.24a), we just have to divide (2.19) by n, and to make use of (2.23).
From definition (2.17), we have

(@) = (10 (@0)) = ga(@a) + 10 Y LI () L0
HolZa) = angx a9a\Ta)) = Ga\Ta e & 6:):31 o ané

for j € K. But

ozt 0 n, 0N —nl ~ 0ji— )
é’né B 571& <na> a (na)? Na
Plugging this into the previous equation yields
' K—1 e
14,(xa) = gal®a) + Z (65 — T¢,) (Ta),

ot oxt,
of which (2.24b) is just a condensed vector form. Let us now subtract the last potential

Ng(ma) = 9a(Ta) + Vga(a) - (5K — Tq)

from each 1, j € K\{K}, given by (2.24b). This cancels out g,(z4) and x,. Since 8% =
(0,0, ...,0), we are left with (2.24c). To derive the Gibbs-Duhem condition (2.24d), we start
from (2.24a) and differentiate both sides with respect to x3, j € K\{K}. This leads to

09a < o K, Kous
= = Ojitte, + Too—o | — g + T —7,
o ; 7 A
the minus sign in the right-hand side being due to 0zX/ ozl = —1. This can rearranged as

%:Hj _MKJrixi Oty
éxﬂy «@ o ~ a(?xja
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By virtue of (2.24c), the sum in the right-hand side above must vanish. In other words,

K

MNat, (g, =0, forall je{l ..., K1}, (2.25)
o 0w
which is the component-wise version of (2.24d). O

2.1.2.2 Equilibrium conditions, fugacity and fugacity coefficient

In a multicomponent mixture without any chemical reaction (also called non-reactive), the pres-
ence of two phases (a, ) € I' x I' implies that some equilibrium conditions must be achieved.
According to thermodynamics, these conditions are the equalities across the two phases of pres-
sure, temperature, and the chemical potentials corresponding to each component 7 € K. In other
words,

() = u%(a:[g), for all (i, a, f) e K x ' x I. (2.26)

These are the missing equations for the phase equilibrium problem. Since pressure and temper-
ature are identical across the phases o and 3, we can keep omitting them as arguments of the
p¥’s in (2.26).

For a solid phase, p!, is a constant. For fluid phases such as gas, liquid and oil, the chemical
potential takes the form

1 (a) = In(af, B (24)). (2.27)

in which ®, is called the fugacity coefficient of component i in phase . Note, however, that it
depends on the partial concentrations of the other components as well. As for the quantity

fé(wa) = xé@fx(wa), (2.28)

it is known as the fugacity of component ¢ in phase «. The equality of chemical potentials (2.26)
is then equivalent to that of fugacities

ah @l (1a) = 24P (xp), for all (7, a, ) e K x ' x T. (2.29)
In practice, the fugacity coefficients ®, are given empirically or inferred from an equation of
state. This will be elaborated on in chapter §3.
REMARK 2.1. In physics textbooks, chemical potentials and fugacities are defined as
fit(za, P, T) = fit(P,T) + RT In(z}, @/, (x4, P, T)), (2.30a)
fi(2a,P,T) = 2l @ (24, P, T)P, (2.30b)

where P is the pressure, T the temperature, R the universal gas constant and u¢ (P, T) a reference
ideal value. Since P and T are equal across the phases, they drop out from the equality of chemical
potentials and we have the equivalence

ﬁfx(mav PaT> = ﬁ%(mﬂv P7T) = fo(wa) = M,ié’(wﬁ)'

The form (2.27) has the advantage of highlighting the influence of partial fractions at fixed
(P, T). Opting for (2.27)—(2.28) instead of keeping (2.30) amounts to working with the molar
Gibbs energy function g, instead of

9o(@a, P, T) = > AL(P, T)ad, + RTga(aa).
i€C
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The two functions differ from each other by an additive affine function and a multiplicative
constant. ]

Substituting the form (2.27) into (2.24a), we obtain
K . . K . .
ga(Ta) = Y ok Inal, + >l Ind (za) (2.31)
i=T i=1

The first sum in the right-hand side, Z}(:I 2l In :L%l, is called the ideal part. The second sum,
denoted by

K
Vo(za) = Y, 7l In @ (20), (2.32)
i=1

is called the excess part or the excess Gibbs energy. In this perspective, a fluid phase « is
assimilated to a “perturbation” of the ideal gas. Whenever we want to modify the Gibbs function,
we should act only on the excess part. We shall adopt this point of view in chapter §3.

Owing to the regularity assumptions made on g, and z¢,, the functions

U, : Q- R, nd’ : Q—-R,

are also as smooth as necessary, with ¥,, extendable by continuity to £ but not the In ®?’s. The
very useful relations between ¥, and In ®’, are similar to those between g, and p,.

Lemma 2.2 (Connection between molar excess Gibbs energy and logarithm of fugacity coeffi-
cients). For all ¢, € Q:

1. Fach fugacity coefficient can be deduced from the excess Gibbs energy by
In® (24) = Vo(xn) + Ve, Uo(za) - (67 —x4),  forall jek, (2.33a)
where the Kronecker vector 8° is defined as 6/ = (05,1, 052, -+, 0jK—1) € RK-T,

2. The gradient of the excess Gibbs energy is given from the fugacity coefficents by

N .
Z H(@a) =P (@a) — @G (xa),  for all je K\{K}. (2.33b)
Lo

3. The gradients of the fugacity coefficents satisfy the Gibbs-Duhem condition

K
Z 2!V, {In @’ }(zs) = 0. (2.33¢)

=1

Ching minh. The proof is straightforward. For each identity from Lemma 2.1, we just have to
separate the ideal part from the excess part. The ideal part vanishes trivially. ]

A given family of positive real-valued functions {<I>g}(i,a)em@ is said to be admissible if, for
each a € &, there exists a Gibbs energy function g, such that they are the fugacity coefficients.
This implies, in particular, that the functions ®?, satisfy the Gibbs-Duhem condition (2.33c).
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2.2 Two mathematical formulations

Equipped with the preliminary notions and notations of §2.1, we are now in a position to
rigorously state the phase equilibrium problem in two different ways: the “traditional” one and
the “modern” one.

2.2.1 Variable-switching formulation

Let us write down a first formulation before commenting on it.

GIVEN .
K, 2, {®4}(,a)ekx 2 admissible,

{c'}iex € [0,1] subject to Dk =1,
FIND
I'c 2, {Ya}aer € (0,1], {24} apecxr € [0,1]
so as to satisfy

e the material balances

DYs—1=0, (2.34a)
Bel
da,-1=0, VaeTl, (2.34b)
jex
D Vsah—d =0, Viek; (2.34¢)
per
e the fugacity equalities
zl @ (x,) — xfg‘bfg(xﬂ) =0, V(i,a,8) e K x T x T (2.35)

This first formulation has the advantage of being “natural,” insofar as it uses the variables
that have been introduced so far. It also bears the name of natural variable formulation. The
price to be paid for naturality is that the context I' is itself an unknown. To circumvent this
major difficulty, we have to start by making an “educated guess” for I'. At every fixed I, we
attempt to solve the algebraic equations (2.34)—(2.35): this is what physicists call a flash —or
a (P, T)-flash to be more accurate in our case. After exiting the flash, we check the positivity
of Y, and the non-negativity of ¢, for a € I'. Should one of these fractions have the wrong
sign, we must update I' in some “smart” way and go for another flash! The number of unknowns
and equations for a flash (2.34)—(2.35), as well as their significance, strongly depend on the
assumption currently made about the context I'. Understandably, this approach is also qualified
as the variable-switching formulation.

REMARK 2.2. Another reason for calling it this way is that in most multiphase multicomponent
flow models of interest, there are many (coupled) equilibrium problems to be solved: one per
cell and per time-step. Since even the correct context changes in space and in time, the size and
the structure of the global system to be solved at each time-step keeps evolving. The choice of
relevant unknowns and equations then turns out to be delicate. To this end, Coats [30] advocated
a set of “natural” variables for some multiphase flow models in porous media. But the heart of
Coats’ strategy, when boiled down to a single phase equilibrium problem, is exactly what we
described above. O
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At first sight, there seems to be a lot redundancy in (2.34)—(2.35). A natural question to ask
is how many independent equations we do have for a given I', and whether or not this number
is equal to that of the unknowns in the same context.

Proposition 2.1. For a fized context T' € &, system (2.34)—(2.35) contains (K + 1)y unknowns
and (K + 1)y a priori independent equations, where K = |K| and y = |I'|.

Chiing minh. There are y unknowns {Yg}aer and Ky unknowns {z’,}; 4)excxr- Hence, the num-
ber of unknowns is y + Ky = (K + 1)y.

It can be observed that by summing (2.34c) over i € K, permuting the order of the double
sum and invoking (2.34b), we obtain (2.34a) thanks to the assumption Y ¢’ = 1. Thus,
equation (2.34a) can be obtained from the remaining ones and should be left out of the system.
To eliminate redundancy in the fugacity equalities, we fix a phase 8 € I and require (2.35) to
hold for all a € I'\{3}. The resulting system

dal-1=0, Vael, (2.36a)
JEK
D Ysah—c =0, Viek; (2.36b)
pel
2o (2a) — 25P5(xp) =0, V(i,a) € K x T\{B}, (2.36¢)

plainly contains
Yy+K+Kiy—-1)=K+1)y

equations. The independance of the fugacity equalities (2.36¢) is a hypothesis to be made on the
physical properties of the species. O

There is a vast literature on numerical methods [89-91, 117] for the flash problem (2.36)
at fixed I'. In addition to the classical and generic Newton-Raphson method [6, 115], many
special purpose algorithms have been dedicated to the flash problem. These are iterative methods
based on various kinds of substitution [61], the most famous of them being the Rachford-Rice
substitution [106]. Regarding the update of the context I, it is recommended to start with the
highest number of possible phases, i.e., I' = &. In case of failure, one of the phases whose phasic
fraction has the wrong sign is taken out. The procedure continues until a flash is successful or
until there remains a single phase. There exist many variants [23,75] to this general philosophy.

2.2.2 Unified formulation

To avoid the annoyance of dynamically handling the context, Lauser et al. [78] put forward an
alternate formulation for the phase equilibrium problem. Let us write it down before commenting
on its advantages.

GIVEN |
K, 2, {(I)zy}(i,a)ejgxy admissible,
{Ci}ielc € [0,1] subject to Zielc A= 1,
FIND

{Ya}aeﬂ € (Ov 1]7 {gé}(i,a)ele{/? € [Ov 1]

so as to satisfy
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e the material balances

D Ys—-1=0, (2.37a)
BeP
DI Ysth—d =0, Viek; (2.37b)
BeP

e the extended fugacity equalities

L0 (o) — EhPG(wp) =0,  V(i,a,B) €K x P x P, (2.38a)
where the components of z, = (2}, ..., 2K~1) e RE=! are defined as
- = (2.38b)
ZjEIC 504

e the complementarity conditions

min (Yﬁ, 1= g@) =0, VBe2. (2.39)

jek

In this second formulation, the partial fractions ¢, have been replaced by a new notion, that
of extended fractions £,. The latter are defined over (i,a) € K x &2 instead of being restricted
to (i,a) € K x T'. Although the connection between extended fractions and partial fractions is
given by the renormalization (2.38b), the x%’s here are merely auxiliary variables that can be
eliminated by inserting (2.38b) into (2.38a). The complementarity conditions (2.39) means that,
for each 5 € 2,

Ys >0, 1—25@20, Yﬁ<1—Z§g> =0. (2.40)
jex jex

As a consequence, for each phase € &2, there are three possible regimes:

> Yﬁ > 0.
Phase 3 is present. This implies Zje,C % = 1 and by virtue of (2.38b), 5}; = a:lﬁ for all
i € K. In other words, the extended fractions corresponding to a present phase coincide
with the usual partial fractions.

> 1=k & > 0.
This entails Y3 = 0, i.e., phase 3 is absent. Since Zje,C §é < 1, we have fg # xZB The
extended fractions corresponding to an absent phase do not coincide in general with the
usual partial fractions (barring from the exception below).

> Yg=0and 1 —Zje/cfé = 0.
This happens at the frontier between those solutions for which phase S is present and those
solutions for which phase [ is absent. At such a transition point, phase § starts appearing
or disappearing.
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It is legitimate to be concerned about the origin of the sign condition 1 — Zje,c f% = 0.
After all, it seems to bring a new piece of information that was clearly not included in the
variable-switching formulation (2.34)—(2.35). As will be proven in §2.3.1, this condition ensures
a stability property known as the tangent plane criterion by physicists. It can also be related to
the minimization of the Gibbs energy of the mixture, as will be done in §2.3.2.

The ability of the formulation (2.37)—(2.39) to deal with all possible configurations (arising
from the presence or the absence of each phase) in the same manner accounts for the name of
unified formulation. The context I no longer appears in the statement of the problem. It can be
determined a posteriori by collecting those phases « for which Y, > 0. The unified formulation
has turned an intricate combinatorial problem into a fixed set of equations and unknowns, with
which it is definitely more convenient to work with. Let us clarify the number of unknowns and
independent equations of (2.37)-(2.39).

Proposition 2.2. System (2.37)—(2.39) contains (K + 1)P unknowns and (K + 1)P a priori
independent equations, where K = |K| and P = |Z|.

Chiing minh. There are P unknowns {Ya}ees and KP unknowns {&,} a)excx 2. Hence, the
number of unknowns is P + KP = (K + 1)P.
It can be observed that by summing (2.37b) over i € K, permuting the order of the double

sum, we obtain ' '
DY =D d =0 (2.41)

BeP el e

By virtue of the third part of (2.40), which results from the complementarity condtions (2.39),
we have

Y56 =15
el

Then, with the help of Y. ;- ¢’ = 1, equation(2.41) becomes

D Ys-1=0,

BeP

which is none other than (2.37a). The latter equation is therefore redundant and should be left
out of the system. To eliminate redundancy in the extended fugacity equalities, we fix a phase
B € & and require (2.38a) to hold for all « € 2\{3}. The resulting system

D Vpeh - =0, Viek; (2.42a)
peP
L (ma) — 5P (zs) =0, V(i,a) € K x 2\{B}, (2.42D)
mm<n%1—§j%>:0, Ve 2, (2.42¢)
jex

in which the 2% ’s are seen as functions of the £ ’s by means of (2.38b), contains
K+KP-1)+P=(K+1)P

equations. The independance of the extended fugacity equalities (2.42b) is a hypothesis to be
made on the physical properties of the species. ]
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REMARK 2.3. To solve (2.42) in practice, Lauser et al. [77,78] advocated using the common
values {('};cxc of extended fugacity across phases as main unknowns. This gives rise to a two-
level algorithm. In the inner level, we solve P nonlinear systems of size K x K

0L (xa) = ¢, Viek, (2.43)

one for each a € . These local inversions express the extended fractions as implicit functions
& () of the extended fugacity vector ¢ = (¢!, ... p¥) € RE. In the outer level, we solve one
nonlinear system of size (K + P) x (K + P) consisting of the remaining equations

Ygesr Yolh(p) —¢t =0,  Viek, (2.44a)
min (Ys, 1 = Y, E(9)) =0,  VBe 2. (2.44b)

This approach, the interest of which is to involve only “small” systems, was followed by subse-
quent works at IFPEN [12,13,84,101]. The difficulty, however, lies in the computation of the
gradients of the &’s with respect to ¢, which are necessary for solving (2.44) via the Newton
method. Analytically or numerically, these gradient evaluations are expensive. In view of this
previous experience, we have preferred to tackle (2.42) in a more direct way. O

2.3 Properties of the unified formulation

The unified formulation enjoys many remarkable properties that seem to be unknown so far, at
least to our knowledge. In particular, it achieves a deep connection with some classical results
in thermodynamics. In this section, we are going to carefully derive these properties.

2.3.1 Behavior of tangent planes

Valuable insights can be gained by transforming the extended fugacity equalities (2.38a) into
another form, the geometric significance of which is clearer. Before doing so, let us set the scene
by introducing some concepts and notations. Recall that

Q:{x:(ml,...,mK_l)eRK_l\xIZO, k>, 1—:EI—...—$K_1>O}

defined in (2.22b), is the domain of the (renormalized) partial fractions. In 0 x R, the generic
element is denoted by (¢, ). To each molar Gibbs energy function g, : Q — R, we associate its
graph

Ga = {(ma y)EﬁXR|y=ga($)}. (245)

Note that we have not specified the phase subscript for the variable x, since we intend to visualize
several graphs on the same domain. For an interior point x, € €2, we designate by T G, the
tangent hyperplane to G, at x,. This tangent hyperplane, which exists thanks to the regularity
assumptions on g, is the graph of the affine function T, g, : RX~! — R defined as

Ta:aga(:n) = ga(ma) + vwga(ma) : (m — 51304)- (2.46)

In general, Ty, go and Ty G, cannot be defined in this way for x,, € 09, as Vgga(24) blows up.

Although the existence of a solution to the unified formulation (2.37)—(2.39) is not yet guar-
anteed, let us assume that ({Ya}aes, {f_g‘)(w)elwgg) is a solution satisfying z,, € €2 for all « € &
and let us try to learn as much as we can about it.
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Theorem 2.1. For any pair (o, ) € & x P of phases, present or absent:

1. The K potentials in phase B are equal to their counterparts in phase o shifted by a same
constant. More specifically, for all j € IC,

u%(:?:g) = 1} (Zo) + [INGy — Inag), (2.47a)
where
Go = ), & (2.47D)
ekl

2. The two tangents hyperplanes Tz,Go and Tz,Gs are parallel. More accurately, there holds
the equality of gradients

Vaga(®a) = Vags(Zp). (2.47¢)
Chiing minh. For each phase a € &, let us define o, as in (2.47b), so that for all j € K, we have
& = 0u
in view of the normalization (2.38b). The extended fugacity equalities (2.38a) then become
GaTh P, (T0) = GpTsP%(Zp). (2.48)

Taking the natural logarithm of both sides and recalling definition (2.27) of the fugacity coeffi-
cient, we obtain
InGo + 4 (Za) = Inog + pp(2p). (2.49)

From this, we deduce (2.47a). Subtracting the last equality
NGy + p (Ze) = Inag + M?(if/g).
from (2.49) and recalling (2.24c) [Lemma 2.1], we have
e (@) = 22 (25)
for all j € {I, II, ..., K — 1}. This completes the proof for (2.47c). O
The first part of Theorem 2.1 indicates that, in general, there is no equality of chemical
potentials, computed using the renormalized partial fractions. Equality holds in fact for extended

chemical potentials, defined as In(¢% ®¢ (x,,)). The second part of Theorem 2.1 is more interesting.
Let us investigate this aspect further by making an additional assumption on one of the phases.

Theorem 2.2 (Tangent plane criterion). Assume that a phase o € & is present, i.e., Yo > 0.
Then, for any other phase 5 € &2, absent or present,

Tz,958(x) = Tz, 9a(T), for all e RK™L (2.50)

where Tz, go and Tz, g5 are the linearized expansions defined in (2.46). In other words, the
tangent hyperplane Tz,Gg lies above or coincide with the tangent hyperplane Tz, Gq.
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Chitng minh. From equality (2.47a), we have
,ug(:leg) = uS () + Cup, Cop =Ino, —Inog.

Since Y, > 0, the complementarity condition (2.39) entails 7, = | ek & =1, hence Ina, = 0.
For any other 3 € &, we have og = 3, Eé < 1, also by virtue of (2.39). Therefore, Inog < 0
and C,g = 0. Thus,

s (®p) = pig (Za)-

Using (2.24b) from Lemma 2.1, we can rewrite the previous inequality as
gﬁ(iﬁ) - Vmgﬁ(iﬁ) " xp = ga(?cﬁ) - vwga(?ca) " T (2'51)

On the other hand, taking the dot product of the equality of gradients (2.47¢) with any x € €,
we have
v$gﬁ(§:ﬁ) CL = vwga(ia) - L. (2.52)

Adding together (2.51) and (2.52), we end up with

95(Tp) + Vags(Ts) - (€ — Tp) = ga(Tp) + Vaga(Za) - (x — Za)
which is the desired result (2.50). O

This result is notoriously known in thermodynamics as the tangent plane criterion [89]. It
is usually derived by physicists from a local analysis of phase stability (see §2.3.2). Theorem 2.2
testifies to the fact that this stability property is already encoded in the unified formulation via
the sign of 1 — Zje,c 5_%, If phase § is “strictly” absent, namely, if 1 — ZjeIC f_é > 0 and Yz = 0,
then the tangent hyperplane Tz,Gg will lie strictly above Tz, Gaq- -

Let us now push one step further by looking at the case of several present phases. Let I' be
the set of all @ € & such that Y, > 0. Its cardinal is denoted by y = |T|.

Corollary 2.1 (Common tangent hyperplane). At a solution of the unified formulation satis-
fying T, € Q for all a € P, the ¥ tangent hyperplanes {Tz,Ga}oer are all the same. Moreover,

c=(c, ..., &N ent(Conv({Za} o)), (2.53)

i.e., the global composition point belongs to the open convex hull spanned by the Y points {ZTa} ep -
Finally, a necessary condition for this solution to be unique is that

y <K. (2.54)

Chitng minh. Let (o, 8) € T x I'. Applying Theorem 2.2 twice and switching their roles, we have
Tz,95(x) = Tz,9a(x) and Tz, ga(x) = Tz,95(x), whence Tz, go(T) = Tz,95(x) for all x € Q.
Thus, T3,Ga = Tz,G5. The material balance (2.37b) reads

d = Yp&h = ) Vazi,
peZ ael
where the last equality comes from retaining only those summands in the context, where the
two notions of extended and partial fractions coincide. Extracting the first K — 1 components
from the above equation yields
c= ) Yoo, (2.55)

oel



34 Chapter 2. Phase equilibrium for multicomponent mixtures

Since Y, > 0 and Y, Ya = 1, the point ¢ belongs to the interior of Conv({Za}.cr), the
dimension of which is at most ¥ — 1. The weights {Ya},cp of this convex combination are
solutions of a linear system of K equations in y unknowns. If y > K, the matrix of the linear
system has a nonzero kernel. Moving along a direction in this kernel with a small enough step,
it is possible to find another set of weights satisfying the system while remaining positive. [

From this common tangent plane property, a purely geometric procedure can be devised in
order to build a solution of the phase equilibrium formulated by (2.37)—(2.39). The construction
involves the lower convex envelope of the function & — minge » go (). More details will be given
in §2.4.2 for two-phase binary mixtures. Regarding condition (2.54), it is automatically satisfied
when P < K, which turns out to be true in practice: there are about two or three phases at
most for tens to hundreds of components.

2.3.2 Connection with Gibbs energy minimization

The previous section §2.3.1 has revealed the benefits of imposing 1 — >, € > 0 from the
beginning, by means of the unified formulation (2.37)—(2.39). This enabled us to recover all the
well-known properties of the solutions. We would like, however, to better understand where this
sign information comes from.

2.3.2.1 On the origin of the sign condition

In the literature, the condition 1 — > ., € > 0 is customarily derived from a phase stability
analysis. The most commonly cited reference is Michelsen [89], in relation to the tangent plane
criterion. A more mathematical presentation was recently given by Ben Gharbia-Flauraud [12].
The idea is the following: starting from single-phase «, we wonder if the mixture would be
“tempted” to split into two phases. The difference in the Gibbs energies between the new con-
figuration and the old one is minimized with respect to all virtually possible compositions of
a would-be new phase 3. Phase « is said to be stable if the smallest value of this difference is
positive. This gives rise to a condition on the composition of the fictitious phase 8 at which
the minimum is reached. This condition is finally expressed in terms of the extended fractions,
defined to be a rescaled version of the mole numbers in phase 3.

This classical analysis suffers from a few limitations. First, it is restricted to two phases.
Second, it is local: the Gibbs energy difference under study must be linearized via a first-order
Taylor expansion, before minimizing. Third, the notion of extended fractions appears only at
the end, in a very ad hoc way. It would be far more satisfying if we could derive a more direct
connection between the unified formulation (2.37)—(2.39) and a multiphase multicomponent
Gibbs enery minimization problem expressed in terms of the extended fractions ¢/, without any
linearization.

We claim that such a quest is attainable. In this section, we are going to show that every
solution of the unified formulation is necessarily a critical point of some constrained minimization
problem (P) stated below. The quantities 1 — >, &, will then appear to be the Lagrange
multipliers associated with the constraints Y, > 0. Conversely, while not every critical point of
the minimization problem (P) is a solution of the unified formulation, some “natural” choice of
critical points satisfies the unified formulation. This result, which does not seem to be known in
the community, sheds a new light into the complementarity conditions (2.39).
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2.3.2.2 Towards a novel interpretation

In order to state the minimization problem, we need to introduce a new Gibbs function. For
each phase a € &, let g : RE — R be the extended molar Gibbs energy defined as

Ba(6ar -0 €0) = D, € (€L (a)). (2.56)
el
For normalized fractions, go(z), ..., 2X) = go(2s). Thus, g, extends the intensive Gibbs func-

tion g, to the domain of extended fractions. It should not be confused with the extensive Gibbs
function

Gal(€ar -+ 60) = ), Eam(z @4 (a)), (2.57)

e

introduced in (2.15)—(2.16), using n’, in place of £.. Unlike g, and G, the extended function g,
is neither intensive nor extensive. But it has many handy properties summarized in the following
Lemma. For convenience, we shall from now on be using the notations

Eo =8 €),  oa=D>¢. (2.58)

e

Lemma 2.3. For all €, € RI_E and j € KC,

Z§@>m@%mwu, (2.59)
=& Zg“ — Ga, (2.59b)
ek a
In(
—Z@“@ IniEa®a) ¢ . (2.590)
ek

Chitng minh. Inserting & = o,2%, into (2.56), we find

252 [In(z!,®! (x4)) + In0s] = Ga(€,) + 0o In oy,
elC

Differentiating this equality with respect to gg;, we have
08a 0G,
&, = &, +1naa+1—ln:c]<1ﬂ Ty)) +1Inoy + 1,
o (€)= S e (21,03, (xa))

which proves (2.59a). Multiplying (2.59a) by fg and summing over j € KC, we arrive at

Z@%a = > & (&) (xa)) + D& = gal€n) + s

e O‘ € e

which proves (2.59b). The last relation (2.59¢) follows from

0ln( 0ln(x?, <I> Oolno,
Db (Ea) = ) ) + )
ielC 85 e ag e aga

in the right-hand side of which the first summand vanishes thanks to the Gibbs-Duhem condition
(2.20) and the second summand boils down to 1. O
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Equipped with this new Gibbs function, we can now consider the following minimization
problem (P).

GIVEN '
K, 2, {®4}(,a)ekx» admissible,
{c'}ick € [0,1] subject to Diek é=1,
FIND
min 7 Yoga(é,) (2.60a)
{Ya}ae@ acP?
{ga}ae@
subject to
2, Ya=1=0, (2.60b)
aeP
Z Yaég — = 0, Vie K, (2.60c)
aeP
_Ya < 0, Vae L. (260d>

The objective function in (2.60a) represents a notion of extended Gibbs energy for the mixture.
The equality constraints (2.60b)-(2.60c) are exactly the material balances (2.37) of the unified
formulation. This time, there is no redundancy since we have not imposed the complementarity
conditions (2.39).

Let u, {v'}icxc and {wq}acw be the Lagrange multipliers associated respectively with the
constraints (2.60b), (2.60c) and (2.60d). The Lagrangian of the minimization problem (2.60)
reads

,%({Ya}, {Ea}v u, {vi}7 {wa}) = Z Yaga(go)

ae?
+u( Z Ya—1> +Zvi( Z Yafé—ci) — Z Wa Yo
aeP i€k aeP acP
The saddle-points of .Z are given by the Karush-Kuhn-Tucker (KKT) conditions [22,94]
95(&s) +u+ D v —wy =0, VBe P (2.61a)
ielC
Vol e +0i| =0, v B ek x 2 2.61b
B j ,3) +v =Y (]7/8) € X ; ( . )
Y Ya—1=0, (2.61c)
aeP
DIVu— =0, Viek, (2.61d)
ae?
min(Yz, wg) = 0, Ve 2. (2.61e)

The last equation (2.6le) expresses the complementarity between each inequality constraint
(2.60d) and its Lagrange multiplier at optimality. It can be rephrased as

Ys >0, wg = 0, Ygwg = 0.

A set of values {(Ya, €,)}aco is said to be a critical point for the minimization problem (2.60)
if there exists a set of values (u, {v'}ick, {Wa}ac) such that the KKT optimality system (2.61)
is satisfied.
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2.3.2.3 From one formulation to the other
We first show that it is easy to go from the unified formulation to the minimization problem.

Theorem 2.3. Every solution {(Ya, &€,)}ac of the unified formulation (2.37)~(2.39) is a crit-
ical point of the minimization problem (2.60), with

u=1, v =—[In(@)+1], wg=1-as, (2.62)
where @7 is the common value of the extended fugacity g&@bé(iza) across all phases a € .

Chaing minh. Let {(Ya, €,)}ace be a solution of (2.37)-(2.39). The material balances (2.61c)-
(2.61d) are naturally met, owing to (2.37). The equality of extended fugacities (2.38a) makes it
possible to define ?/ = —[In(y?) + 1] in the way described in the Theorem. This choice of v/
trivially fulfills (2.61b) because of (2.59a). The choice of wg implies (2.61e) because of (2.39).
It remains to check (2.61a). To this end, we use Lemma 2.3 to write

0s(Ep) +u+ ), 0 ~ wﬁ—Zeﬁ% sg>—aa+1—255% 5) = (1=75) = 0.

e e e

This completes the proof. ]

In the reverse direction, things do not go as smoothly. The main difficulty lies in the inde-
termination of the extended fractions for an absent phase.

Theorem 2.4. Let {(Ya,&a)}ae be a critical point of the minimization problem (2.60).

1. If two phases (a, B) € &P x & are both present, i.e., Yo > 0 and }75 > 0, then
Go =05 =1, £ (o) = E504(%5) for all ic K. (2.63)

This implies that the complementarity condition (2.39) holds for both phases and that the
extended fugacity equalities (2.38a) hold between the two phases considered.

2. If phase « is present and phase 8 is absent, i.e., EN/O[ >0 and 175 =0, then

Fa =1, D& In(Es®5(E5)) — (8L (2a)) | + 1 - 55 > 0. (2.64)
el
In general, the complementarity condition (2.39) does not hold for phase 3 and the extended
fugacity equalities (2.38a) do not hold between o and . But the complementarity condition
(2.39) is automatically met for phase B as soon as the extended fugacity equalities (2.38a)
hold between o and 3.

Chitng minh. Let {(Ya,fa)}ae], (@, {D'}ick, {Wa}acw) be a solution of the KKT system (2.61).
First, assume that Y, > 0 and Yg > (. It is then possible to simplify by Y in (2.61b) to obtain

Ea 07 i S + v = 0.
@) &)
From this, it is deduced that

08a x y_ 988 7 \ _ _~j
)= Tp =
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According to (2.59a) [Lemma 2.3], this is equivalent to the equality of extended fugacities (2.38a),
rewritten in the second part of (2.63). On the other hand, Y, > 0 implies @, = 0 by (2.61e).
Equation (2.61a) then becomes

&ga
(Sa + - é-z
EapIt

£,)=0.

Combining this with (2.59b) [Lemma 2.3], we infer that 5, = @. Repeating the same reasoning
for B, we also get 63 = u. Hence, 0 = 0. This means that o takes on the same value @ in all

present phases. Let I' be set of 7 € & such that Y, > 0. Note that I' # (5 because of (2.61c).
Summing (2.61d) over ¢ € K and permuting the order of summation yields

0= D V&= >c'= Y Vaor— 1=ty Yo—l=0—1

ek re? ekl e rel

Therefore, 4 = 1, which proves the first part of (2.63).
Assume now that Y, > 0 and Yg = 0. It is no longer possible to divide (2.61b) by Yg to

retrieve information on the extended fugacities. Likewise, we now simply have wg > 0 from
(2.61e). Equation (2.61a) for phase (3 leads to

05(Ep) + U+ Y V€L = W > 0,

e

Because phase « is present, 5, = @ = 1 and ¥ = —[dga/0¢.](€,,). Invoking (2.59b) [Lemme 2.3]
for phase (8, we can transform the above equality into

89/3 08a /> -
gcgﬁ[% agé(ga)}—aﬁwo.

This is none other than the second part of (2.64). O

To fully grasp the meaning of Theorem 2.4, it is capital to observe that when a critical point
of (2.60) has a vanishing phase 8 € & for which Y3 = 0, the corresponding extended fractions £
cannot be uniquely determined. Indeed, EB plainly does not contribute to neither the objective
function (2.60a) nor the constraint (2.60c) at fixed 175 = 0. To put it another way, changing EB
to any other vector RIJE will provide another acceptable critical point. Thus, as soon as there is
a critical point of (2.60) for which 175 = 0, there are in fact an infinity of such critical points.
Among this infinity of critical points, only those for which

E0Y () = E,0(Fa) for all i€k, (2.65)

where a is present phase (Y, > 0), will be also solutions of the unified formulation (2.37)—(2.39).
Combining this with Theorem 2.3, we can interpret the unified formulation as a set of equations
that is slightly “stronger” than that of the KKT system for the critical points. It is stronger in
the sense that it helps selecting some special critical points —and hopefully just one— among
the infinity of possible critical points that appear when one of the phases disappears.
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2.3.2.4 A continuity principle

We now give an argument to assert that the critical points thus selected by the unified formula-
tion are “natural” ones. By this, we mean that the additional conditions (2.65) to be prescribed
on the extended fractions of an absent phase 8 can be interpreted as the limit of a continuous
process during which § was present before vanishing. To build up this process, let us reformulate
the minimization problem (P) or (2.60) as the bilevel or hierarchical problem

min  min D1 Yagal€s) + Yags(€p) (2.66a)
Ys  {Yataco\(8) ac P\ (B}
afaeP
subject to
D Ya+Yz—1=0, (2.66b)
ae2\{B}

D Yall +Yaeh—c' =0, Viek, (2.66¢)

acP\{B}
-Y, <0, Vae2\{B}. (2.66d)

The constraints (2.66b)—(2.66d) are imposed on the inner minimization problem (Py;)

min > Yaga(€a) + Ysgs(ép) e
Watacovin) e gy
aSaeP

for a fixed Y > 0. To begin with, consider (Py,) for a fixed and small enough Yz > 0. The KKT
optimality conditions for (2.66b)—(2.67) are

fa(€a) +u+ Y Vi, —wa =0,  VYae P\{B} (2.68a)
1elC

08a i :
Yo @(Ea) +0'"| =0, V(i,a)e KLx P, (2.68b)
D Ya+Yz—1=0, (2.68¢)

ac P\(B}
D Yall 4 V- =0,  Viek, (2.684)
acZ\{B}

min(Y,, wy) =0, Va e 2\{B}. (2.68e)

Note that (2.68a) and (2.68e) do not make sense for § since Y3 is not a variable for the inner
problem, but that (2.68b) do make sense for (7, ) since % is a variable with respect to which
minimization is carried out. Assume that for each small enough Y3 > 0 there is a unique critical
point. We designate it by

{}N/Oé(yﬁ)}aeﬁz\{ﬁ}) {Ea (Yﬁ)}aet@

to lay emphasis on its dependency with respect to Y. Setting oo = 3 in (2.68b), we are allowed
to divide by Yz > 0 in order to obtain

5p) = L@, (V) = @ (V)0@s(Va))  forall i€ K.
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Setting « in (2.68b) to another present phase (which necessary exists since Y3 < 1) and simpli-
fying by Y, > 0, we have

—(Yp) = o (€a(Yp)) = In(&) (Yp)®(Za(Yp)))  forall ie K.

From the last two equalities, it follows that
& (Yo)@(@5(Ys)) = & (Y5)B(Ea(Yp))  forall ic K.

Now, we let Y3 | 0. If all of the quantities involved in the above equality have finite limits, we
clearly end up with (2.65). The values assigned to the extended fractions in an absent phase in
the unified formulation are thus based on a continuity principle for the critical point.

2.3.3 Well-definedness of extended fractions

Let us go back to the equality of gradients (2.47c) and ask ourselves the following question.
Assume that phase (8 is well determined, namely, the extended fractions {Eé}ie;c are known.
Under which hypotheses on the Gibbs energy g, would it be possible to invert the relation

vmga (ma) = ngﬁ (mﬁ)

in order to get the partial fractions x,, from which the extended fractions {£’ };cx could also be
calculated? Mathematically, this makes sense insofar as we have a (K — 1) x (K — 1) nonlinear
system. Before elaborating on the requirements to be imposed on g, let us point out two
instances where this issue crucially arises.

2.3.3.1 Two essential issues

The first situation occurs when the solution is single-phase, say, in phase 5. Put another way,
Ys =1and Y, =0 for all & € Z\{B}. By (2.37b), rewritten as (2.55), we have 3 = c. Assume
c € Q. After Theorem 2.1, the extended fractions in a vanishing phase v € Z\{(} satisfy

Vz9ga (:ia) = vwgﬁ(c)v (2.69&)
G, + 1y (Za) = 15 (©), (2.69b)

where we recall that

~ N\ ~i _ S
aa—Zfa, Ty ==

jek Ta
If (2.69a) could be uniquely inverted, i.e., if we had the legitimacy to write
To = [Vmga]_l(vmgg(c)),
then we could easily deduce from (2.69b) that
Go = explus (€) — pg (Za)l, &, = GaTh,

and phase o would be entirely determined. We refer to this first situation as the vanishing phases
problem.
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The second situation takes place in Lauser’s suggestion for using the extended fugacities,
as mentioned in Remark 2.3. By means of similar operations (taking the log of both sides,
introducing the sum of extended fractions, using the connection between the potentials and the
molar Gibbs energy), the inner system (2.43) can be transformed into

Vaga(®a) = {Ing’ —In " }h<jck1, (2.70a)
Inoy + pl(xy) = Inpk, (2.70b)
which displays exactly the same structure as (2.69). Our ability to solve (2.70) for all reasonable

inputs ¢ € RE relies on the existence of an unambiguous reciprocal function [V4ga]~!. We refer
to this second situation as the local fugacity inversion problem.

2.3.3.2 Two sets of assumptions

The claimed superiority of the unified formulation over the variable-switching formulation rests
upon its capability to assign well-determined values to the extended fractions in the absent
phases. Failing to do so would ultimately defeat its purpose. The short calculation above demon-
strates that this capability cannot be taken for granted. Additional assumptions need to be made
in order to ensure that the unified formulation works properly. Below is the most natural one.

Hypotheses 2.1. The gradient map Vzgo : © — RE~1 is a homemorphism. In other words,
it is a continuous bijection as well as its inverse [V4g,]! : RE71 — Q.

The following noteworthy example hints that Hypotheses 2.1 is neither unrealistic nor un-
reachable.

Proposition 2.3. The molar Gibbs energy function of an ideal gas

K
Ja(To) = Zx’a Inz?, (2.71)
i=1

I _ K-t

where 28 =1 — 2 — ... — 2K~ satisfies Hypotheses 2.1.

Ching minh. To alleviate notations, let us omit the phase subscript « of . The gradient Vg, :
Q — RX-1 is given by

Vaega(®) = (Inz! —Inz¥, ... Inz¥"1 —1ngk). (2.72)
This map is continuous over §2. For any given u = (ul, ey uK_l) € R~ the nonlinear system
Vzga(x) = u can be turned into the K x K linear system

2! — exp(ul)a® = 0,

2571 —exp(ufHzK =0,
T AR

The first K — 1 components of the solution are

T exp(u') K-1 _ exp(u1)
L+ 3 exp(u)” 1+ Y57 exp(uf)

This defines a unique continuous inverse map [Vzgo]™" : RE-! - Q. O

T
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Unfortunately, Hypotheses 2.1 may not be easy to check for fluids other than an ideal gas.
Therefore, it could be more convenient to consider some stronger but more convenient hypothe-
ses.

Hypotheses 2.2. The gradient map Vzg, : Q — R¥~! is surjective. Moreover, the molar
Gibbs energy g, : 2 — R is strictly convex, that is, it satisfies one of the two conditions below,
which are equivalent for a twice differentiable function:

(a) For all (x, y) € Q x Q with & # y,
(Vaga(®) = Vaga(y), z —y) > 0. (2.73)

(b) For all x € , the Hessian matrix V2,9, (x) is definite positive.

We refer the reader to [24,109] for the notion of strict convexity and for the equivalence
between the two conditions (a) and (b) for twice differentiable functions. Surjectivity provides
existence of a solution € Q to Vgga(x) = u € RK=1 Strict convexity enforces uniqueness
of such a solution. Again, the case of an ideal gas suggests that this is not an unreasonable
assumption.

Proposition 2.4. The molar Gibbs energy function of an ideal gas, defined by (2.71), is strictly
convex.

Chiing minh. Again, we drop the phase subscript « for clarity. From the expression (2.72) of
the gradient, the Hessian matrix can be found to be

1 1 1
2 .
meg(sc) = xKE+D1ag<1’I, ey 1;K1>’

where E is the matrix whose all entries are equal to 1. It follows that, for a generic v € RK~1,
(V2,9(x vv>=i|vl+ oK1 Z_ Z|2
Tx ) 7K
When @ € €, it is obvious that (V2_g(z)v, v) > 0 for all v # 0. O]

To conclude this section, Hypotheses 2.2 set the framework in which we can guarantee that
the extended fractions introduced in the unified formation are well-defined. Strict convexity of
the molar Gibbs energy will also be of great help in proving non-singularity of the solution of
the unified formulation in chapter §5.

2.4 Two-phase mixtures
Throughout the rest of this manuscript, we shall study only the two-phase case, for which

P =1{G, I}, P=2 (2.74)

The two-phase case is sufficiently representative of the numerical difficulties we wish to address,
while simple enough to make implementations faster. The new labels G (gas) and L (liquid)
are aimed at being more meaningful and fixing ideas. They have no consequence on the ensuing
mathematical developments.
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2.4.1 The multicomponent case

Let us write down the corresponding unified formulation in the simplest way possible. System
(2.42) is now reduced to

Yobh + Y€l — =0, Viek, (2.75a)
&5 (za) — P (@) =0,  Viek, (2.75b)
min (Yo, 1= Y0 &) =0, (2.75¢)
min (Y, 1 — Y, &) = 0. (2.75d)

2.4.1.1 A further reduction

This (2K + 2) x (2K + 2) nonlinear system can be further simplified as follows. As we already
know that the phasic fractions will automatically satisfy Yo + Y, = 1, let us choose one of them
as unknown and express the other as its complement to 1, that is,

Yo=Y, Y,=1-Y. (2.76)

This enables us to work with the (2K + 1) x (2K + 1) nonlinear system

YeL+(1-Y)EL —ct =0, Vie K\{K}, (2.77a)
§P5(za) — &P (wL) =0,  Viek, (2.77b)
min (Y, 1 =3, &) =0, (2.77¢)
min (1-Y, 1 -3, &) = 0. (2.77d)

in the unknowns (Y, &4, &) € R x RK x RK. It is important to point out that in the material
balances (2.77a), there are now only K — 1 equations. As system (2.77) has one less unknown
than (2.75), it should also have one less equation. We have decided to leave aside the material
balance of the last component K. Let us rationalize this decision.

From the complementarity condition (2.77c), it follows that

Y=Y> e =Y &+Ye

jeK JER\{K}
Hence, '
Y Y =YY (2.78a)
jER\{K}

Likewise, starting from the complementarity condition (2.77d), we have

(1-Y) > &=0-Y)-([1-Y). (2.78b)
JER\{K}

Summing the material balances (2.77a) over ¢ € K\{K}, invoking (2.78) and recalling that
Djergiy ¢ =1 — ¢ yield

Y - Y +[(1-Y) - (1-Y)&] - (1 =) =0

After simplification and a change of sign, we obtain the material balance of component K. Thus,
the “forgotten” equation can be in fact recovered from those prescribed in (2.77).
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2.4.1.2 Two kinds of singularity

There are two kinds of singular solutions to which we should pay attention. These are noteworthy
not only from the physical standpoint, but also from the mathematical perspective. Indeed, the
determinant of some Jacobian matrix vanishes at the singular solutions, which will be unfavorable
for numerical methods, as will be seen later. The first family of singular solutions was already
briefly mentioned in §2.2.2.

Definition 2.1. A solution (Y, &g, €;) € R x RE x RX of (2.77) is said to be a transition point
when both arguments of one of the complementarity conditions vanish simultaneously, that is,

Y=0, 1->&=0, (2.79a)
e
or B _
Y=1, 1-> & =0 (2.79Db)
e

In the two-phase framework, such a point marks the change in the nature of the solution,
from a two-phase regime to a single-phase regime or vice-versa. To avoid ambiguity due to
transition points, we say that the gas phase G is strictly absent if Y = 0 and 1 — >, ;- & > 0.

Likewise, we say that the liquid phase L is strictly absent if Y = 1 and 1 — >, &} > 0.

oN 1 _x /N

it Y
Ut Y )

Figure 2.1: Azeotropic compositions for a two-phase two-component mixture.

Definition 2.2. A global composition ¢ € Q, where Q@ c RK~! is the open domain of fractions
defined in (2.22a), is said to be azeotropic if the Gibbs hypersurfaces Go and Gy, defined in
(2.45), are tangent to each other at ¢. In other words if T.Gs = T.Gy, or equivalently,

gc(e) = gr(c),  Vage(c) = Vzgr(e). (2.80)

Note that ¢ alone is not responsible for azeotropy. It also takes the two Gibbs functions to
behave in a peculiar way to satisfy (2.80). If azeotropy occurs at some ¢ € €2, then it is easily
seen that

(Ya 53;7 §ZL) = (Yv c, CZ> (2'81)
is a solution of (2.77) for all Y € [0, 1]. This infinity of solutions is undertermined with respect
to the phasic fraction Y. Physically speaking, since the two phases have identical proportions of
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species, they can no longer be distinguished from each other. Therefore, it is no longer possible
to tell how much of a phase is globally present in the mixture®. The second kind of singularity
consists of azeotropic solutions (2.80)—(2.81). An illustration of azeotropic configurations is given
in Figure 2.1 for a two-component mixture, with K = 2 and Q = (0,1).

2.4.2 The binary case

The special case of two-phase two-component mixtures, for which in addition to (2.74),
K = {1, 11}, K =2, (2.82)

is called binary. Thanks to its simplicity, analytical calculations can performed and geometric
constructions to worked out, which helps gaining intuition into the phase equilibrium problem.

2.4.2.1 Notations and assumptions

As K—1 = 1, the domain of partial fractions is Q = [0, 1]. For conciseness, we shall be using the
symbols ¢ instead of ¢!, z¢ instead of 2}, and z, instead of z%. The vectors ¢ = (c!), zg = (z})

and xy, = (.CCIL) will also be written as ¢, x¢ and z;. We recall that

& 3

TG = Ty = ———
&+ §L+EL

The two-phase multicomponent model (2.77) then boils down to

YeL+(1-Y)E, —e=0, (2.83a)
&6 Pg(ra) — €IL O} (z1,) = 0, (2.83b)
£6 04 (xg) — &7 Y (xr) = 0, (2.83¢)
min(Y;1 — &; 5 1) =0, (2.83d)
min(1 —-Y;1— = (2.83¢)

There are five equations in the unknowns (Y, fg, §g, §IL, §ILI) e R®. Admissibility of the fugacity
coefficients ®., ®II for a € {G, L} imply that they derive from the molar Gibbs energy functions
o ¢ [0,1] — R defined as

ga(2) = xln(z @4 (2)) + (1 — 2) In((1 — 2) Dy (),
and in particular that they meet the Gibbs-Duhem condition
z(In®l)(z) + (1 —z) (Indl)Y(z) =0

for all z € (0,1), where " denotes the derivative with respect to z. In §2.3.3, Hypotheses 2.2 were
set out in an attempt to guarantee existence and uniqueness in most situations. Here, we wish
to strengthen these hypotheses in order to include the extreme cases ¢ = 0 and ¢ = 1 in the
upcoming analytical solution for (2.83).

3In chemical engineering, the phases can no longer be separated by distillation at an azeotropic composition.
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Hypotheses 2.3. The molar Gibbs energy g, is strictly convex, that is, g”(z) > 0 for all
x € (0, 1);Moreover, the gradient g/, : (0,1) — R can be extended to be a surjective map from
[0,1] to R = {—o0} UR U {+00}, with ¢/,(0) = —o0 and ¢/,(1) = +c0.

Hypotheses 2.3 enable us to extend the inverse map [¢/,] ™! : R — [0, 1], with [¢g/,] }(—0) =
0 and [g/,] !(+0) = 1. Note that for K > 3, it is no longer possible to include 0 in the range
of the components of Vgg,. This is testified by the ideal gas law (2.71), for which the difficulty
lies on the hyperplane 1 — z! — ... — 2%=1 = 0.

2.4.2.2 Gibbs’ geometric construction

There is a famous geometric construction due to Gibbs [39,95] for the phase equilibrium of a
two-phase binary mixture. Let us sketch out this construction, depicted in Figure 2.2. The first
task is to look for a common tangent between the graphs Go and Gr,.

> If there is no common tangent, then the mixture is single-phase. The present phase « is
the one whose graph lies below the other. In phase «, the partial fraction is z, = c.

> If there is a common tangent, let o and Z;, be the abscissae of the contact points.

— If ¢ lies outside the open interval defined by Z¢ and I, then the mixture is single-
phase. The present phase « is the one whose graph lies below the other at the abscissa
c. In phase «, the partial fraction is z, = c.

— If ¢ lies inside the open interval defined by Z¢ and Iy, then the mixture is two-phase.
The partial fractions are then Zg = ¥¢ and Z; = #;. The phasic fraction Y is
given by the lever rule, which amounts to calculating the weights by which ¢ can be
expressed as a convex combination of Zg and Zj,.

Note that Gibbs’ geometric construction is concerned with the natural-variable or variable-
switching formulation (2.34)—(2.35). In a pure liquid regime (Y = 0), for instance, it does not
make sense to speak about T because phase G does not exist. Using the unified formulation,
however, we can assign a well-defined value to Zg. As represented in the lower panel of Figure

2.2, this value is Zc = [96] ™" (97,(z1)) = 961" (91,(0))-

2.4.2.3 Analytical derivation

In the same spirit as in §2.3.1, we seek to rigorously derive the Gibbs geometric construction
from model (2.83). Our contribution is summarized in the Theorem below. To our knowledge,
this is the first existence and uniqueness result for a non-azeotropic phase equilibrium problem
using the unified formulation.

Theorem 2.5. Assume that Hypotheses 2.3 hold and that the given composition c € [0, 1] is not
azeotropic. Then, system (2.83) has a unique solution (Y, &L, TCIT,, L ey e0,1] x RY, given by
the following procedure. Let g be the lower convexr envelope of min(gg; gr) over [0, 1], that is,

g(x) = sup{g(x) | g is conver and g < min(gg;gr,) over [0,1]}.

e If g(¢) < min(gg(c);9r(c)), then in the neighborhood of (c,g(c)) the graph of g(-) is
a straightline. This straightline is a common tangent to the graphs of Gg and Gr. Let
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Figure 2.2: Gibbs’ geometric construction for the phase equilibrium of a two-phase binary mix-
ture. Top: two-phase solution. Bottom: single-phase solution.



48 Chapter 2. Phase equilibrium for multicomponent mixtures

(Za,9a(Ta)) and (Zr,91(Zr)) be the distinct contact points. The abscissae of these con-
tact points are necessarily from distinct sides of ¢, one on the left and the other on the
right. The solution is then in the two-phase regime, with

— c— Iy _ _ _ _
Y:f, EIG::CG7 dIGI:].—QZ‘G, EIL:JJL, é?ILI:].—l’L (284)
rqg — T

e Ifg(c) = ga(c), then at least in a half-neighborhood of (c,g(c)) the graph of §(-) coincides
with Gg. The solution is then in the G single-phase regime, with

Y=1 =z¢=c, gIG =6 E_IGI’ =l-¢ Zp= [glL]_l(glG(C))? (2.85a)
and, recalling the definition (2.46) of tangent map Ty, ga,

£L = exp |Te9¢(ZL) — gL(TL)] Ti, (2.85b)
&L = exp[Tege(Tr) — go(@r)](1 — zp). (2.85¢)

e Ifg(c) = gr(c), then at least in a half-neighborhood of (¢, g(c)) the graph of §(-) coincides
with Gr,. The solution is then in the L single-phase regime, with

V=0, Zr=c & =c & =1-—c z¢=I[g5]"(d1(c)), (2.86a)

and, recalling the definition (2.46) of tangent map Ty, 9o,

£ = exp [Tegr(Ta) — 9a(a)| Za, (2.86D)
¢ = exp [Togr(Za) — ga(Za)|(1 — Za). (2.86¢)

Ching minh. Before proving Theorem 2.5, we remark that thanks to the non-azeotropy assump-
tion, the above procedure is non-ambiguous: we cannot have §(c) = ga(c) = gr(c).

EXISTENCE. Let us check that the procedure described leads to a valid solution of (2.83).
It is well-known that the graph of the lower convex envelope of a continuous function is made
up of successive parts, where the envelope either exactly matches the graph of the function or
is a straightline that lies strictly below the initial function but that is eventually tangent to the
latter at the ends of that part.

Two-phase regime. If g(c¢) < min(gg(c);gr(c)), then the part of the envelope containing
(¢, g(c)) is necessarily a segment of a straightline that is tangent to the graph of min(gg(c); g1.(c))
at two points (z_,g(z_)) and (z4+,g(z+)), with z_ < ¢ < 4. We claim that

either  (g(z-),g(x+)) = (9a(z-), gr(x+)) or (§(x-),d(x4)) = (9r(z-), 9a(z4)).  (2.87)

Suppose by contradiction that (§(x_),g(z+)) = (9a(x-), g9a(z+)). Then, the part of the graph
of g(-) passing through (c, g(c)) is a straightline tangent to the graph of gg(-) at abscissae
z_ and x4. Hence, g (z—) = g (r4). But this violates the strict convexity of gg, accord-
ing to which g¢ should be strictly increasing. Similarly, we get a contradiction by supposing
that (g(x-),g(z+)) = (g9r(z-),gr(z4)). This proves the claim (2.87). As a consequence, up
to relabelling and reordering, the two contact points can be designated as (Zq,gc(Z¢g)) and
(Zr,91(Z1)), which geometrically determines the real fractions Zg and zp. The part of the
envelope containing (¢, §(c)) is therefore a common tangent to g;(-) and gr(-).
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Let us verify that the set of values (2.84) has correct range and solves indeed (2.83). Since
c lies strictly between g and Zp, the quantity Y = (¢ — Z1)/(Zg — #1) lies in (0,1). Since
T € [0,1] and Zy, € [0,1] by construction, the quantities £, Té, ¢! and € computed by
(2.84) also belong to [0,1]. These values plainly satisfy equations (2.83a) and (2.83d)—(2.83e¢).
It remains to check (2.83b)—(2.83c). But we know that these are equivalent to

96(Tc) = g.(7L), (2.88a)
9c(Ta) — Tays(Ta) = 9o(Tr) — Trgp(TL), (2.88b)

on the ground of earlier calculations [Theorem 2.1]. The first equality holds thanks to common
tangency. Now, we observe that gq(Za) — Zagn(Za) is the ordinate of the intersection between
the tangent line T3, g¢ and the axis z = 0. Likewise, g1,(Z1) — Z1¢} (Zr) is the ordinate of the
intersection between the tangent line 7%, g7, and the axis x = 0. Again, T%,9¢ = Tz, g1, entails
the second equality.

Single-phase regime. If g(c) = gg(c), then the part of the envelope containing (¢, gg(c))
coincides with G in a neigborhood or at least in a half-neighborhood of ¢. Since g is convex, its
graph lies above its tangent line at c, i.e.,

Tegc(z) = galc) + (z — c)gg(c) = §le) + (z — )F'(c) < g() (2.89)

for all x € [0,1]. The quantities computed by (2.85) are all non-negative and obviously satisfy
(2.83a) and (2.83d). However, the fact that ¥ = 1 is not enough to infer (2.83e). We still have
to check the inequality 1 — ‘ij — §_ILI = 0. But

oL =& + & =exp[Tge(ar) — gu(@r)] < exp [§(zr) — gn(zL)] < exp(0) =1,

where the last two inequalities result from (2.89) and from the definition of §. Thus, o < 1
and (2.83e) is satisfied. It remains to check (2.83b)—(2.83c). On the ground of earlier calcuations
[Theorem 2.1], these are equivalent to

ga(c) = g1.(z1), (2.90a)
L(EL) —.nglL(fL) +Inoy,. (2.90b)
The first equation is already satisfied. The second one stems from Inoy, = Tege(Zr) — gn.(Z1).
If g(c) = gr(c), the proof goes along the same lines.
UNIQUENESS. By virtue of Theorem 2.1, any solution (Y, &5, €5, &5, &) of (2.83) satisfies

9e:(xq) = g7 (vr) regardless of its phase regime. For p € R, we define

Talp) =[ga]l Y(p),  Zulp) =[9r] " (p) (2.91)

and consider the Legendre transforms

~ ~ ~

Loo(0) = 96(Fa(p)) —Talp)p,  Lq.(p) = gL(TLlp)) — TL(p)p
of gg and gr. A straightforward calculation shows that

4Ly Ly,

o (p) = —Za(p), & (p) = —ZL(p). (2.92)
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If (Y, & ,jé, TL,EILI) and (?,EIG,EICI;,EIL,EILI) are two solutions of (2.83), we let

0=967c)=9.(7r),  §=96Fc) =g 7L). (2.93)
Of a single-phase solution. Suppose (Y, &L, TCI;, E,éqLI) is a G single-phase solution. Then,
Y = 17 EG’ = ¢, EIG = gé =1- ¢, g/G(jG> = glL(EL%

and
Ingy =] + &) = gale) + (L — )gile) — go(TL) = L0 (9) — L4, (H)-

by usual transformations. Thus, a G single-phase solution is necessarily given by formulas (2.85).
Furthermore, in order to ensure 67, < 1, we must have

Lge(P) — Ly, () < 0. (2.94)

If the other solution (17,51 ,EH,ETL,EILI) were in the same G single-phase regime, it would also
be explicitly given formulas (2.85) and would therefore coincide with (Y, &L, €5, &8 €I For the
second solution to be distinct from the first one, it has to be either in the L single-phase or in
the two-phase regime.

It (}N/, EIG, Eg, ETL, EILI) were in the L single-phase regime, a similar analysis would reveal that
it is necessarily given by formulas (2.86) and that

Lo (9) — L4, (9) = 0. (2.95)
Let us investigate three subcases.

(i) If ¢ > @, then by inverting the increasing functions in (2.93) we have Ty < ¢ < Z¢g, and
even Iy, < Ir(p) < ¢ < Ig(p) < Zg for all p € (@, ), using (2.91). Therefore, after (2.92),

(f;(sgg — 2,)(0) = Fulp) — Falp) < 0

for all p € (9, ). The difference £, — £, is decreasing over (@, ), whence
Lo () = L9, (9) < Ly (9) — Ly, (9)-
But this obviously contradicts (2.94)—(2.95).

(i) If ¢ < g, then by inverting the increasing functions in (2.93), we have T < ¢ < Zp, and
even I < Ta(p) < c < Zr(p) < g for all p € (9, ), using (2.91). Therefore, after (2.92),

d

dfp(ﬁgc - £4.)(p) = Tr(p) — Ta(p) >0

for all p € (9, ). The difference £4, — £,4, is increasing over [, ], whence

Lgo(9) — L4, (9) < Ly (0) — L4, (9)-

This is the same contradiction as in (i).
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(iii) If ¢ = @, then gn(c) = g7(c) by (2.93). On the other hand, (2.94)—(2.95) imply that
= £4,(9). In other words,

g6 (c) — ey (c) = gr(c) — cgp(c),

from which we infer that gg(c) = gr(c). This means that ¢ is an azeotropic composition,
which is excluded by the assumptions of the Theorem.

If (}N/, 51 ,5“, EIL, @g) were in a strict two-phase regime, then ¢ should lie strictly between Zg
and 7. Furthermore, the common tangency implies

Ly (9) — L4, (9) = 0. (2.96)
Let us investigate three subcases.

(i) If § > @, then by convexity Ty < 1 < ¢ < Zg. For all p € (9, ), we have Tf, < Tr(p) <
T <c¢<Za(p) < Zg. Therefore,

d o .

apFoe ~ La)(9) = Fulp) — Falp) <0
for all p € (@, ). As before, we obtain a contradiction by comparing the values of £,, —£,,
at @ and 0.

(ii) If 9 < @, then by convexity T < Tr, < ¢ < Zp. For all p € (0, @), we have T < Ta(p) <
¢ < Zp <Zr(p) < zr. Therefore,

d . <

3pFoe ~ Lar)(p) = FLlp) —Falp) > 0
for all p € (9, ). Again, we obtain a contradiction by comparing the values of £,, — £,
at @ and Q.

(iii) If § = @, then ¥¢ = ¢ by applying [g5]~!. This entails Y =1, which means that we are
at a transition point. The second solution is not in a strict two-phase regime.

Of a two-phase solution. Suppose (}7, EL, g, TL, éqLI) is a strict two-phase solution. By algebraic
manipulations similar to the previous ones, it is not difficult to show that this two-phase solution
is necessarily given by formulas (2.84). This prevents any other solution (EN/,EI ,EIGI, NIL,EILI) to
be in the strict two-phase regime. The only possibility for a second solution to exist is that it
is in a single-phase regime. However, we have just proven that a single-phase solution of (2.83)
cannot co-exist with any other solution, unless it is the same. O
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Apres avoir formulé au chapitre précédent le probléme de ’équilibre des phases d’un mélange composi-
tionnel de maniere générale, nous nous intéressons a présent a l’expression de quelques lois physiques
spécifiques habituellement utilisées pour la fonction d’énergie de Gibbs.

La premiére famille de fonctions de Gibbs que mous examinons en §3.1 provient de lois physiques
assez simples. Il s’agit de la loi des coefficients constants pour un gaz multiconstituant et des modéles
d’activité de Margules et de Van Laar pour un liquide binaire. Pour chacune d’entre elles, nous étudions
dans Uespace de ses parametres les régions assurant les Hypothéses 2.2, en particulier la stricte convexité.

La seconde famille est celle des fonctions de Gibbs associées a une équation d’état cubique. Tout en
rappelant en §3.2 leur construction, nous nous livrons a une analyse des zones d’existence d’une ou de
trois racines réelles. Cette analyse est effectuée directement dans le plan des paramétres adimensionnés,
ce qui consitue une originalité et fournit une expression analytique utile des frontieres.

L’analyse révéle également des problemes concernant le domaine de définition des fonctions de Gibbs,
fort nuisibles au bon fonctionnement de la formulation unifiée. Deux remedes sont proposés en §3.3 pour
étendre les domaines de définition, le plus prometteur étant la méthode indirecte qui de par sa généralité
n’est pas restreinte au cas binaire.
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In chapter §2, we formulated the phase equilibrium problem for a multicomponent mixture in a
quite general way, with an abstract molar Gibbs energy function per phase. Our goal is now to
review some widely used expressions of these Gibbs functions. As introduced in (2.31)—(2.32),
the molar Gibbs energy function takes the form

K

go(x) =D 2’ Ina’ + To(x) (3.1)
i=I

for each phase a € &, where V¥, denotes the excess function. To alleviate notations, we have
dropped the phase subscript a for the dummy argument & € Q < RK~1. Specifying g, amounts
therefore to specifying ¥, from which the fugacity coefficients are deduced by means of (2.33a)
[Lemma 2.2], which we rewrite as

In® (x) = Uy(x) + Valg(z) - (67 — ), for all je K. (3.2)

For each law of ¥, presented, we endeavour whenever possible to study its adequacy with the
Hypotheses 2.2, in particular the issue of strict convexity of gq.

3.1 Convexity analysis for simple Gibbs functions

In this section, the subscript « stands for the phase to which the physical law under consideration
applies. Let us start with some simple laws. Perhaps the simplest one is that of an ideal gas

v, =0.

In §2.3.3 [Proposition 2.4], we proved that an ideal gas fulfills Hypotheses 2.2.

3.1.1 Henry’s law
Next in the level of complexity is Henry’s law [62,115]

K
Uy(z) = > 2’ Ink’ (3.3)
=1

where {k'};cx are positive constants, each of them embodying a property of the corresponding
species. The fugacity coefficients are then

In®J (x) =Ink!,  forall jeK. (3.4)
This is why this law is also referred to as the constant coefficients law.

Proposition 3.1. For all (K', ..., k%) € (R*)X, the molar Gibbs energy function g, associated
with Henry’s law fulfills Hypotheses 2.2.

Chatng minh. Since W, is affine with respect to & = (2!, ..., 2X1), its second derivatives all

vanish. Therefore, the Hessian matrix V2_g, coincides with that of the Gibbs function of the
ideal gas. But this matrix was shown to be definite positive in Proposition 2.4. We still have to
check that the range of the gradient map

Vaga(x) = (In(k'z!) — In(AXzX), ..., In(k'2¥1) — In(kX2K)).
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K—l)

is equal to RE=!, For a given u = (ul, ..., u e RE=1 the nonlinear system Vig.(x) = u

can be cast into the K x K linear system

Kzl — exp(uh)E¥z¥ = 0,

EXT 1K1 exp(uf YRR = 0,

IS i e B

The first K — 1 components of the solution are

o exp(u')/k' K—1 _ exp(uf 1) /KR!
/RS + Y05 P exp(ut) ki’ /KK + S5 exp(uf) ki

This defines a unique continuous inverse map [Vzgo]™' : RE-! - Q. O

3.1.2 Margules’ law

We now consider two laws dedicated to binary mixtures, namely, Margules’ and Van Laar’s [100].
From the viewpoint of physics, these are in reality models for activity coefficients of liquid
instead fugacity coefficients. However, the mathematical structure of thermodynamic equilibria
via activity coefficients remains the same [96].

Since K — 1 = 1, we simply write = instead of z' and & = (2'), as was done in §2.4.2. The
excess function associated with Margules’ law is

Uy(x) =x(1 —z)[A12(1 — ) + Ag1x], (3.5)

where (A1a, As1) € (R*)? are two nonzero constants. By (3.2), the fugacity coefficients are
In @, (z) = [Arg + 2(Az1 — Arp)z] (1 — 2), (3.6a)
In &g () = [Ag1 + 2(A1z — Ag1)(1 — )] 2%, (3.6b)

For a binary mixture, Hypotheses 2.3 are more appropriate than Hypotheses 2.2, as explained in
§2.4.2. To meet these requirements, the pair of parameters (A2, A21) must be restricted to some
region of R2. The following result was obtained by Lai Nguyen [76] in his Master’s internship at
INSA Rennes, during which he joined the PhD team.

Proposition 3.2. Let S = Ajo+ Aoy and D = Ayo— Asy. Then, the molar Gibbs energy function
o associated with Margules’ law fulfills Hypotheses 2.8 if and only if

1/2

1
S <4 and |D| < 5[52 — 185 + 54 + 2(9 — 25)%?] (3.7)

The “good” region indicated by (3.7) is colored in striped green in Figure 3.2. Its right-most
point is located at (S, D) = (4,0), where it has a vertical tangent.

Chiing minh. We give an abridged version of the proof in [76]. The first derivative of g, is

g;(.%‘) =Inx — 111(1 — 33) + Ap + (2A21 — 4A12).%' + 3(A12 — Agl)x2.
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1 3
= 2 _ + +
3\/5 185+24/(9-2S)" +54

s2 = <21/(9-25)° +54 )

S2 1957 21/(9-25)° + 54 -2

% S2-18S5+21/(9-25)° +54

Figure 3.1: Plot of various curves involved in the proof of Proposition 3.2.

Figure 3.2: Region of strict convexity for the parameters of Margules’ law in the (.S, D)-plane.
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This is a continuous function over (0, 1), with

lim ¢’ = —w lim g’ = +o00.
a}frolga(x) , ;{rllga(w)

Thus, g/, has range in R and can be extended to a surjection from [0, 1] to {—o0} UR U {+0}.
The second derivative of g, multiplied by (1 — x) to remove singularities, is equal to

h(z) = 2(1 —2)gh(z) = 1 + (x — 2?)[2421 — 4415 + 6(A12 — Ao)z].

Let us change the variable to y = z — % € (—%, %) to work with the more symmetric function

H(y) := h(x — ;) =1+ (i - y2> [6(A12 — As1)y — (A12 + As1)].

Introducing the sum S = A9 + A9 and the difference D = A1 — Asq, the above function reads

1
Hsp(y) =1+ <4 - y2> (6Dy — 5).
Our purpose is to look for the region

R =1 (S.D) e R? in H 0.
{(5.D)e | min Hep > !

Note that since Hg _p(y) = Hs,p(—y), this region is symmetric with respect to the axis D = 0.
Therefore, we restrict ourselves to seeking (S, D) such that D > 0. For D = 0, if S > 0, the
function

1
Hspo(y) =1- S<4 - yz)
reaches its minimum value at y = 0, for which Hgo(0) = 1 — S/4; if S < 0, the minimum is

achieved on the boundary y = +£1/2, where Hgo(+1/2) = 1 > 0. Therefore, (5,0) € R if and
only if S < 4. Assume now D > 0. The derivative

3 3
Hg p(y) = D <2 - 18y2> +28y = —18Dy* + 25y + 5D

is cancelled at the two points

S +4/5% +27D?

18D '
At least one of the two values y+ must belong to (—1/2,1/2), since Hg p(—1/2) = Hs p(1/2) =1
and by Rolle’s theorem. More accurately, it is easily proven that: (a) in the subregion 0 <
D < —5/3, only y4 € (—1/2,1/2); (b) in the subregion D > |S|/3, both y_ and y, belong to
(—1/2,1/2); (c) in the subregion 0 < D < S/3, only y_ € (—=1/2,1/2).

Case (a) can be settled quickly, without calculating Hg p(y+ ). Thanks to 0 < D < —5/3, we
have 6Dy — S > 0 for all y € [~1/2,1/2], hence Hg ;, > 0 on this interval. This entails Hg p(y) >
Hgsp(—1/2) = 1 > 0. Thus, the subregion 0 < D < —S/3 is contained inside R. In cases (b)
and (c), a more careful inspection involving Hy ,(1/2) = —=3D — S and Hg ,(1/2) = —3D + S
shows that the minimum of Hg p is achieved at 7y_. Let us compute Hg, D(y;) by using not only
its value but also the identity

Y+ =

S 1
y*"—i)

2—7
Y-= 9D 12
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which comes from H ’S p(y—) = 0. After simplification, we end up with

S22\ S —+/52+27D2
27D 18D ’

2

After multiplication by 486D?, the requirement H s,p(y—) > 0 is equivalent to
(8% +27D?)3/? < 486D? — 81D?S + S°. (3.8)

The right-hand side can be shown to be positive in cases (b) et (c) and under the additional
condition S < 4. Indeed, for S > 0, 486D? —81D?S + 53 = 81D?(6 —S) + 53 > 162D? + 53 > 0;
for S < 0, 81D?(6 — S) + S3 > 95%(6 — S) + S = 25%(27 — 45) > 0. Note, however, that the
condition S < 4 is necessary for all points in R. This is because Hg p(0) = 1 — S/4 must be
positive. Therefore, S < 4 can be taken for granted and the inequality (3.8) becomes equivalent
to its squared version, i.e., (S% + 27D?)3 < (486D? — 81D2S + S3)2. Expanding both sides and
simplifying, we obtain

(3D)* — 2[S? — 18S + 54](3D)? + S3(S —4) < 0.

The reduced discriminant of this quadratic inequation in (3D)? is equal to 4(9 — 2S5)3. Tt is
positive, since S < 4. Then, the solution is given by

5?2 — 185 + 54 — 2(9 — 25)%? < (3D)? < 5% — 185 + 54 + 2(9 — 25)%/2, (3.9)

From the observation that S? — 185 + 54 + 2(9 — 25)%2 > 0 for S < 4, we conclude that the
second inequality of (3.9) is equivalent to

1
D < g[8* 185 +54+2(9 25322, (3.10)

The upperbound is plotted as the red curve in Figure 3.1. Regarding the first inequality of (3.9),
it is equivalent to S = 0 or S < 0 and

D> é[52 — 185 + 54— 2(9 — 25)%%] 2.

The lowerbound is plotted as the blue curve in Figure 3.1. It can be shown that this curve
lies inside the region 0 < D < —S/3 of case (a). Therefore, the previous inequality is trivially
satisfied. The last detail to be checked is that the half-line D = —S/3 for S < 0 is included in
the area bounded by the left part of the red curve, so that case (a) is algebraically contained in
the desired inequality (3.10). This is left to the reader. O

3.1.3 Van Laar’s law

Van Laar’s law is also a model for activity coefficients of a liquid [100]. The excess Gibbs function
associated with it is

A12A21x(1 — .%')
\I’a = )
(.T) AlgfL‘ + A21(1 — :E)

where (A12, Ao1) € (R*)? are two nonzero constants. By (3.2), the fugacity coefficients are

(3.11)

A2 (1 —x) 2
Ty _ 21
In®,(z) = A2 |:A12.7} Ay (1= x)] , (3.12a)
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$2 — 185 + 54 + 2(9 — 25)3/?

Figure 3.3: Region of strict convexity for the parameters of Van Laar’s law.

AIQIL' :|2
Az + A21(1 — .’L') '

In®(z) = Agl[ (3.12b)

To make sure that formulas (3.11)—(3.12) are well-defined over = € (0, 1), the denominator
Aoz + A21(1 — x) must keep the same sign. This amounts to requiring that

A12491 > 0. (3.13)

In addition to (3.13), the pair of parameters (A2, A21) must be further restricted in order to
comply with Hypotheses 2.3. Again, Lai Nguyen [76] obtained the following result in his Master’s
internship within the PhD team.

Proposition 3.3. Let S = Ajo+ Aoy and D = Ayo— Asy. Then, the molar Gibbs energy function
Ja associated with Van Laar’s law fulfills Hypotheses 2.3 if and only if

(S,D)e R- U Ry, (3.14a)

where
R_={S<0 and |D| < -5}, (3.14b)
Ry =1{0<S <4 and |D| < min(S; [S? — 185 + 54 + 2(9 — 25)3/%]/)}. (3.14c)

The “good” region indicated by (3.14) is colored in yellow in Figure 3.3. It lies inside the
cone D? < S? that corresponds to condition (3.13). The origin (0,0) must be excluded.
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Chitng minh. Although the proof is supplied in [76], we summarize it here, for this part to be
self-contained. The first derivative of g, is

A21(1 — CL‘)2 — Algl‘Q

'(z) =Inz —In(1 - A A .
9o(2) =Inz —In(l —z) + Arp 21[A12x+A21(1—a:)]2

Under assumption (3.13), this is a continuous function over (0,1), with

lim g/, (z) = —o0 lim g, (z) = +c0.
lim g () o limga(r) =+
Thus, g/, has range in R and can be extended to a surjection from [0, 1] to {—o0} U R U {+w0}.
The second derivative of g,, multiplied by z(1 — x) to get rid of singularities, is equal to

z(1—x)

=z(1—x)gl(z) = 1 — 242, A3 :
h(z) := z( )9o () 124121 (A1az + Asi (1 — 2))3

Let us change the variable to y = = — % € (—%, %) to work with the more symmetric function

=

—y?

+ (A2 — A21)y]3'
Introducing the sum S = A9 + Aoy and the difference D = A5 — Asq, the above function reads

o 1/4—y?
(S +2Dy)3"

1
H(y):=nh (:z: - 2) =1— 243,43,

~— |

[%(Alz + A2

Hsp(y) =1—(S* - D?)

Our purpose is to look for the region

R = { (S,D)eR?| D? < $% and min Hgp >0 }
[-1/2,1/2]
where D? < S? is the expression of (3.13) in terms of (S, D). Note that since Hg_p(y) =

Hgs p(—y), this region is symmetric with respect to the axis D = 0. Therefore, we restrict
ourselves to seeking (S, D) such that D > 0. For D = 0, if S > 0, the function

Hso(y) =1— S(i - y2>

reaches its minimum value at y = 0, for which Hgp(0) = 1 — S/4; if § < 0, the minimum
is achieved on the boundary y = +1/2, where Hgo(+1/2) = 1 > 0. Therefore, (S,0) € R if
and only if S # 0 and S < 4. Assume now D > 0. Divide the upper half-plane D > 0 into 3
subregions: (a) 0 < D < —S; (b) |S| < D; (¢) 0 < D < S. Subregion (b) is ruled out by (3.13).
In subregion (a), S +2Dy < S+ D < 0 for all y € [-1/2,1/2], so that Hg p(y) > 1 for all
y € [-1/2,1/2]. Thus, the subregion 0 < D < —S is a subset of R.

It remains to see what happens in region (c). The derivative

o —4Dy* +4Sy + 3D
2(S +2Dy)4

w=ifne ()

Hg p(y) = (8* = D?)

is cancelled at the two points
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At least one of the two values y; must belong to (—1/2,1/2), since Hg p(—1/2) = Hg p(1/2) =1
and by Rolle’s theorem. More accurately, it can be proven that in region (c) where 0 < D < S,
only y_ belongs to (—1/2,1/2) and this is where Hg p attains its minimum. Let us compute
Hg p(y—) by using not only its value but also the identities

s S 3 D+2Sy_ 2y 1 9 Sy_ 1 D +2Sy_
y-=pY-+ = -

£ St2py. 3 a4 Y- D 2 °D
which all come from H g p(y—) = 0. After simplification, we end up with

(S — /5% +3D2)(2S + /52 + 3D?)?
54D? '

Hsp(y-)=1+

Then, Hg p(y—) > 0 is equivalent to 54D? + (S — +/S2 + 3D?)(2S + v/S2% + 3D2)? > 0. After
expansion and cancellations, the inequality can be reduced to

9D?(6 — S) + $% > (52 + 3D?)%/2. (3.15)

Contrary to the proof of Proposition 3.2 for Margules’ law, at this point we are not sure that
the left-hand side of (3.15) is positive in region (c), since the additional condition S < 4 cannot
be proven a priori (here Hgp(0) is not as simple as before). However, the positivity of the
left-hand side can be checked a posteriori, after squaring (3.15) to obtain

D* —2(S? — 185 + 54)D* + §* — 453 < 0. (3.16)

Arguing in the same fashion as for Margules, with now D instead of 3D, the above inequation
can be turned into

D? < 8% — 185 + 54 + 2(9 — 25)%2.

The right-hand side vanishes for S = 4 and is negative for S > 4. This implies S < 4. The
corresponding curve is plotted in red in Figure 3.3. ]

3.2 Cubic equations of state from a numerical perspective

The fugacity laws investigated in §3.1 are simple and apply to a selected phase «, regardless of
the remaining ones. We are now going to revisit a prominent category of laws for a two-phase
(gas and liquid) mixture, in which the fugacity coefficients for both phases are computed in a
“simultaneous” way. The coupling between the two phases is achieved through a third-degree
polynomial equation, called cubic equation of state (EOS). Although there are many interesting
physical aspects underlying the design of such laws, our presentation will rather focus on their
computational structures and the mathematical issues that arise from their construction.

3.2.1 General principle

An equation of state is a formula that relates the state variables of a system under a given set
of conditions, such as pressure, volume and temperature. To understand the mechanism that
goes from an EOS to the fugacity coefficients via the excess Gibbs energy function, it is useful
to first consider the case of a pure component system.
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3.2.1.1 For a pure component

The most popular equation of state is probably Boyle-Mariotte’s law for an ideal gas
P=— (3.17)

where P denotes the pressure, V the molar volume, T the temperature and R the universal
gas constant!. Several corrections to (3.17) have been attempted in order to better reflect the
behavior of a real gas. Let us enumerate a few of them in historical order:

e Van der Waals [114]
RT a

P— _ . 1
e Redlich-Kwong-Soave [108,111]
RT a
P= = : 1
V_b VD) (3.19)
e Peng-Robinson [99]
RT
P= a (3.20)

T V—b V24+2Vh— b2

Each of the relations (3.18)—(3.20) involves a pair of parameters (a, b) € (R*)? that characterize
some physical properties of the pure component under study. However, depending on the type
of law, these are not the same! For each approximation, a long sequence of additional empiri-
cal formulas are usually provided to compute a and b from other quantities such as viscosity,
acentricity... In this work, the parameters (a,b) will be considered as fixed constants.

For later purposes, it is convenient to cast (3.17)—(3.20) in a dimensionless form. To this end,
let us introduce the dimensionless quantities

PV Pa Pb
Z—1Y A= B=—.
RT’ (RT)?’ RT

(3.21)

The first quantity Z, called compressibility factor, will play a major role in the sequel. The last
two quantities (4, B) € (R%)? can be thought of as two dimensionless parameters that charac-
terize the pure component under study at fixed pressure and temperature. In the same spirit as
in chapter §2, we shall never write down explicitly the dependency of (A, B) on (P, T). Then, a
straightforward calculation shows that equations (3.17)—(3.20) are respectively equivalent to:

e Boyle-Mariotte

Z—1=0; (3.22)
e Van der Waals
Z3—(B+1)Z?>+ AZ — AB = 0; (3.23)
e Redlich-Kwong-Soave
73— 7>+ (A—B—B*Z — AB = 0; (3.24)

'R = 8.314462618 S.I.
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e Peng-Robinson

73+ (B-1)Z*+(A—-2B -3B*Z + (B*+ B* - AB) = 0. (3.25)

Except for the first equation (3.22), the last three equations (3.23)—(3.25) are cubic polynomials
in Z. This is the rationale for the name “cubic EOS.”

Given a law and a pair (A, B) € (R%)?2, let us suppose that the corresponding cubic equation
has three distinct real roots, all greater than B. These are then named

B<ZL<Z[<Zg. (3.26)

In other words, the smallest root is associated with the liquid phase L, while the largest one
is associated with the gas phase G. From the physics point of view, at the same pressure and
temperature, the gas phase occupies a larger volume the liquid phase, which by (3.21) implies
that Zg > Z1. As for the intermediate root Z7, it does not have any physical meaning?. Like
(A, B), the physically significant roots (Zg, Z1) can also be viewed as functions of (P, T). This
allows us to define b

U, = f Md@, ae{G, L}, (3.27)

0 ®

which also depend on (P, T). The ¥, ’s are called ezcess molar Gibbs energies, insofar as they
measure an integrated amount of non-ideality represented by Z, — 1.

Lemma 3.1. Under assumption (3.26) of three real roots greater than B for the cubic equation
of the law considered, the excess molar Gibbs energies ¥, a € {G, L}, are given by:

o Van der Waals

A
Vo=Zy—1—-In|Z,—B|— —; 2

02— B] - 5 (3.28)

o Redlich- Kwong-Soave

A B
\IfazZa—l—ln[Za—B]—Bln[l+Za], (3.29)
e Peng-Robinson
\I/a:Za—l—ln[Za—B]— A ln[Za+(\/§+l)B]. (3.30)
2v2B | Zo,— (V2 -1)B

Chitng minh. The evaluation of integral (3.27) for the cubic EOS laws (3.23)—(3.25) can be found
in standard textbooks such as [104,115]. O

Let us suppose now that the cubic equation has only one real root greater that B. In this
situation, two subcases have to be envisaged. If we manage to assign a “natural” phase label
a = G or L to the real root, then the corresponding excess Gibbs energy W, is defined by
(3.27), leaving its counterpart in the other phase undefined. If we do not succeed in attributing
a “logical” phase label to the real root, then ¥, is undefined in both phases. This process is
intuitive enough to describe with words, but raises many serious mathematical questions:

2A real root below B is not acceptable either, since b is meant to be the lower limit of the molar volume.
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1. When does the cubic equation has three real roots greater than B and when does it have
only one real root greater than B?

2. When can a “natural” phase label be assigned to the unique real root greater than B and
when is it impossible?

These questions will be answered in §3.2.2 for Van der Waals’ law and in §3.2.3 for Peng-
Robinson’s law. For the moment, let us go on to see how the definition of the excess Gibbs
energies ¥, carries over to a multicomponent mixture.

3.2.1.2 For a multicomponent mixture

Let us go back to a multicomponent mixture whose set of species is K = {I, II, ..., K}, with
K > 2. Each component i € K is characterized by a pair of parameters (a’,b’) € (R*)? within
a selected cubic EOS law. At fixed pressure and temperature (P, T), this gives rise to a pair of
dimensionless parameters (A%, BY) € (R%)? by the last two relations of (3.21).

The basic tenet here is that the multicomponent mixture behaves approximately as a ficti-
tious pure component endowed with an averaged value for the pair (A, B). The latter is computed
from the (A, B")’s and the current partial fractions by means of a mizing rule. More specifically,
let x = (2!, ...,2%"1) € Q be the partial fractions of the mixture in some phase. We deliber-
ately omit the phase subscript because x is a dummy argument at which we want to compute
both Vg (x) and ¥ (x). There can be found a wide variety of mixing rules [74,96]. The most
commonly used one is

A(x) = Z Z a'r'VAIAT (1 - k7)), (3.31a)
el jekl

B(zx) = Y 2/B, (3.31b)
Jex

where the coefficients k¥ € [0, 1) are coupling parameters and where we remind that ¥ must
be seen as 1 — z! — ... — 2K~ In this manuscript, we shall consider the even simpler version
where k% = 0, which implies

2
A(zx) = < > xj\/ﬁ) : (3.32)
jek

Whichever the user’s favorite mixing rule is, the idea is to plug A(x), B(x) into the cubic
equations (3.23)—(3.25) to get the real roots Z,(x), o € {G, L}, should one of these exist and
be greater than B(x). Then, insert Z,(x) into definition (3.27) in order to obtain ¥, (x). This
amounts, in practice, to directly substituting Z,(x), A(z), B(x) into formulas (3.28)—(3.30).
Finally, apply (3.2) to deduce the fugacity coefficients ®¢ (z). In the upcoming subsections
§3.2.2 and §3.2.3, we write down the explicit formulas for ¥, (z) and In ®! () and address the
two questions asked earlier.

3.2.2 Van der Waals’ law

Historically, the Van der Waals equation of state was a major breakthrough compared to the
perfect gas equation. Although it is nowadays no longer used in realistic simulations demanding
a great physical accuracy, it remains a valuable reference as a “toy model,” thanks to its relative
mathematical simplicity.
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3.2.2.1 Expression of fugacity coefficients

Given a smooth mixing rule that computes the parameters (A(z), B(z)) € (R*)? from the
partial fractions x € (), we consider the cubic equation

Z3(x) — [B(x) + 1) Z%(x) + A(x)Z(x) — A(x)B(x) = 0, (3.33)

which is the multicomponent counterpart of (3.23). Under the same caveats as in the pure
component case, let Zg(x) be the greatest real root and Zr(x) the smallest one, should there
exist three real roots greater than B(x). If there is only one real root greater than B(x), let
a € {G, L} be the phase possibly assigned to it. The excess molar Gibbs energy is

A(x)
Zo(x)

Uo(z) = Za(z) — 1 — In[Zo(z) — B(x)] - (3.34)

Theorem 3.1. The Van der Waals fugacity coefficients are given by

B(x) + VyB(x) - (6' — x)
B(z)

[B(:L') + VeB(x) - (8" —x) 2A(z) + VzA(z) - (8" - az)] A(x)

B(x) A(x) Zo(x)’

In () = [Za(@) — 1] — In[Z4(x) - B(a)]

(3.35)

for all i € K and for any phase o € {G, L} in which Zo(x) > B(x) is well-defined.

We recall that the components of 5 = (0i1s s OiK—1) € RE~1 are Kronecker symbols and
we stress out that this result is valid for all smooth mixing rules.

Chitng minh. Taking the gradient of (3.34), we have

1 A
—|VZ
Za—BJrZO?J o

1
VU, = [1- VB — — VA,
{ Zo

Z,— B
in which we dropped the variable x for clarity. By virtue of the cubic equation (3.33),

1 A 1 Z,—1 A

- =0
Z.—B & ’

1 = :
Z2 Z.—B B BZ,

Thus,

T, = B+ —
v 5 VB,

Zo —1 A1 1
o —VB - —VA|.

Applying (3.2) and using (3.34), we arrive at the desired result. O

For the mixing rule (3.31b)—(3.32), let us define the “matrix-vector” product

Al(z) = VA < > xf\/ﬂ> (3.36)

jex

for all ¢ € KC, in order to state the following result.
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Corollary 3.1. For the mizing rule (3.31b)—(3.32), the Van der Waals fugacity coefficients are
given by

In® (x) =

B 2Ai(:c)] A(x) (3.37)

Bx) [Zo(x) — 1] = In[Z4(x) — B(x)] + [B(a:) " A(@) | Za(z)
for all i€ K and for any phase « € {G, L} in which Zy(x) > B(x) is well-defined.

Chang minh. From (3.31b), we infer that VB = (B' — BX, ..., BX=1 — BX) 5o that

_ K-1
B(x) + V4 B(z) Z — BX)2) + BX 4 Z — B%)(6;; —a7) = B,

the last equality being due to Z -t 0;j = 1 —d; k. By the chain rule, we can check that

=1

6A, K-1 ;
S =2 L)~ Al

with A’(z) defined in (3.36). It then follows that

) K—-1K-1 ‘ ‘ K—1
Vad(@)- (6 —x) =2) Y [A(x) - A(@)]0;k(6i5 — ) = 2) [A(@) — A% (@)] (6 — o).
j=1 k=1 k=1
On the other hand,
K K-1
x) =2 > AF(@)ab = 2 Y [AF () — AN (2)]k + 245 ().
k=1 k=1

Combining the last two equalities, we end up with
2A(x) + Vo A(x) - (6" —x) =2 Z [AF(x) — AK(x)]0; 1 + 245 (z) = 247 ().
k=1

In view of (3.35) [Theorem 3.1], the proof is completed. O

3.2.2.2 Ciritical parameters, subcritical and supercritical regimes

We now tackle the two questions formulated earlier about the number of real roots greater than
B and the assignability of a phase label to a real root, should it be the only one greater than
B. Part of these issues is already addressed in [80]. The available answers are always expressed
in terms of (P, T). What we wish, however, is to prove results in terms of (A, B), since these
dimensionless parameters are more useful to our numerical simulations.
Let (A, B) € (R*)? be a fixed pair of dimensionless parameters. Instead of working with the
polynomial
Yap(Z)=2°—(B+1)Z%+ AZ — AB, (3.38)

it is more convenient to work with the rational function

1 A

a,5(Z) = 7B 72 (3.39)
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over (B,+o). As Yap(Z) = —Z*(Z — B)lla g(Z), 1o p and T4 p have the same roots over
(B, +00). Since

élf% TA,B(Z) = 400, ZLHEOO TA,B(Z) =—1, (3.40)

there is at least one root larger than B. In order to study II4 g more carefully, the following
notion will be most helpful.

Definition 3.1 (Critical point). A triplet (Z., A, B.) € (B, +m) x (R*)? is said to be a critical
point if
a,.B.(Ze) =0, a..B.(Zc) =0, A..8.(Zc) = 0. (3.41)

Conditions (3.41), which are required on II4 p and not T 4 g, mean that the graph of I14_ g,
has an inflection point at Z., as examplified in Figure 3.4. From the critical triplet (Z., A., B.)
and from (3.21), it can be deduced the critical pressure, molar volume and temperature
a B? Z. a B.

Ve=b22, To=— (3.42)

Pc = 75 T4 A
b2 A, B, bR A,

Lemma 3.2. For Van der Waals’ law, there is a unique critical point given by

3 27 1
Zc = g, AC = 674, BC = g (343)

Chitng minh. The last two conditions of (3.41), i.e., I}y p (Zc) =1l p (Zc) = 0, are equivalent

to
1 B 2A, 2 B 6A.

(Zc _BC)Q - Zg ’ (ZC_BC)S B Zél ’

from which we draw 1(Z. — B;) = $Z. and

Z. = 3B,. (3.44)
Therefore, A, = Z3/[2(Z. — B.)?] = 27B3/8B? = 27B,/8 and

B, 8
- 2 4
A, 27 (349)

Combining (3.44)—(3.45) with the first condition of (3.41), that is, I14, p.(Z.) = 0, we find
B, = 1/8. This results in the critical values given by (3.43). O

Using the critical values, the next statement is a first step in clarifying the behavior of I14 p.

Theorem 3.2 (Supercritical and subcritical regimes).

1. If B/A > B./A. = 8/27, the function Il4 g is decreasing over (B, +®) and has only one
zero greater than B.

2. If B/JA < B./A. = 8/27, the function I14 g has two disctinct local extrema. In other words,
there exist two distinct values (1, < (g in (B, +o0) such that

wp(Cr) =1 p(¢a) = 0.

Then, 114 p is decreasing on (B, (), increasing on (Cr,, (g) and decreasing on ((g, +0).
It may have one or three distinct zeroes over (B, +0).
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Function IT when A = 0.42188, B = 0.125

Figure 3.4: At critical values, II4, g, has an inflection point at Z..
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 AB>27/8 5.

2k
3r A/B < 27/8 —

4+ 4
5t .
-0.5 0 015 ; 115 é 215 3

&

Figure 3.5: Plot of the function T — g4 (%) for various values of A/B.
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The practical and fundamental interest of Theorem 3.2 lies in the following phase assignment
procedure for a root, depending to its location.

Definition 3.2 (Phase label assignment). The region 0 < B < (B./A.)A = (8/27)A is said to
be subcritical. In the subcritical region, a root Z > B of the cubic equation (3.23) is said to be
associated with the liquid phase L if Z < (p; a root Z > B of the cubic equation (3.23) is said
to be associated with the gas phase G if Z > (q.

Let us elaborate on this Definition before proving Theorem 3.2. If there is only one root
Z > B, this root cannot belong to ((r, (¢). Therefore, either Z € (B, (1) as in Figure 3.7, or
Z € ((g,+0) as in Figure 3.8. This way of assigning a phase label to Z is most natural, since
it extends by continuity the “topological” pattern observed in the case of three roots.

The region B > (B./A:)A = (8/27) is said to be supercritical. The graph of I14 g no longer
has two discernable branches, as shown in Figure 3.9. In this configuration, there is no natural
way to associate Z with a phase. We shall not venture into supercritical fluids in this thesis.
Physically speaking, the critical threshold B./A. corresponds to a critical temperature T, by
(3.42). Above the critical temperature, the distinction between gas and liquid phases no longer
holds [39] and it does not make sense to talk about phase transition.

Chatng minh. (of Theorem 3.2) To find the local extrema of IT4 p on (B, +), we search for the
zeros on (B, +00) of its dervivative

1 2A

Wp(2) = ———— + =,

or equivalently, of the polynomial
Qap(Z) = Z3Z — Bl y(Z) = —Z° + 2A(Z - B)”.

An even more convenient choice is to set ¥ = (Z — B)/B € (0, +0) and to study
(T) =~ Qup(BT+B) = —(T+ 1) + 242

By inserting A./B,, the latter function can be recast as

A A A
= | — 1)3 +922¢g2 o £ _ L )g2
qa,B(%) [ (T+1)° + BCS ] + (B B, T
The polynomial in the bracket of the right-hand side, equal to g4, g,, can be factored by (T —2)2.
This follows from the definition of the critical values, according to which T. = Z./B. —1 =2 is
a double zero of the ga_ p,. After using A./B, = 27/8 and factoring the bracket, we have

0 5(T) = —(F — 2)? <z + i) + 2(2 _ gjz? — gap. (D) + 2(2 - ;}(;)z?. (3.46)
Note that g4 p(0) = —1 and lims_, 1o g4 5(T) = —oo for all (A, B) € (R%)2 For (A, B.), the
graph of g4, p, is tangent to the T-axis at T = 2 while taking nonnegative values ¢4, 5.(%) <0
for ¥ = 0, as shown in Figure 3.5.

If A/B > A./B., then g4 p(2) > 0 and g4 g vanhishes twice on (0, +x). If A/B < A./B,
then g4 (%) < qa,,B.(%) for all T > 0 (3.46) and ga p does not vanish on (0, +0). These two
cases are also depicted in Figure 3.5. This completes the proof. O
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Function IT when A = 0.36, B = 0.1

T T T T T T T T T

25| g

Figure 3.6: 3 roots B < 71, < Z7 < Zg.

Function II when A =0.39, B = 0.1

T T T T

B|Z

_1 1 1 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
z

Figure 3.7: 1 subcritical root, assigned to phase L.
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Function IT when A = 0.35, B = 0.1

T T T T

@
N

Figure 3.8: 1 subcritical root, assigned to phase G.

Function Il when A =0.3, B = 0.1

T T T T

Figure 3.9: 1 supercritical root, not assignable to any phase.
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3.2.2.3 Three-root and one-root regions

In terms of (A, B), we are also able to derive a necessary and sufficient condition for the existence
of three real roots greater than B. This result does not seem to be well-known in the literature.

Theorem 3.3. In the quarter-plane (A, B) € (R%)?2, the region for which Van der Waals’ cubic
equation (3.23) has three real roots, all greater than B, is determined by

{0<B<1/8, Ac(B)<A<ALB)}, (3.47a)
uhere Aq(B B2iopy o (L_op)” 47b
a(B) = — T3 +§—<1— ) ; (3.47b)
5 1 /1 3/2
- _R2, < - -
Ay(B) = —B®+ B+ + (4 23) . (3.47¢)

This three-root region lies entirely inside the subcritical domain 0 < (27/8)B < A. Moreover,

o for {0 < B <1/8, (27/8)B < A < Ag(B)}, the only real root is associated with the gas
phase G, in the sense of Definition 3.2;

e for {0 < B < 1/8, A(B) < A} or {1/8 < B, (27/8)B < A}, the only real root is
associated with the liquid phase L, in the sense of Definition 3.2.

01F Super critical region
1 root 1 root ZG

0.05 1 root ZL .

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
A

Figure 3.10: Number of roots for Van der Waal’s law in the (A, B)-quarter plane.

The three-root region characterized by (3.47) is colored in cyan in Figure 3.10. The first
branch Ag(-) starts at (A, B) = (0,0) with slope A (B = 0) = 4. The second branch Ay (-) starts
at (A,B) = (1/4,0) with slope A} (B = 0) = 1. Both branches end at (A, B) = (27/64,1/8),
with the common slope A (B =1/8) = A} (B =1/8) = 9/4.

Chaing minh. The discriminant of the cubic equation (3.23) is3
A(A,B) = (B+1)24% 443 —4(B+1)> AB—27A%’B? + 18(B + 1) A’B.
Since A > 0, we can consider A/A and arrange it as a second-degree polynomial in A, that is,

A(A,B)JA = —4A% + (1 +20B — 8B*)A — 4B(B + 1)°. (3.48)

3The discriminant of the cubic equation aX® +bX? +cX +d = 0is A = b*c? —dac® — 4b*d — 27a>d* + 18abcd.



3.2. Cubic equations of state from a numerical perspective 73

For the cubic equation (3.23) to have three distinct real roots, A(A, B)/A must be positive. For
this to happen, since its leading coefficient —4 is negative, the quadratic polynmial (3.48) must
have two distinct real roots and A must lie between these two roots. But the discriminant of
(3.48) with respect to A is

A4(B) = (14 20B —8B?*)? —64B(B + 1)® = —512B% + 192B* — 24B + 1 = (1 — 8B)3.

A necessary and sufficient condition for the quadratic polynomial (3.48) to have two distinct
real roots is 0 < B < 1/8. When this occurs, the two roots of (3.48) are precisely Ag(B) and
Ar(B) defined by (3.47b)-(3.47c). Therefore, the region defined in (3.47) characterizes those
(A, B) € (R%)? for which Van der Waals’ cubic equation (3.23) has three distinct real roots.

Nevertheless, we still have to verify that these three real roots are all greater than B. We
already know that at least one of them, say Zj, is greater than B > (. Since the product of the
roots are equal to AB > 0, the two remaing roots Z; < Zs must have the same sign. We claim
that this common sign cannot be negative. Indeed, let T 4 g be the Van der Waals polynomial
defined in (3.38). Since T4 p(Z1) = Y a,B(Z2) = 0, there exists by Rolle’s theorem ( € (Z1, Z3)
such that T’y 5(¢) = 0. Assume that Z; < 0 and Z3 < 0. Then ¢ < 0. But then it is obvious
that Yy 5(¢) = 3¢% —2(B + 1)¢ + A > 0. This is a contradiction.

Nextv, we claim that the commun sign shared by Z; and Zs cannot be positive either. For
one, we observe that it is not possible to have Z; < B and Zy > B: otherwise, there will be
exactly two roots on (B, +0), we contradicts what we already know. For another, assume that
both Z; and Zs belong to (0, B). As before, there exists ¢ € (Z1, Z2) < (0, B) such that

W5(Q) =3¢ —2(B+1)¢(+A=0. (3.49)

Since T4 p(0) = —AB < 0 and T4 p(B) = —B? < 0, we must have T4 p(¢() > 0. Using
repeatedly (* = 2(B + 1) — 34, we have (3 = 2¢? — LA( = [§(B+1)? — A]C — 2(B + 1)A4,
and finally (after some tedious algebra)
2
Tap()= —5[(3 +1)% - 34|¢ —24AB - A.
On the other hand, solving the quadratic equation (3.49), we find
B+1—-4/(B+1)2-34
(=27 (B+1) . (3.50)

3

Note that (B + 1)2 — 34 > 0 in the region defined by (3.47) and that we have to select the
minus sign in (3.50), as the plus sign is for the other root of Y’ 5 that lies between Zy < B and
Zy > B. Pluggin (3.50) into (3.49), we end up with

2
Tan() = —5=[(B+1) - SA]{(B +1) = [(B+1)?— 3A]1/2} —9AB — A.
The right-hand side is negative, since B + 1 > [(B + 1) — 34]"/2. Again, this is a contradiction.

A study of the function B — Ag(B) — (27/8)B shows that it is positive for B € (0,1/8).

Hence, the graph of Ag lies inside the subsonic domain. The same is true for A; > Ag. We
leave the statements regarding the phase labels of the one-root regions to the readers. O

3.2.3 Peng-Robinson’s law

By today’s standard, Peng-Robinson’s law is the most advanced EOS in terms of accuracy. It is
very widely used in industrial codes, including those of IFPEN.
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3.2.3.1 Expression of fugacity coefficients

Given a smooth mixing rule that computes the parameters (A(z), B(z)) € (R%)? from the
partial fractions « € €2, we consider the cubic equation

Z*(x) + (B(zx) — 1) 2% (=)
+ [A(z) — 2B(x) — 3B*(x)]Z(x) + [B*(x) + B*(x) — A(x)B(zx)] = 0, (3.51)
which is the multicomponent counterpart of (3.23). Let Zg(x) be the greatest real root and
Z1(x) the smallest one, should there exist three real roots greater than B(x). If there is only

one real root greater than B(x), let a € {G, L} be the phase possibly assigned to it. The excess
molar Gibbs energy is

Vo(x) = Zo(x) — 1 —In[Zo(x) — B()] Al®) [Za(m) + (1+V2)B(x)

- 22B@) [ Za(z) ~ (V2 - DB(=)
Theorem 3.4. The Peng-Robinson fugacity coefficients are given by
B(z) + V4B(z) - (6 — )

]. (3.52)

In @’ (x) = B@) [Zo(z) — 1] —In[Z4(x) — B(x)]
[B(cc) + VzB(x) - (6" — x) _ 2A(z) + VaA(x) - (6° — cc)}
B(z) A(z)

A(z) [Za(a:) + (1++2)B(w }
In ,
2V2B(x) | Zo(x) — (V2 —1)B(x
for all i€ K and for any phase « € {G, L} in which Zy(x) > B(x) is well-defined.

Chiing minh. Taking the gradient of (3.52), we have

(3.53)

1 A A
Vi¥a = {1 "~ Za—B 22B[Z+ (V2 +1)B] " 24/2B[Z — (v/2 4+ 1)B] } Vo
+{ 1 AW2+1) B A(W2-1)
Zo—B  22[Z+ (vV2+1)B] 2V2[Z - (V2 +1)B]

A [Za(@) + (14 V2)B(@)
“ovam " [za@c) (V2 1>B<w>] } Ve
L [ Za(@) + (1 V2)B(x)
" e o )] T
in which we dropped the variable x for clarity. By virtue of the cubic equation (3.51),
1 A A
" Za—B  2V2B[Z+ (V2 + 1)B] " 2v2B[Z — (v2 +1)B]

1

e 1 AW2+1) A(V2—1)  Za—1
Zo—B 22[Z+(2+1)B] 22[Z-(2+1)B] B
Thus,
 Zy—1 A Zo(®) + (1+V2)B@®) |1, 1
VU, = == VB + 2ﬁBl [Za(m> o 1)B(m)]{BVB AVA}.

Applying (3.2) and using (3.52), we arrive at the desired result. O
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Theorem 3.4 is valid for all smooth mixing rules. For the mixing rule (3.31b)-(3.32), and
using the notation A’(x) defined in (3.36), we have the following result.

Corollary 3.2. For the mixing rule (3.31b)—(3.32), the Peng-Robinson fugacity coefficients are
given by

n®i(z) = 5o Za(e) ~ 1]~ [Zy(@) - Bla)
Bl 24x)]  A(z) [ Za(@) + (0 + V2)B(z)
5 A | e e v s O
for all i € K and for any phase o € {G, L} in which Z,(x) > B(x) is well-defined.
Ching minh. Identical to Corollary 3.1. U

3.2.3.2 Ciritical point, supersonic and subsonic regimes

The questions about the number of roots of Peng-Robinson’s cubic equation (3.25) and the
assignability of a phase label to a root can be dealt with in the same fashion as in the Van der
Waals case, even though the calculations are slightly more technical. Let

Yap(Z)=2+(B—-1)Z?+(A—2B —3B%Z + (B> + B® — AB) (3.55)
be the Peng-Robinson polynomial for a fixed pair (4, B) € (R*)2. Introduce the rational function

1 A

ap(2) = 7B Z°12BZ B -

(3.56)

obtained from Y4 p through division by —(Z — B)(Z? + 2BZ — B?). Insofar as the roots of
72 + 2BZ — B?, namely, —B(v/2 + 1) and B(v/2 — 1), are both lesser than B, I14 g and T4 p

have the same roots over (B, +). Since

lim TA,B(Z) = 400, lim TA,B(Z) =—1, (3.57)
Z\|B Z—+0

there is at least one root larger than B. As in Definition 3.1, a triplet (Z., A¢, B.) € (B, +00) x
(R*)? is said to be a critical point if

a,.B.(Ze) =0, AB(Ze) =0, Iy p (Ze)=0. (3.58)

Lemma 3.3. For Peng-Robinson’ law, there is a unique critical point given by

1 3 5
Ze= |1+ \/16\@ - 13- \/16\/5 + 13], (3.592)
1 5 5
Ac=o| =59+ 3\/276831 —192512V/2 + 3\/276231 + 192512\/5], (3.59b)
1 i 3 3
B, = 32_13\/16\/513+3\/16\F2+ 13}. (3.59¢)
Approximately,

Z. ~ 0.307401308, Ac ~ 0.457235529, B. ~ 0.077796073. (3.59d)



76 Chapter 3. Convexity analysis and extension of Gibbs energy functions

Chitng minh. The last two conditions of (3.58), i.e., Iy p (Z:) =1I"} p (Zc) = 0, are equivalent
to

(Z? 4+ 2B.Z. — B*)* = 2A.(Z. + B.)(Z. — B.)?, (3.60a)
4 Ze+ B)(Z? + 2B.Z. + B?) = 2A4.(Z. — B.)(3Z. + B.). (3.60D)

By eliminating A. from (3.60), we have
A(Ze — B)(Ze + Be)? = (3Zc + B.)*(Z2 + 2B.Z. — B?).

Setting z. = Z./Be., the above equation becomes 4(z, — 1)(z. + 1)? = (32, + 1)(22 + 22, — 1) and
reduces to 22 — 322 — 3z, — 3 = 0. The only real root is

ze = 1+ 4/4 —2V2 + 1/4 + 22 ~ 3.951373036. (3.61)

Dividing (3.60b) by B2 yields

A 2(ze+1)(22 + 22— 1)

Be  (2e—1)(3z.+1)

Plugging the value (3.61) of z. into this expression, we obtain

A, 1 3 3
T [41 + 3\/ 827 — 384v/2 + 3\/ 827 + 384\/5} ~ 5.877359949 (3.62)

The first condition of (3.58), i.e., I14. B.(Z.) = 0, reads

1 A./B. .
Be(ze —1)  Be(22 +2z.—1)

Knowing z. and A./B. from (3.61)-(3.62), we can infer B, from the previous equation. Once
this is done, we can compute Z, = z.B. and A, = (A./B.)B. to retrieve (3.59). O

The behavior of I14 p for Peng-Robinson’s law is similar to that of Van der Waals’ law.
Before stating the corresponding theorem, let us remark that by taking the inverse of (3.62), we
have

B, 1 3 3
116 {8 —~ 3\/8 +6vV2+ 3\/—8 + 6\/5} ~ 0.170144420 (3.63)

Theorem 3.5 (Supercritical and subcritical regimes).

1. If B/A > B./A. ~ 0.170144420, the function 114 g is decreasing over (B,+®) and has
only one zero greater than B.

2. If B/A < B./A. ~ 0.170144420, the function 14 p has two disctinct local extrema. In
other words, there ezist two distinct values (;, < (g in (B, +00) such that

H;\,B(CL) = H%,B(CG) = 0.

Then, 114 g is decreasing on (B, (1), increasing on ((r,, (g) and decreasing on ((g, +0).
It may have one or three distinct zeros over (B, +00).



3.2. Cubic equations of state from a numerical perspective 77

As was the case for Theorem 3.2, Theorem 3.5 paves the way to a natural association of a
root with a phase in the subcritical regime.

Definition 3.3 (Phase label assignment). The region 0 < B < (B./A.)A is said to be subcritical.
In the subcritical region, a root Z > B of the cubic equation (3.25) is said to be associated with
the liquid phase L if Z < (r; a root Z > B of the cubic equation (3.25) is said to be associated
with the gas phase G if Z > (q.

Let us now prove Theorem 3.5.

Chatng minh. To find the local extrema of IT4 g on (B, +00), we search for the zeros on (B, +)

of its dervivative
1 A(2Z +2B)

!
Z)=—
45(%) Z-Be " (Z2+2BZ - B

or equivalently, of the polynomial

Qap(Z) = (Z - B)*(Z* +2BZ — B*)"Ily 5(2)
= —(Z? +2BZ — B*? + 2A(Z + B)(Z — B)*.

An even more convenient choice is to set T = (Z — B)/B € (0, +) and to study
1 A
04,8(%) = 57 QuB(BI + B) = (T2 44T +2)% +2 5T+ 2)32. (3.64)

By inserting A./B,, the latter function can be recast as

A, A A
qaB(%) = [ — (T2 44T +2)% 42 5 (T+ 2)52] + 2(3 ~ B> (T +2)%2

The polynomial in the bracket of the right-hand side, equal to g4, p., can be factored by (T—%.)?,
where €, = z. — 1. This follows from the definition of the critical values, according to which
T = Z./B.—1 = 2 is a double zero of the g4, p.. The difficulty here is that, contrary to the Van
der Waals case, factorization is not easy to carry out by hand, because A./B. is irrational. To
circumvent this difficulty, let us use another technique. Since g4, g, is a fourth-degree polynomial,
it is equal to its fourth-order Taylor expansion at ¥ = ¥, that is,

QAC7BC (z) = QA67BC ((EC) + qA/AC,Bc (TC)(T - TC)
4
+ 3 5 (T)(T — T + L) (T)T TP + 4l 5 (F)(T — To)h

In view of qa,,5.(Tc) = ¢4, p,(Tc) = 0, the factorization sought for is
4ac5.(T) = 3(T = T 1244, 5, (Te) + 440 5, (T)(T = To) + q4) p, (Te) (T — To)?)]
= 51(T—F)? [0 + 01T + T,
where the coefficients of the rearrangement in the second line are
4
q = 12¢%4, g, (%c) — 4q£133,136 (Te)Fe + qﬁlc),Bc (Te)TE
o =444 5 (T) — 20 5 (T

@ = qY) 5 (To).
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If we could prove that the coefficients of the polynomial in the bracket are all negative, i.e.,
q0 <0, ¢1 <0and g2 <0, then it would be plain that g4, g, (¥) < 0 for all T > 0, except at the
double zero T = ¥.. Then, the end of the proof would be similar to that of Theorem 3.2. Upon
differentiating (3.64) repeatedly, we have

A
¢h, p,(Te) = —4(3T2 + 12T + 10) + 425(3% - 2),

A,
aly) . (Te) = —24(%c +2) + 1275,

4
gy 5 (To) = —24.
By a brute-force calculation relying on the values (3.61)—(3.62) for z. and A./B., we end up
with go ~ —11.02105, q; ~ —437.98968, ¢o = —24. This completes the proof. O
3.2.3.3 Three-root and one-root regions

In terms of (A, B), we are going to derive a necessary (and perhaps sufficient) condition for the
existence of three real roots greater than B.

Theorem 3.6. In the quarter-plane (A, B) € (R* )2, the region for which Peng-Robinson’s cubic
equation (3.25) has three real roots, all greater than B, is contained in the region

{0<B<B;, AsB)<A<ALB)}, (3.65a)
where Ag(B) and Ar(B) are respectively the middle root and greatest roots of the cubic equation
—4A3 — (8B%> —40B — 1)A? + (16B* — 112B> — 88B* — 8B)A
+ (32B% +128B° + 160B* + 64B° + 8B?%) = 0. (3.65b)
The region (3.65) lies itself inside the subcritical domain 0 < B < (B./A.)A. Moreover,

e for {0 < B < Be, (Ac/Be)B < A < Ag(B)}, the only real root is associated with the gas
phase G, in the sense of Definition 3.53;

o for {0 < B < Be, AL(B) < A} or {B. < B, (A¢/Bc)B < A}, the only real root is
associated with the liquid phase L, in the sense of Definition 3.3.

B0.05 Super critical region 1 root Z 1
3 roots 1 root Z
0 1 | 1 1 1 | | | |
0 0.05 0.4 015 02 025 03 035 04 045
A

Figure 3.11: Number of roots for Peng-Robinson’s law in the (A, B)-quarter plane.

The region characterized by (3.65) is colored in cyan in Figure 3.11. Inside it, Peng-Robinson’s
cubic equation (3.25) has three real roots. Nevertheless, we could not prove that all the roots
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are greater than B, despite abundant numerical evidences supporting the validity of this claim.
The first branch Ag(-) starts at (4, B) = (0,0) with slope AL(B = 0) = 4 + 2v/2. The second
branch Ap(-) starts at (A, B) = (1/4,0) with slope A} (B = 0) = 2. Both branches end at
(A, B) = (A, Be), with the common slope Ay (B = B,) = A} (B = B.) ~ 2.95686087.

Chitng minh. The discriminant of the cubic equation (3.25) is

A(A,B) = —4A% — (8B* — 40B — 1)A? + (16B* — 112B® — 88B? — 8B)A
+ (32B% + 128B° + 160B* + 64B% + 8B?).  (3.66)

For the cubic equation (3.25) to have three distinct real roots, A(A, B) must be positive. If
the cubic polynomial (3.66) has only one real root Ay(B), since the leading coefficient —4 is
negative, we must have A < Ay(B) to ensure A(A, B) > 0. If the cubic polynomial (3.66) has
three real roots Ag(B) < Ag(B) < Ar(B), we must have A < Ay(B) or A € (Ag(B), AL(B)).
The discriminant of (3.66) with respect to A is equal to

A4 (B) = —32B%*(64B® + 6B% + 12B — 1)
- (4096 BS + 768B° + 1572B* + 16B® 4 132B% — 24B + 1).

It can be shown that Ay (B) > 0 for B € (0, B.), Aa(B.) = 0* and As(B) < 0 for B > B...
Therefore, if B > B, only Ay(B) exists. If B € (0, B.), there exist Ay(B) < Ag(B) < AL(B).
Let us show that Ag(B) > 0. First, assume B € (0, B.). Then, it is easily proven that

—8B%+40B+1 >0,
16B* —112B% — 88B? — 8B < 0,
32B°% + 128B° + 160B* + 64B3 + 8B% > 0.

As a consequence, A(A, B) > 0 for all A < 0. This implies Ay(B) > 0. Next, assume B > B,.
Since A(A = 0,B) > 0 and limg_, 4 A(A, B) = —0, A(+, B) has a positive root. But as said
earlier, A4(B) < 0 and the only root of A(-, B) must be Ay(B). Hence, Ag(B) > 0.

A study of the function B — A((A./B.)B, B) shows that is is negative for B € (0, B.). As
A(0, B) > 0, this means that for B € (0, B.), either Ay(B) is the only root of A(-, B) between 0
and (A./B¢)B, or the three roots Ag(B), Ac(B), Ar(B) all belong to (0, (A./B;)B). Anyhow,
for A € (0,Ao(B)), the point (A, B) lies in the supercritical region where we know by Theorem
3.5 that there is only one real root greater than B for (3.25). Thus, the possibility A < Ay(B)
must be ruled out when B € (0, B.).

The function B — A((A./B.)B, B) vanishes at its double root B, and remains negative for
a while, until it vanishes again at B = B, ~ 2.435425 and becomes positive. This means that
Ap(B) > (A;/B¢)B for B > B, and the graph of Ay(-), now the only root of (3.66), enters the
subcritical region. Let A € ((A./B.)B, Ao(B)). At (A, B), there are three real roots for (3.25)
and at least one is greater than B. If all of the roots are greater than B, their sum is greater
than 3B. But for (3.25), this sum is equal to 1 — B. The inequality 1 — B > 3B entails B < 1/4,
which contradicts B > B, ~ 2.435425.

To summarize, the only way for (3.25) to have three real roots, all greater than B, is that
B € (0,B;) and A € (Ag(B),AL(B)). It remains to show that this region is contained in
the subcritical domain. Assume that Ag(B) < (A./B:)B. In view of the previous discussion

*As a matter of fact, 64B% + 6B% + 12B — 1 is the minimal polynomial of B..
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on the number of roots for A(-, B), we must also have Ap(B) < (A./B.)B. Then Ay(B) +
Aq(B) + AL(B) < 3(A./B.)B. But by (3.66), this sum is equal to —8B? + 40B + 1. Hence,
—8B%+[40—-3(A./B.)]B+1 < 0. But a study of the function B +> —8B2+[40—3(A./B.)]|B+1
reveals that it is positive for all B € (0, B;). The statements regarding the phase labels of the
one-root regions are left to the readers. O

3.3 Domain extension for cubic EOS-based Gibbs functions

In §3.2, we insisted on the fact that, for a pure component, the cubic equations (3.23)—(3.25)
do not always have three real roots greater than B. This implies that, for a multicomponent
mixture subject to a given mixing rule, the cubic equations (3.33), (3.51) do not always have
three real roots greater than B(z) for all € Q. As a consequence, the domain of definition
for the functions ¥, ®¢, for a given phase a does not always cover the whole simplex €. This
physical feature turns out to be detrimental to the unified formulation introduced in §2.2.2.

3.3.1 Trouble ahead

In a nutshell, the molar Gibbs energy functions g, associated with cubic equations of state grossly
violate Hypotheses 2.2. To give a visual picture of the nature of the obstruction, let us consider
the simplistic case of a two-phase binary mixture, governed by the mixing rule (3.31b)—(3.32),
namely,

Az) = [aVA + (1 - x)\/AH]Q, (3.67a)

B(z) = zB'+ (1 —z)B"™. (3.67h)
The mixture is assumed to obey Van der Waals’ law. Thus, for z € [0,1] and « € {G, L}, the
value of the excess molar Gibbs energy

A(z)
Zo(2)

U,(r) = Zo(zr) — 1 —In[Zy(x) — B(x)] —

and that of the molar Gibbs energy
go(r) =zlnz+ (1 —2)In(l —z) + Yu(x)
are defined whenever there exists a real root Z,(x) of the cubic equation
Z3(z) — [B(x) + 1]2%(z) + A(x)Z(z) — A(z)B(z) = 0

that is greater that B(x) and that can be assigned to phase «. In such a case, we are able to
define the fugacity coefficients by
Bi

In®! (z) = B@) [Zo(z) — 1] —In[Z4(z) — B(z)] + [

Bl B 2Ai(x)} A(x)
B(z)  Alx) | Za(z)

for the components ¢ € {I, II}, with
Al(z) = zAl + (1 — 2)V ALALL AY(z) = 2V ATAL 4 (1 — )AL

For an arbitrary choice of the two pairs (A!, B') and (A", BM) in the subcritical region
0 < B < (8/27)A, the parametrized curve v : [0,1] 3 2 — (A(z), B(z)) € (R*)? is an arc
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Figure 3.13: Typical situation where the fraction in the absent phase cannot be computed.
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of parabola, as illustrated in Figure 3.12. We are not guaranteed that - remains inside the
subcritical region. Even if it does, because we have restricted ourselves to a choice of parameters
that is meaningful to physicists, other unfavorable phenomena are likely to occur.

Assume that for (Al, BY), the Van der Waals cubic equation (3.23) has only one real root
greater than B!, associate with phase G. Assume that for (A", B, the Van der Waals cubic
equation (3.23) has only one real root greater than B, associated with phase L. At z = 0, the
curve v starts from (A", BY) in the L-root region. At some parameter value z = =z, € (0, 1),
it enters the three-root region. At some furhter value x = x4 € (x,,1), it exits the three-root
region. At x = 1, it finally meets (A!, B!) in the G-root region. It is not difficult to realize that:

e the quantities Zp(z), V1 (z), g(x) are well-defined only for z € [0, z4]; gr(z; ) and g (2;)
remain bounded, while g7 (z,") and Zj (z;) blow up; moreover, there is no guarantee that
gr is strictly convex over [0, x4];

e the quantities Zg(z), ¥¢(x), ga(x) are well-defined only for = € [2,,1]; ga(x;") and g (2")
remain bounded, while ggv(x;r ) and Z’G(al:;r ) blow up; moreover, there is no guarantee that
gg is strictly convex over [z, 1].

Since gf;(2;) and gp(z;) are finite, the image sets g ([2;,1)) and g ((0,z4]) are not equal
to R. This prevents us from assigning a correct value to the fractions of a vanishing phase.
Indeed, according to Gibbs’ geometric construction described in Theorem 2.5, when the global
composition c is sufficiently close to 0, the solution of system (2.83) is in the single phase L, with
Y =0, &, =7 = c. But as limg o g} (v) = —o0, it is expected that g (c) ¢ g5([zp,1)). In other
words, it is impossible to find Z¢ € [x),1) such that g;,(Zg) = ¢}, (c). Likewise, when the global
composition c¢ is sufficiently close to 1, the solution of system (2.83) is in the single phase G,
with Y = 1, {¢ = Z¢ = c. But as limgyy gi(z) = +o0, it is expected that g/ (c) ¢ g7 ((0,z4]). In
other words, it is impossible to find Z, € (0, zy] such that ¢} (1) = g (c). The latter situation
is depicted in Figure 3.13.

It could be argued that the same flaws of cubic EOS laws should cause the same prejudice
to the natural variable (or variable-switching) formulation of §2.2.1. Nothing could be further
from the truth. In the variable-switching formulation, if the context is correctly guessed, we do
not need to compute anything from the absent phase and the above problem is irrelevant. If the
context is incorrectly alleged, the flash does not converge or may even crash, but there is an
opportunity for us to make up for it by changing the context. The natural variable formulation
does not seek to fathom the dark, invisible and uncharted side of the vanishing phases. The
unified formulation has to do so, by its very vocation to treat all phases on an equal footing.

To give the unified formulation a fighting chance, it is essential that the domains of definition
for the excess functions W,’s be properly extended to . By “properly,” we mean that the
corresponding extended Gibbs energy functions g, fulfill Hypotheses (2.2). If strict convexity
is too difficult to satisfy, at least we should require surjectivity of the extended gradient maps
Vzga from Q onto RK —1.

3.3.2 Direct method for binary mixture

For the two-phase binary mixture considered in §3.3.1, a natural workaround is to differentiably
extend gg over [0,z,) and gr, over (xy,1], in such a way that g, ([0,1]) = ¢7([0,1]) = {—0} U
R U {400}, together with strict convexity of g¢ and gz, over [0, 1]. More accurately, let w > 0 be
a small width such that

O<mtw<rp—w<lLl
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Over the domain [0, 1], we propose to extend the excess Gibbs functions by

) V() if z € [0, 24 — w],

Vp|w](z) = { Wpo(e) e o], (3.684)
) Vgw(r) ifxel0,m+w],

Yolwl@) = {\I/C,v(:v) if v € [z, +w,1], (3.68b)

in which the “artificial” parts are defined by the second-order Taylor expansions
1
Urw(@) =Vp(zg —w) + ¥ (zg —w)[z — (x4 —w)] + i‘llli(xﬂ —w)[r = (zy —w)]?,  (3.69a)

1
Vi w(@) = Vo(m, +w) + Uz, + w)z — (2, +w)] + §\I’lé¥($b +w)[z— (z, +w)]%  (3.69b)
The reason why we cannot take w = 0 is that ¥/ blows up at Ty and U{, blows up at x;r .
From the extended excess functions (3.68)-(3.69), we can deduce the extended Gibbs energies
by applying (2.31), i.e.,

Jalw](@) =xnz + (1 —2)In(l — ) + ¥y [w](z),
for a € {G, L}. We can also infer the extended fugacity coefficients by applying (2.33a), i.e.,

In @ [w](z) = Uu[w](z) + (1 — )P, [w](z), (3.70a)
In ®w](z) = Uufw](z) — 2V, [w](x), (3.70b)

for a € {G, L}. This direct approach enjoys the following property.

Proposition 3.4. Assume that the original Gibbs energy functions gr, and gg are strictly convex
on their respective intervals of definition [0,z4] and [z}, 1]. Then, for all w > 0 small enough,
their extended versions gr[w] and ga|w] fulfill Hypotheses 2.3.

Chitng minh. The proof of this Proposition is very easy and is left to the readers. O

Figures 3.14-3.15 examplify the direct method of extension for two 4-tuple (A!, B!, A, B™)
and two parameters w. Figures 3.16-3.17 provide a close-up comparison between the extended
Gibbs functions and their derivatives for two width parameters w.

3.3.3 Indirect method for multicomponent mixtures

The extension strategy developed in §3.3.2 is suitable for a binary mixture. For a multicomponent
mixture, it appears to be most impractical: (i) we have to know in advance the boundary of the
three-root region in €2; (ii) we have to construct C?-hypersurfaces starting this boundary and
joining 0€2. we need another extension for the model with more than two components.

Instead of working with x € Q, it is more judicious to work with Z,(x) € R. When the cubic
equation does not have three real roots greater than B, our idea is to use the arithmetic mean
of the two other roots, which is also their common real part if these are complex conjugates. In
place of the undefined Z,(x), we plug this “surrogate” value into the expression of the excess
Gibbs function for the missing phase «. From this ansatz, the fugacity coefficients can be derived
accordingly.
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3.3.3.1 For Van der Waals’ law

Let us explain the idea on Van der Waals’ cubic equation
73— (B+1)Z* + AZ - AB=0.

For convenience, we do not explicitly indicate the dependency of A, B and Z on «.

Construction in the one-root region. We assume that there is only one real root greater
than B and that this root can be assigned a natural phase label o € {G, L} in the sense of
Definition 3.2, so that we can write it as Z,. Let 8 be the other phase, that is, § = L if a = G
and f = G if a = L. If the two remaining roots of the cubic equation are complex conjugates,
their common real part is

B+1-2,
S T—
since the sum of the three roots must be equal to B + 1. In any case, Wg defined in (3.71) is the
arithmetic mean of the two “bad” roots. The following favorable properties of Wjs help convince
us that it can be used as a substitute for Zg, which does not exist.

Wpg (3.71)

Lemma 3.4. Let (A, B) be a pair in the subcritical region 0 < B < (8/27)A and assume that
Van der Waal’s cubic equation has only one real root Z, > B that corresponds to phase c.

1. If B < £(3v/33 — 11) ~ 0.389605496, then

Ws > B. (3.72a)

2. If B < 1(9v/57 — 67) ~ 0.237127479, then

Zo<Wg if a=1L, Ws < Zo if a=G. (3.72D)

Ching minh. In view of (3.71), the condition W3 > B is tantamount to 1 — B > Z,. This
implies 1 — B > B and B < 1/2. Using the rational function

1 A

- =
Z—-B 22

4,5(2)
introduced in (3.39) and in light of Theorem 3.2 about its behavior, the condition 1 — B > Z,
is itself equivalent to I14 (1 — B) < 0. But

1 A

Map(l=B) = 1-2B (1-B)y?

—1<0

can be reduced after simplification to

2B(1 — B)?

A
~ T 1-92B

In the subsonic region, A > (27/8)B. The sufficient condition (27/8)B > 2B(1 — B)?/(1 — 2B)

is satisfied for all B € (0, %6(3\/33 —11)).
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In view of (3.71), the condition Z, S Wj is tantamount to Z, S #(B + 1). Assuming
(B+1)/3 > B, that is, B < 1/2, the previous equality is also equivalent to II4 p((B+1)/3) < 0.

But B+1 3 94
+
H = — _1<
A7B< 3 > =28 B+iz =0

can be simplified to

2(B +1)3
Az —— . .
< 9(1-2B) (3.73)
By studying the function defined in the right-hand side, we can show that for all B € (0,1/8),
2(B+1)3
Aq(B —— < Ar(B). .74
6(B) < 557 < AuB) (3.74)

The three curves meet at the critical point (A, B.) = (27/64,1/8) where they have a common
tangent.

Let us assume first that o = G. This occurs only if B € (0,1/8) and (27/8)B < A < Ag(B).
By (3.74), we have (3.73) with the “<” sign, which implies Zg > Wp,. Let us assume now that
a = L. This occurs only if: (i) B € (0,1/8) and A > Ar(B), or (ii) B > 1/8 and A > (27/8)B.
In case (i), we have (3.73) with the “>" sign, which implies Z;, < W¢. In case (ii), notice that
2B(1— B)?/(1 —2B) < (27/8)B for all B € (1/8,1(9v/57 — 67)), so that for B in this range we
still have (3.73) with the “>" sign and can reach the same conclusion. O

From now on, we shall restrict ourselves to B < (94/57 — 67)/4. Physically speaking, this is
a reasonable assumption, since B, = 1/8 is almost twice smaller. When Z,, is the only real root
greater than B for Van der Waals’ cubic equation, the excess Gibbs energy W, is defined for
phase « by the usual formula (3.34). For the other phase 3, we stipulate that

A

Vg=Wg—1—-In[Wg—B] - —, (3.75)
Ws

which is well-defined thanks to Lemma 3.4. This is what we refer to as the “indirect” extension

of the excess Gibbs energy W3 when the root Zg no longer exists. When applying (3.2) to (3.75)

in order to derive the fugacity coefficients, we need to be careful.

Theorem 3.7. When the indirect extension (3.75) is applied to phase (3, the Van der Waals
fugacity coefficients in this phase are given by

B+VB- (6 —x)

In ®% = 5 [Ws — 1] — In[Ws — B]
N B+VB-(§'—®) 24+VzA-(6'—=x)] A
B A Wpg
VWs- (8" — B (6" — YW,
N { p-(8'—x) VB-(d w)] A,8(Ws) (3.76)
Wps B W3(Ws — B)
for allie K, with Yo g(W) = W3 — (B+1)W?2 + AW — AB as defined in (3.38).
Ching minh. The proof is similar to that of Theorem 3.1, except for the fact that now
1_;+i: T 4,8(Wp) 1 _ Ws—1 N A B T a,5(Ws)
Ws—B Wi W;Ws—B) Ws— B B BW5  Wz(Wsz—B)’

instead of being 0. ]
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In (3.76), we need the gradient of W3 with respect to x. After (3.71),
1
VWg = §(VB —VZ,).

The gradient of Z, with respect to @ can be obtained by differentiating Van der Waals’ cubic
equation. This operation yields

[3Z2 —2(B +1)Zo + A|VZ, = (B — Zo)VA + (A + Z2)VB,

from which VZ, can be extracted, since Z, is a simple root and 3Z§ —2B+1)Z,+ A #0.

Alteration in the three-root region. From the one-root region, let us move towards the
transition boundary where a new real root Zg appears. In the one-root region, we only have
the notion of the “generalized” root W3, whose gradient VW3 remains well-defined. If we start
from the three-root region and move towards the transition boundary where Zg disappears, the
gradient VZg does not remain bounded. Indeed, as

[325 —2(B+1)Zs+ AlVZs = (B — Z3)VA+ (A+ Z3)VB,

and as Zg gets closer to being a double root, VZ3 blows up. However, we need a finite gradient
VZg for the numerical resolution of system (2.77) by, say, the Newton method. Such a finite
gradient is indeed required in the lines of the Jacobian matrix corresponding to the equalities of
fugacity (2.77b). To achieve a smooth junction between the two regions, we accept to “sacrifice”
a tiny portion of the three-root region. Let us assume that we are in the three-root region, with
B < Z; < Z; < Zg. We introduce

 Zr -7

9 =21"“L
Zg — 41,

€ [0,1] (3.77)
as an indicator of the closeness to the transition boundary. Indeed, the cubic equation has double
roots when ¥ = 0 or ¥ = 1. Let ¢ € (0,1/4) be a small threshold.

o If ¥ € [2¢,1 — 2¢], we apply the usual formulas for the case of three real-roots.

o If ¥ € (1 — 2¢,1], the two roots Z; and Zg are close to each other. We keep Z; but
progressively replace Zg by

:B-l-l—ZL:Z]—i-ZG (378)

W,
¢ 2 2

whose gradient is bounded. Instead of plugging Z¢ into formula (3.34) for ¥, we insert
Zg =1 —va(®)]Ze + va(0)We, (3.79)
where

0 if9 <1— 2,

—(1—
va(9) = q<19(€2€)> if9e(l—2e1-—¢), (3.80a)
1 if>1-—e¢,

a(y) = y*(3 — 2y). (3.80b)
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The rescaled function y — q(y/e) serves as a C' step function over the interval [0,¢]. We
note that ¢(0) = 0, ¢(1) = 1 and ¢’(0) = ¢’(1) = 0. From the modified excess Gibbs energy

5 S A
\I/G = ZG —1—1In [ZG — B] - = (3.81&)
Za

we can derive by (3.2) the fugacity coefficients

B+VB- (8 —x)

In &%, = e [Ze¢ —1] —In[Zg — B]
N B+VB- (6 —x) B 2A + VzA- (8" —x) A
B A Za
Zg- (8" — B- (8 - Yan(Z
+ [V g:(&-2) VB-(d w)] YanZe) (3.81b)
Za B Za(Zg — B)
The gradient VEG in the above formula can be approximated by
VZg it ¥<1-—2¢,
VZag =14 [1 - ve®)]VZe + ve(d)VWs it 9e(1—2e,1— ), (3.81¢)
VWea if0>1-—c¢,

where VWg = (VB — VZ;) and where the derivatives of v are neglected.

o If ¥ € [0,2¢), we proceed in a similar and symmetric fashion to replace Zj by 7 L =
[1—v(¥)]ZL + v, (9)WL in the expression of ¥, while preserving Zg.

Figures 3.18-3.19 display a few examples of the indirect method for the Van der Waals case.
Figures 3.20-3.21 provide a close-up comparison between two choices of €. It can be seen that ¢
has little influence on the extended Gibbs functions for the gas. For the liquid, this influence is
more apparent.

3.3.3.2 For Peng-Robinson’s law

We go through the same process as in the Van der Waals case. Assume that Z, is the only real
root greater than B of Peng-Robinson’s cubic equation

73+ (B-1)Z?+(A—-2B -3B*Z + (B?+ B> - AB) = 0.

Construction in the one-root region. As Z, is associated with phase «, let 8 be the other

phase and let us introduce the arithmetic mean of the two remaining roots
1-B-7Z

Wg = fa, (3.82)

which is their common real part when these are complex conjugates. We refer the readers to

(3.59) [Lemma 3.3] and (3.62) for the critical values A., B, for Peng-Robinson’s law.

Lemma 3.5. Let (A, B) be a pair in the subcritical region 0 < B < (B./Ac)A and assume that
Peng-Robinson’s cubic equation has only one real root Z, > B that corresponds to phase a.



90 Chapter 3. Convexity analysis and extension of Gibbs energy functions
02F —+—Gibbs Gas : 021 Gibbs Gas 1
—— Gibbs Liquid ———— Gibbs Liquid /]
03+ — T — Gibbs Gas extended — — — Gibbs Gas extended
— *+ — Gibbs Liquid extended 04 — — — Gibbs Liquid extended B
0.4 ,‘\ :
.05} 306 i
[9] [9]
c c
[] []
o 0.6 o
£ 208 1
&-07¢ 8
2 2
G G
081 -1 1
09t
12 1
L z T T
» s P T R
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

First-component standard partial fraction x

First-component standard partial fraction x
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Figure 3.19: Extended Gibbs energy functions g7, (blue) and gg (red) for Van der Waals’ law
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1. If B < 0.206813, then

Wz > B. (3.83a)

2. If B < 0.137072, then
Zo <Wpg if a=1L, Wg<Zy if a=G. (3.83b)
Chiing minh. The proof is similar to that of Lemma 3.4. O

By restricing ourselves to B < 0.137072, which is reasonable since B, ~ 0.077796, we can
rely on Lemme 3.5 to stipulate that

Wy = W5 —1—In[Ws— B] - 2 1[%“*@“)3].

T 2VeB | Ws— (V2 1)B

for the missing phase /3. By virtue of (3.2), we can derive the corresponding fugacity coefficients.

(3.84)

Theorem 3.8. When the indirect extension (3.75) is applied to phase (B, the Peng-Robinson
fugacity coefficients in this phase are given by

0@ — B+VB-(§—=x)

[Ws — 1] —In[W}s — B]

B
N B+VB-(§'—x) 24+V,A (6'—x)] A | W5+ (vV2+1)B
{ B A }2\53 D[Wﬁ—(\/i—l)B}
VWs- (6" —x) VB-(6—x) W5 Y ap(Ws)
* { W B B ] (Ws — B)(W3 + 2BW; — B?) (3:85)

for all i € K, with Yo (W) = W3 + (B —1)W? + (A —2B — 3B )W + (B? + B® — AB) as
defined in (3.55).
Chitng minh. The proof is similar to that of Theorem 3.7. O

The gradient of Wp with respect to « required by (3.85), can be computed by

1
VWg = *i(VB +VZ,),

in which VZ, solves

322 +2(B—1)Zy+ (A—2B —~3B%)|VZ, = (B~ Z,)VA
+(A—2B —3B*+ 6BZ, +2Z, — Z2)VB.

Alteration in the three-root region. For the same reasons as those mentioned in the Van
der Waals case, the usual formulas need to be altered in the three-root region, where Zg gets
close to being a double root. The changes are aimed at circumventing the difficulty due to the
blowing up of VZ3 and at enforcing a smooth junction between the two regions. We follow the
same strategy as in the Van der Waals case. When there are three roots B < Z; < Z; < Zg,
we define the indicator ¢ as in (3.77). Let € € (0,1/4) be a small threshold.

e If ¥ € [2¢,1 — 2¢], no change is necessary.
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(0.33,0.03). Right panel: (A!, BY) = (0.275,0.045) and (A", BT) = (0.35,0.04).
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Figure 3.24: Close-up comparison of the extended Gibbs functions between ¢ = 0.001 and € = 0.2
for Peng-Robinson’ law with the indirect method. (Al, BY) = (0.275,0.045) and (A, B) =
(0.35,0.04).
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Figure 3.25: Close-up comparison of the derivative of the extended Gibbs functions between
e = 0.001 and ¢ = 0.2 for Peng-Robinson’ law with the indirect method. (A!, B') = (0.275,0.045)
and (A, B) = (0.35,0.04).
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o If ¥ e (1—2¢,1], we keep Z1, but progressively replace Zg by

1-B-Z7 Z1+ Z,
We — L_2rtse (3.86)
2 2
Instead of plugging Z¢ into formula (3.52) for W¢, we insert
Ze =1 - va(9))Za + ve(0)We, (3.87a)
where v is given by (3.80). From the modified excess Gibbs energy
N ~ A Z 2+ 1)B
Vg =2g—1-In[Zg— B] - h{~0+“r+) } (3.87b)
2V2B | Zg—(vV2-1)B
the fugacity coefficients can be inferred by (3.2) as
. B B. (&6 — ~ ~
maoi, - 2TV Bw ) (%0 —1] - In[Zs — B
[B+VB-(5Z'_3:) 24 + VA - (5i_m)] A {§G+(ﬁ+ 1)3]
+ — n|—=
B A 24/2B Zg—(W2-1)B
VZ- (8 — VB - (8" - Za Y ap(Z
+[ G (O-z) ( mq _ ¢ Yap(Zc) (3.87¢)
e B (Za — B)(Z% + 2BZg — B?)

The gradient V Z¢ in the above formula can be approximated by (3.81c), in which VIWg =
—3(VB+VZp).

e If ¥ € [0,2¢), we proceed in a similar and symmetric fashion.

Figures 3.22-3.23 display a few examples of the indirect method for the Peng-Robinson case.
Figures 3.24-3.25 provide a close-up comparison between two choices of €. In comparison with
Van der Waals case, here the width parameter € seems to have a slightly stronger influence on
the extended Gibbs functions. Similarly to the Van der Waals case, this inflence is more visible
for liquid phase.
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Nous entamons cette seconde partie, consacrée au numérique, par un panorama des méthodes susceptibles
de résoudre le probleme thermodynamique posé dans la premiére partie. Pour cela, un survol des prob-
lemes de complémentarité “purs” en §4.1 constitue une étape préliminaire indispensable pour connaitre
les principales classes de méthodes a explorer.

La non-différentiabilité du probléme nous amene & examiner d’abord les méthodes non-lisses et semi-
lisses en §4.2. Parmi celles-ci figure la méthode de Newton-min, qui est actuellement [’algorithme par
défaut dans les prototypes d’IFPEN utilisant la formulation unifiée. Nous nous intéressons ensuite en
84.83 aux méthodes de régularisation, qui transforment le probleme non-lisse de départ en une suite de
problémes lisses au moyen d’un paramétre destiné 4 tendre vers zéro. Apreés un retour sur la méthode
de Newton classique et ses théorémes de convergence locale, nous mettrons l’accent sur la technique de
lissage par des 0-fonctions ainsi que la méthode des points intérieurs.

Pour terminer, mais aussi pour motiver la conception d’une méthode mieux adaptée, nous énumérons
en §4.4 les problemes de convergence des méthodes considérées sur des contre-exemples.
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The phase equilibrium problem (2.42) or (2.77), studied in chapter §2, comes within the following
abstract framework: find X € D, where D c R is an open domain, such that

A(X)

0, c REiTﬂ’ (4.1&)
min(G(X), H(X)) = 0,

e R™. (4.1b)

Here, the given functions A : D c RY - R“™ and G, H : D < RY - R™, where 0 < m </, are
assumed to be continuously differentiable on D. The first £ — m equations (4.1a) are “ordinary”
algebraic equations. By contrast, the last m equations (4.1b) are rather “special” in that they
are nondifferentiable, because of the componentwise min function. They represent the so-called
complementarity conditions, the exact significance of which is

0<GX)LHX)=0, (4.2a)

or equivalently,
G(X)=0, HX)=0, GX)THX)=o. (4.2b)
This name is justified by the observation that for each index v € {1,...,m}, at least one of the

two quantities G, (X) and H,(X) vanishes while the other remains nonnegative.

Our objective is to work out an efficient and robust numerical method to solve (4.1). The most
severe difficulty that awaits us is the non-differentiability of the complementarity conditions.
Therefore, before embarking on the quest for numerical methods, we have to fully understand
the essence of this difficulty by stepping back to the simpler case of a “pure” complementarity
problem.

4.1 Background on complementarity problems
A complementarity problem! is a specialized version of (4.1), in which

m=10  G(X)=X. (4.3)

Over the last half-century, complementarity problems have grown into a vast discipline with
many deep notions and rich results. A comprehensive survey can be found in the book of Acary
and Brogliato [2] or the two-volume collection of Facchinei and Pang [46,47]. In this section, we
just intend to provide some standard theoretical rudiments that will be useful in the sequel.

4.1.1 Classes of problems

We begin with a very basic notion, that of a cone. A subset £ R is said to be a cone if
VXeR Vt>0, tXegR
If 8 < RY is a cone, its dual cone is defined as
R :={deR'|Vve R vld=0}.

These notions are actually defined in analysis, independently of complementarity problems. They
enable us to properly introduce the general complementarity problem (GCP) associated with a
cone.

'"We sometimes add the adjective “pure” to mark the difference with the original “mixed” problem (4.1).
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4.1.1.1 GCP and VIP

Definition 4.1 (GCP). Given a cone & c R’ and a mapping H : & — R’ the general
complementarity problem C(R, H) consists in finding a vector X € R that satisfies the conditions

R5X L H(X)e &, (4.4)
where the notation “ 1" means “perpendicular”, i.e., X7 H(X) = 0 in the matrix language.

This formulation of (GCP) includes a wide range of problems encountered in mathematical
programming. It can be further extended to the infinite-dimensional setting by replacing R¢ a
pair of locally convex Hausdorff spaces related to each other by real-valued bilinear form [66].
Beside the world of mathematical programming, there is also another community in applied
mathematics whose primary interest is focused on the unilateral conditions for nonlinear partial
differential equations arising from mechanics, especially in elasticity and plasticity. The theo-
retical tool to study this type of free boundary problems is the variational inequality problem.
We refer the readers to the monographs of Kinderlehrer and Stampacchia [69] and Glowinski et
al. [53] for a broad review of this realm. Below we formulate the variational inequality problem
(VIP) associated with a subset of R® which is not necessarily a cone.

Definition 4.2 (VIP). Given a subset & — R’ and a mapping H : & — R, the variational
inequality problem V (R, H) consists in finding a vector X € K such that

VY € R, Y -XxX)TH(X) >0 (4.5)

This formulation of (VIP) includes a wide range of problems encountered in mechanical
engineering. It can be further extended to the infinite-dimensional setting, where it actually
comes from [60]. Originally, the relationship between (VIP) and (GCP) has been noted by many
authors. However, it was Karamardian [66] who proved that if the set 8 involved in Definition
4.2 is a cone, then the two problems are equivalent.

Proposition 4.1. Let & ¢ RY be a cone and H be a mapping from 8 to RN. A vector X € &
solves V(R, H) if and only if it solves C(R, H).

Chitng minh. See [66] or [46, §1.1.3]. O

4.1.1.2 GCP, NCP and LCP

Many special cases of (GCP) are worth considering for their role in practical problems. When K
is the nonnegative orthant of R, the general complementarity problem (GCP) gives rise to the
nonlinear complementarity problem (NCP).

Definition 4.3 (NCP). Given a mapping H : Rﬂ — RY, the nonlinear complementarity problem
associated with H consists in finding a vector X € R¢ such that

0<X L HX) >0, (NCP)

which means
X=>0, H(X)=0, XTHX)=0. (4.6a)

The nonlinear complementarity problem was introduced by Cottle [33], at about the same
time as (VIP). Among the class of (NCP), it is customary to consider those for which H is
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e a Py-function, that is,

VX #Y e R, max (Xo = Yo)(Ho(X) — Ha(Y)) = 0; (4.7a)
Xa#Ya

e or a P-function, that is,

VX #YeR:,  max (Xo— Ya)(Ho(X) = Hy(Y)) > 0. (4.7b)

1<a<t

Indeed, uniqueness can be proven for the latter case.
Theorem 4.1. If H is a P-function in the sense of (4.7b), then (NCP) has at most one solution.
Chitng minh. See [46, §3.5.10] O

When H is an affine function, that is, H(X) = MX + ¢ for some matrix M € R and
vector ¢ € RY, the problem has a dedicated name.

Definition 4.4 (LCP). Given M e R*‘ and ¢ € RY, the linear complementarity problem
LC(M, q) consists in finding a vector X € R such that

0<XLMX+q>0, (4.8a)

which means
X =0, MX 4+q>0, XT(MXx +¢) =o0. (4.8b)

As a matter of fact, (LCP) was the first type of complementarity problem to have been
formalized in the literature. The motivation for this comes from the observation that KKT
optimality conditions for linear and quadratic programs constitute an (LCP). After Lemke and
Howson [82] showed that the problem of computing a Nash equilibrium point of a bimatrix game
can be posed as an (LCP), Cottle and Dantzig [34] unified linear and quadratic programs and
bimatrix games under the (LCP). Since then, (LCP) has gained considerable momentum. The
history of the development of (LCP) is available in Cottle et al. [35].

In the case of (LCP), the Py and P properties of H can be detected at the level of the matrix
M. A matrix M e R is said to be:

o a Py-matrix if for all X # 0, there exists an index o € {1,...,¢} such that X, # 0 and
(MX)a = 0;

e a P-matrix if the inequality X7 M X < 0 implies X = 0.

A Py-matrix generalizes a positive semi-definite (symmetric) matrix. There are many equivalent
characterizations to the above definition, as enumerated in [11, §2.2.4] and [49]. A P-matrix
generalizes a positive definite (symmetric) matrix and there are also many equivalent character-
izations [11, §2.2.5]. Determining whether or not a given matrix is a P-matrix is an expensive
task. In fact, this is a co-NP-complete problem [36].

Going back to the (NCP), let us assume that the mapping H is continuously differentiable.
Then, the Py (resp. P) property of H is equivalent to that of its Jacobian matrix VH for all X
in the domain [46, §3.5.9].
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4.1.2 Classes of methods

Once the main classes of complementarity problems have been identified, we are now concerned
with the numerical methods that can be used to solve them. Again, this will be a brief glimpse,
but the overview we will have had in the case of complementarity problems will serve as a guiding
outline for the more sophisticated case of (4.1) in later sections.

4.1.2.1 Early approaches

The first difficulty to point out with complementarity conditions in the general case (4.1) is
their combinatorial nature. Anecdotally, some instances of (LCP) have been proved [29,70] to
be NP-complete in the strong sense.

For each index o € {1,...,m}, the equation 0 < G (X) L H,(X) > 0 expresses two possible
operating regimes, depending on either G,(X) = 0 or H,(X) > 0. In the phase equilibrium
system (2.77), for instance, the two regimes correspond to whether or not phase « is present
in the mixture. Since there are m complementarity conditions, the total number of possible
configurations for the physical system is 2. In the model problem (2.77), where m = P, the
total number of possible contexts is 27 — 1 (the difference of one unit comes from the fact that
the phases cannot be all absent). In realistic reservoir simulations, since the phase equilibrium
problems of the cells are coupled to each other, m is equal to the product of the number of
possible phases P by the number of cells in the mesh, which could reach ten million. Thus, any
method by which it is proposed to explore all possible configurations is doomed to failure when
m is large.

Pivotal methods. The situation described above naturally reminds us of KK'T conditions for
constrained optimization and of linear programming, for which the active-set methods and the
simplex algorithm enable us to update the guessed configuration in a “smart” way, instead of
visiting them all. The class of conceptually equivalent methods for (LCP) is known as pivotal
methods. These are essentially variants of the so-called complementarity pivot method by Lemke
and Howson [82]. The most well-known methods among them are the Lemke algorithm [81] and
the criss-cross algorithm [40]. The common feature of all pivotal methods is that the worst-case
complexity is exponential. We refer the readers to Billups and Murty [20] and Cottle et al. [35]
for a more thorough review.

Nonsmooth methods. Pang [98] is credited for having developed the first globally convergent
and locally superlinearly convergent B-differentiable Newton method with line search. It was
followed by the path search method of Ralph [107] and a method for PC!-functions by Kojima
and Shindo [71], while Kummer [73] studied this method for general nondifferentiable functions.
In §4.2.1, we will supply some elements of the general theory of nonsmooth Newton.

4.1.2.2 Recent approaches

Semismooth methods. Semismooth functions are an important special case of nonsmooth
functions. The theory of semismooth functions was developed by Miflin [92] in the scalar case
and extended to the vector case by Qi and Sun [105]. This class of methods involves reformu-
lating the problem as a system of nonlinear equations by means of C-functions (C stands for
complementarity). A function 1 is said to be a C-function if

P(a,b) =0 < 0<alb=0. (4.9)
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Using a C-function, the complementarity problem (NCP) can be stated as the system of equa-
tions

F(X) =0, (4.10a)

where F : R - R! is defined component-wise by
Fo(X) = ¢(Xa, Ha(X)). (4.10b)

System (4.10) remains to be solved by a semi-smooth Newton-type method. Below is a non-
exhaustive list of the most frequently used C-functions.

e [ischer-Burmeister function:

YrB (a,b) = Va? +b> — (a+b).

This C-function is differentiable everywhere except at (0,0). In addition, its square 1% 5 (a, b)
is continuously differentiable on the entire plane. Introduced in [50], the Fischer-Burmeister
function soon attracted the attention of many researchers [38,48] and played a central role
in the development of efficient algorithms. The corresponding semi-smooth method to solve
(4.10) is called Newton-FB.

e Minimum function:
Ymin(a,b) = min(a, b).

This C-function is a Lipschitz function, but not differentiable when a = b. The earliest
use of the min function in complementarity problems dates back to Aganagi¢ [3]. The
corresponding semi-smooth method to solve (4.10) is called Newton-min. In the context of
(LCP) and (NCP), its convergence properties were analyzed by [51,59]. According to the
numerical tests of [37,65], Newton-min gives better results than Newton-FB. Ben Gharbia
and her co-authors [14-17] used it extensively in the context of mixed systems.

e Mangasarian function:
¥m(a,b) = ¢(Ja —b) = ¢(b) — ¢(a)

where ¢ : R — R is a strictly increasing function and ¢(0) = 0. It can be made differen-
tiable everywhere by an appropriate choice of ¢, for instance ((t) = 3. Mangasarian [85]
introduced this family of C-functions with the intention of solving (NCP), but the core-
sponding Newton-M method does not seem to be very popular. This is probably due to the
fact that all smooth C-functions share the same deficiency: V(0,0) = (0,0). This implies
that for every index o € {1,...,¢} for which X, = H,(X) = 0, we have VF,(X) = 0 and
the a-th row of the Jacobian matrix consists of zero entries, which makes it singular.

In §4.2.2, we will provide some basic notions on semismooth methods, with a focus on the
Newton-min method in §4.2.3.

Smoothing methods. A complementarity condition can also be regularized by a smooth
function, which introduces a regularization parameter. The idea is to apply smooth methods to
the smoothed equations and to gradually drive the regularization parameter to zero. Chen and
Mangasarian [27] were probably the first to come up with this strategy, that we will present in
§4.3. Smoothing methods also include the large family of interior-point methods, a brief survey
of which will be given in §4.3.3.
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4.2 Nonsmooth approach to generalized equations
Let us return to the original mixed problem (4.1). We want to numerically solve
F(X) =0, (4.11)

where the function F : D ¢ RY — R’ is not necessarily smooth, that is, not necessarily con-
tinuously Fréchet-differentiable everywhere its domain. We recall that Fréchet-differentiability?
at X € D means that there exists a linear map VF(X) : R® — R’ or equivalently a matrix
VF(X) e R in the canonical basis, such that

o IF(X +d) = F(X) = VE(X)d]| _

0.
d—0 Il

For system (4.1), we have F(X) = [A(X), min(G(X), H(X))]?, but let us work with a general
nonsmooth function F'.

In the smooth case, the Newton method is based on the idea of replacing F' by successive local
models that are easier to solve. These local models rest upon the first-order Taylor expansion.
More specifically, given some X* € D, we consider the local model

X — F(XF) + VF(X*) (X — x*) (4.12)

as an approximation of F/(X) when X is close to X*, and search for X**! as the zero of (4.12)
instead of (4.11). In the nonsmooth case, the philosophy of the nonsmooth approach is to attempt
some generalization of the above process. We have to face many challenges. On the one hand,
it is highly unlikely that we would be able to design a method for all nonsmooth functions.
Reasonably, additional assumptions on F' will have to be made. On the other hand, it is not
clear what alternate local model could be used as a nonsmooth analog for the first-order Taylor
expansion.

In this section, we are going to present a theory developed for nonsmooth functions that are
locally Lipschitz-continuous. We recall that F' is locally Lipschitz-continuous at X € D if there
exists a neighborhood B(X,ex) of X and a constant Lx such that

IF(X) = F(X)|| < Lx| X = X|l,  ¥(X,X)e B(X,ex) x B(X,ex).

In §4.2.1, an abstract framework for the local model is introduced, which gives rise to an abstract
nonsmooth Newton method. In §4.2.2, at the price of further restricting ourselves to the subclass
of semismooth functions, a concrete instance of this theory is provided, which gives rise to the
semismooth Newton method.

4.2.1 Nonsmooth Newton method

4.2.1.1 Local model and algorithm

The generalization of the smooth local model (4.12) takes the form

X — F(X®) + (X%, X — X%), (4.13)

?In a finite-dimensional space, Fréchet-differentiability is equivalent to the usual notion of differentiability.
This is why we shall simply speak about “differentiability” throughout the remainder of the manuscirpt.
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where T'(X k. -) represents some abstract function. To account for the dependency of this ap-
proximation on the current point X*, we need to consider a family of functions 7 (X) to which
each possible T'(X,-) belongs. This is clarified in the following Definition, where we designate
by 7 (R?) the set of functions from R to R’. No further property is required on .7 (R?).

Definition 4.5 (Newton approximation scheme). Let F': D < RY — R’ be a locally Lipschitz-
continuous function.

1. A Newton approzimation scheme of F is a set-valued mapping 7 : D =3 .7 (RY) such that

T(X,0) =0, for all T(X, ) € T(X), (4.14a)
and
FX)+T(X,X -X)-F(X -
lmsup WL HTEX =X =PI e (4.14D)
XX X —X]
T(X,)eT(X)

2. A strong Newton approximation scheme of F' is a Newton approximation of F' strengthened
by the condition

ey LFE) +TX. X~ X) - F(X)|

XX X -X|?
T(X)eT(X)

< 0, for all X € D. (4.14c)

3. A (strong) nonsingular Newton approzimation of F is a (strong) Newton approximation of
F strengthened by the condition that 7 is a family of uniformly Lipschitz homeomorphisms
on D, by which we mean that there exist positive constants Ly and 7 such that for each
X € D and for each T'(X,-) € T(X), there are two open sets Ux and Vx, both containing
B(0,e7), such that T'(X,-) is a Lipschitz homeomorphism mapping Ux onto Vyx with Ly
being the Lipschitz modulus of the inverse of the restricted map T'(X,-)|u, -

Condition (4.14a) means that the local model
d— F(X)+T(X,d), (4.15)

aimed at approximating F(X + d) around X, must return the exact value F(X) for d = 0.
This is quite natural. Condition (4.14b)—(4.14c) expresses that the local model must possess
good aproximation properties for d # 0 small enough. As for the notion of singular Newton
approximation in the third item, it postulates that the local model must be invertible with
respect to d, at least locally. This is where the locally Lipschitz-continuous assumption on F' is
really needed.

With the above definition, a natural extension of the Newton method is described in Al-
gorithm 4.1 for nonsmooth equations. This algorithm is very abstract. We do not know what
T(X,-) looks like. It is not even required to be linear. Our only hope is that in Step 3, solving
for d* in (4.16) is easier than coping with the original problem. Otherwise, the local model is
irrelevant. Notice, however, that there may not be a unique solution d* in Step 3. For one, we
may pick another element T'(X*,-) € T(XF) if T(X*) is not a singleton. For another, equation
(4.16) may have several solutions d* for the same T'(X*,-). Some authors [47, §7.2.4] recommend
looking for d* € B (0, €) instead of R, where € is a user-prescribed maximal radius, in order to
not get out of the “good” neighborhood. But the problem is then that equation (4.16) may not
have any solution.
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Algorithm 4.1 Nonsmooth Newton algorithm

1. Choose X° e D c RY. Set k = 0.
2. If F(X*) =0, stop.
3. Select an element T'(X*,.) € T(X*). Find a direction d* € R’ such that

F(X* +1(X* d*) =o. (4.16)

4. Set Xkl — X* 4 gk and k — k + 1. Go to step 2.

4.2.1.2 Well-definedness and convergence

Nonsingularity of the Newton approximation scheme is crucial for the sequence of iterates
{X*} ey in Algorithm 4.1 to be well-defined. This turns out to be the hardest point to ver-
ify in practice. The following Theorem provides a sufficient condition for nonsingularity based
on an assumption of pointwise singularity at the solution X.

Theorem 4.2. Let F': D RY — Rf be a locally Lipschitz-continuous function and let X € D
be a solution of F(X) = 0. Assume that T is a Newton approximation scheme of F for which
there exist three positive constants €1,e9 and L satisfying

(A) for each T(X,-) € T()?)ithere are two sets U and V' containing B(0,e1) and B(0,e2)
respectively, such that T(X,-) is a Lipschitz homeomorphism from U to V and T~1(X,-)
has Lipschitz modulus L.

Assume further that a function L : R% — Ry with limyjo L(t) = 0 and a neighborhood N of X
exist such that either one of the following two conditions holds:

(a) for every X € N and every T(X,-) € T(X), there exists a member Tﬁ)_(, Y in T(X) such
that T(X,-) — T(X,-) is Lipschitz-continuous with modulus L(||X — X||) on U; or

(b) for every X € N, T (X) = {T(X,-)} is single valued and T(X,) —_T(X, -) is Lipschitz-
continuous with modulus L(||X — X||) on U, where T(X,d) =T(X,X — X + d).

Then the Newton approximation scheme T is nonsingular.
Chitng minh. See [47, §7.2.12-8§7.2.13]. O

Once the sequence of iterates is well-defined, the next question is about its convergence.
Before stating the main result, we recall the following defintions regarding convergence rates
that will be useful for other methods as well.

Definition 4.6 (Rates of convergence). Let {X*}rens © R’ be a sequence converging to X e R,
with X* # X for all k> 0. We say that {X*}cn+ converges to X:

1. Q-linearly if

Xk+1 _ X
0 < limsup | H

i1} 4.17a
P ] (4.172)
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2. Q-superlinearly if

: | XM - X
limsup ———=—— = 0. 4.17b
P X X ()
3. @Q-quadratically if
Xk+1 _ X
0 < limsup | | (4.17¢c)

koo [ XF = X2
The upcoming theorem recapitulates the key properties of Algorithm 4.1.

Theorem 4.3. Let I': D < R! — RY be a locally Lipschitz-continuous function and let X € D
be a solution of F(X) = 0. Assume that F' admits a nonsingular Newton approzimation T .
Then, for every € € (0,e7], there exists § > 0 such that if X° € B(X,0), then Algorithm 4.1

generates a unique sequence {Xk}keN that converges Q-superlinearly to X. Furthermore, if the
Newton approzimation scheme T is strong, the rate of convergence is Q-quadratic.

Chitng minh. See [47, §7.2.5]. O

4.2.2 Semismooth Newton method

As said earlier, although the nonsmooth Newton method of §4.2.1 is a convenient theoretical
tool, it is too generic a construction. To be of any practical use, the Newton approximation
scheme 7 must be specified in a more substantial way. This can be achieved for semismooth
functions [92,105], the definition of which requires some preliminary notions on subdifferentials.

4.2.2.1 Local model and algorithm

By Rademacher’s theorem [31, §3.4.1], every locally Lipschitz-continuous function is continuously
differentiable almost everywhere. Put another way, the set Cr of points X € D where VF(X)
exists in the classical sense is non-empty and its complement D\Cr has measure zero. This
property lies at the foundation of the following definitions.

Definition 4.7 (Bouligand and Clarke subdifferentials). Let F' : D < R® — R’ be a locally
Lipschitz-continuous function and Cr < D be the set of points at which F' is differentiable.

1. The B-subdifferential or the limiting Jacobian of F at X is the set-valued mapping dgF :
D =3 R*! defined as

OpF(X) = {M e R | I(X*)4en < Cp, X¥ - X, VF(X*) — M}, (4.18a)

In other words, the Bouligand subdifferential dpF'(X) is the set of all matrices M are the
limits of the Frechet differentials VF(X*) for a sequence X* converging to X.

2. The C-subdifferential or the generalized Jacobian of F' at X is the set-valued mapping
OF : D =3 R given by
0F(X) = conv(dpF(X)). (4.18b)

In other words, the Clarke subdifferential 0F(X) is the convex hull of the Bouligand
subdifferential dpF'(X).
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As a classical example, let us consider f(z) = |z| for x € R. Then, dpf(0) = {-1,1}
and 0f(0) = [—1,1]. The generalized Jacobian JF latter allows many classical results valid
for smooth functions to be extended to locally Lipschitz-continuous functions. Regarding the
Newton method, if the function F' at hand is locally Lipschitz-continuous, it is of course tempting
to associate each M e 0F(X) with the function Ty (X,-) : R — R defined by

Ty (X,d) = Md, vd € R, (4.19a)

and to create the family
T(X)={Tu(X,"), MedF(X)} (4.19Db)

in order to obtain a Newton approximation scheme 7 :: D = 7 (R) in the sense of Defini-
tion 4.5. This Newton approximation scheme would then have the huge advantage the local
model

d— F(X)+ Md (4.20)

is linear! Unfortunately, in general the linear model (4.19) does not satisfy the limit conditions
(4.14b)—(4.14c). This is why we have to restrict ourselves to a subclass of locally Lipschitz-
continuous functions. Semismooth functions are precisely the class of locally Lipschitz-continuous
functions for which the generalized Jacobian furnishes a bona fide first-order approximation.

Definition 4.8 (Semismooth function). Let F : D € R’ — R’ be a locally Lipschitz-continuous
function. We say that:

e Fis semismooth at X € D if

v sup LFC0) + MK~ X) — FD)|

XX 1X - X||
MedF(X)

=0. (4.21a)

e Fis strongly semismooth at X if the above requirement is strengthened to

lim sup [F(X) + M(X —7X2) — P < 0, (4.21b)
XX X = X]|
MedF(X)

The original definition of semismooth functions given in [92] and adopted in [47, §7.4.2]
require F' to be directionally differentiable at X. Here, following [110] we employ the equivalent
definition (4.21a) in order to condense the narrative. For semismooth functions, the identification
T = 0F by means of (4.19) is legitimate. Definition 4.8 may seem to rule out a lot of locally
Lipschitz-continuous functions, but in fact the subclass of semismooth mappings is rich enough
to include many functions of interest in real applications.

The semismooth Newton algorithm is described in Algorithm 4.2. In Step 3, we select a matrix
MP¥ in 0F(X*). As 0pF(X*) c 0F(X¥), some authors [63] advocate picking M* in dpF(X*)
instead, when it is difficult to identify the generic element of 0F(X*). We will encounter an
instance of this situation in §4.2.3 for the Newton-min method. If the matrix M* is nonsingular,
there is a unique solution d* to the linear system (4.22). But there may be many choices for
M* if 0pF(X*) or 0F(X*) is not a singleton. Note that the generalized Jacobian 0F(X*) is a
singleton if and only if F is differentiable at X*. In this case 0Fg(X*) = 0F(X*) = {VF(X*)}
and we recover the smooth Newton method, at least for the current iteration.
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Algorithm 4.2 Semismooth Newton algorithm

1. Choose X% e D < RY. Set k = 0.
2. If F(X*) =0, stop.
3. Select an element M* € F(X¥). Find a direction d* € R¢ such that

F(X*) + M*d* = 0. (4.22)

4. Set Xkl = X% 4 g% and k — k + 1. Go to step 2.

4.2.2.2 Well-definedness and convergence

For Algorithm 4.2 to be well-defined, the linear system (4.22) in the unknown d* must be
nonsingular at each iteration. The next Lemma guarantees that M k¥ is nonsingular provided that
all the elements of the generalized Jacobians 0F(X) are nonsingular and that X* is sufficiently
close to X.

Theorem 4.4. Let F': D c R — R be a semismooth function. Suppose that at a point X € D,
all the matrices of O0F(X) are nonsingular. Then, there exists a constant 6 > 0 such that, for
any X € B(X,9), all the matrices of 0F(X) are nonsingular.

Chiing minh. This follows from the fact that the generalized Jacobian mapping X — 0F(X)
is compact-valued and upper semicontinuous [47, §7.1.4], and from the technical result of [47,
§7.5.2]. O

Now, we state a local convergence theorem with convergence rates for the semismooth Newton
method. We recall that the notions of Q-superlinear and Q-quadratic convergence have been
introduced in (4.17b)—(4.17¢) [Definition 4.6].

Theorem 4.5. Let F : D < R — R! be a semismooth function and let X € D be a solution of
F(X) = 0. If all the matrices of 0F(X) are nonsingular, then there exists a 6 > 0 such that, if
X% e B(X,0), the sequence {X*}ren generated by Algorithm 4.2 is well-defined and converges
Q-superlinearly to X. Furthermore, if F is strongly semismooth at X, then the convergence rate
1s Q-quadratic.

Chiing minh. See [47, §7.5.3]. O

4.2.3 Newton-min method

As an application of the previous theory, let us consider the mixed problem (4.1), in which
the complementarity conditions are expressed by the min function. The system to be solved is

F(X) =0, with
F(X) = (X) 4.23
(X) [min(G(X),H(X))]' (4.23)

Proposition 4.2. If A, G, H : D < R’ — R’ are continuously differentiable, then F is
semismooth.
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When F corresponds to the phase equilibrium problems (2.42) or (2.77), its B-subdifferential
consists of all matrices M € RY* of the form

pF(X) = {M = {VA%X)] , Ve Rm*¢ } (4.24a)

where the a-th row of ¥ for ace {1,...,m} is

VGo(X) if Go(X) < Ho(X),
Va =13 VGa(X) or VHL(X) if Go(X) = Ha(X), (4.24D)
VH,(X) if Go(X) > Hyo(X).

Ching minh. A smooth (i.e., continuously differentiable) function is also a semismooth function.
The compononentwise minimum of two semismooth functions is a semismooth function [63,
§1.75]. The second part of the Proposition can readily be proven by verifying Definition 4.7 or
by applying more general results on the B-subdifferential of a vector-valued function [63, §1.54]
and of the componentwise minimum mapping [63, §1.55].

For the latter result on the B-subdifferential of the min function, a technical condition is
required: if Go(X) = Ho(X) for some a € {1,...,m} and X € D, there must exist two sequences
{X*}ene © D and {XF}ens © D both converging to X such that Go(X*) < H,(X*) and
Go(X*) > Hy(XF) for all k € N*. In the case of (2.42) or (2.77), this can be checked by a direct
inspection of the equations. ]

The corresponding semismooth Newton method, in which a matrix M* € g F(X*) is chosen
to define the local model, is called the Newton-min algorithm and described in Algorithm 4.3.
Note that, in this problem, it is not easy to work out an explicit form for the generic matrix of
the Clarke subdifferential 0F (X*).

Algorithm 4.3 Newton-min algorithm

1. Choose X° e D c RY. Set k = 0.
2. If F(X*) =0, stop.
3. Select an element M* € dgF(X¥) as in (4.24). Find a direction d* € R such that

F(X*) + MFd* = 0. (4.25)

4. Set Xkl — X* 4 dF and k — k + 1. Go to step 2.

By virtue of Theorem 4.5, the Newton-min algorithm converges if the initial iterate is close
enough to a solution X of F(X) = 0, for which all the elements of 0F ()_( ) are nonsingular. It is
tempting to resort to a line search technique [22,94] in an effort to ensure a globally convergent
behavior, by which we mean that the sequence of iterates always converges to some limit (which
is not necessarily the sought-after solution). The idea of line search is to apply a damping factor
¢¥ € (0,1) to the Newton-min direction d* determined in (4.25), so that the updated state in
Step 4 is now

D (A G
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along with the guarantee that ©(X**1) < ©(X*) for some merit function whose minimum
value is achieved precisely at the zero X. More on this can be found in §4.3.1.3 for the smooth
equations and in [47, §8.3 and §9.2] for nonsmooth equations.

Regarding the Newton-min method, the utmost difficulty is that the direction d* computed
by (4.25) is not always a descent direction for the least-squares merit function

O(X) = S IF(X)IP, (4.26)

as observed by Ben Gharbia [11]. Globalization of Newton-min remains therefore a delicated
issue. In this respect, a recent work by Dussault et al. [44] is worth mentioning, where the
authors proposed a variant called the polyhedral Newton-min algorithm and for which some
globalization process becomes possible.

4.3 Smoothing methods for nonsmooth equations

Instead of deploying a nonsmooth Newton method to solve nonsmooth equations, an alternative
would be to approximate the nonsmooth system by a smooth one, to which a smooth Newton
method with enhanced properties can be applied.

The privileged tool for producing a smooth approximation of a nonsmooth function is reg-
ularization, which usually introduces a small regularization parameter. Informally, let F': D
Rf — R’ be the nonsmooth function for which we look for a zero X € D such that F(X) = 0. A
regularization of F' is a family of functions

{F(5v): DcR' SR v>0} (4.27)
such that
e F(-;v) is a smooth (continuously differentiable) function of X, for all v > 0;
o [ (+;v) is continuous with respect to v, in some functional sense;
e lim, F(-;v) = F(-), in some functional sense.
Starting from a current pair of values (X k. I/k), the overall strategy of a smoothing method is to

1. Solve F(X**1;*) = 0 in the unknown X**1 by means of the smooth Newton method,
using X% as the initial point.

k+1

2. Decrease the regularization parameter from v* to v**1 by some “rule of thumb.” Start over

the process until F(X**1) = 0.

If the nonlinear system in Step 1 is solved “exactly” by letting the smooth Newton algorithm go
until convergence, the smoothing method is said to be full Newton. A full Newton resolution is
in perfect agreement with the smoothing philosophy, which is to replace the original “difficult”
problem by a sequence of “easier” problems and to gradually push the easy problem towards
the difficult one. However, the price to be paid for the full Newton resolution is very expensive,
since the full Newton method must be executed for each parameter v. The computational cost
can be lowered if the nonlinear system in Step 1 is solved “approximately” by letting the smooth
Newton algorithm do just one iteration. In this case, the method is said to be diagonal Newton.



4.3. Smoothing methods for nonsmooth equations 113

The diagonal Newton resolution naturally induces more approximation error, but it is obviously
of great practical interest.

Although we shall not consider full Newton smoothing methods in this work, we take this
opportunity to briefly survey the smooth Newton method and the numerous convergence the-
orems associated with it in §4.3.1. Then, in §4.3.2, we review a family of smoothing functions
called 6-functions for complementarity conditions. Finally, in §4.3.3, we turn our attention to
interior-point methods, from which a new method will be designed in chapter §5.

4.3.1 Newton’s method

For conciseness, we shall be using the notation F' instead of F (+,v) for the smoothed out function
at some fixed parameter v > 0.

4.3.1.1 Algorithm

The idea of Newton’s method is to construct a sequence {X k}keN* by successively linearizing
the equation F'(X) = 0 at the current iterate by invoking the first-order local model

X — F(X®) + VF(X®) (X — xF) (4.28a)

to approximate F(X) when X is close to X*. The local model can equivalently be thought of
as the mapping

d— F(X*) + VF(X*)d, (4.28b)

meant to approximate F'(X* + d) for ||d|| small. Our purpose is then shifted to looking for the
zero of the local model (4.28b). If the Jacobian matrix VF(X*) is invertible, the unique zero of
(4.28b) can be seen to be

d* = —[VF(X"]1F(XP), (4.29a)

so that the new iterate is
X = XF - [VE(X®)]LR(XP). (4.29b)

The sequence (4.29b) is said to be well-defined if at each iteration k, the matrix VF(X*) is
invertible and the updated state X**! remains in the domain D of F. For later analysis, it is
convenient to introduce another concept.

Definition 4.9 (Newton direction). At any point X € D where the Jacobian matrix VF(X) is
invertible, the vector

d(X) = —[VF(X)]'F(X) (4.30)
is called the Newton direction for F' at X.
Using this notation, the Newton method can be written as
XF = xF 4 q(xk). (4.31)

The two issues to be addressed now relate to the well-definedness of the sequence {X*} e+ and
its (local and global) convergence. With respect to local convergence, several classical theorems
are at our disposal. Below we go through some of them, emphasizing their differences.
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4.3.1.2 Local convergence analysis

The first theorem is what we qualify as the regular-zero Newton theorem. To state this theorem,
we need the following definition.

Definition 4.10 (Regular zero). Let )_(76 D < R’ be a zero of F, that is, F'(X) = 0. If the
Jacobian matrix VF(X) is nonsingular, X is said to be a regular zero of F.

In the scalar case £ = 1, a regular zero means a simple zero. The regular-zero Newton
theorem assumes that a regular zero X exists, together with the Lipschitz-continuity of the
Jacobian mapping X ~— VF(X) in a neighborhood of X. The conclusion is that if the initial
point X© is close enough to the solution X, then the iterates are well-defined and converge
Q-quadratically. The constant involved in this Q-quadractic convergence is the product of the
norm {3 of the inverse [VF(X)]~! with the Lipschitz modulus y of VF.

Theorem 4.6 (regular-zero Newton). Let F': D < R* — Rf be continuously differentiable on
the open convexr domain D. Assume that there exists a regular zero X € D, i.e.,

F(X)=0, det VF(X) # 0,
and that there exist 7, 3, vy > 0 such that
B(X,7) c D, I[VF(X)]"'|<B,  VFelLip,(B(X,T)). (4.32)

Then, there exists € > 0 such that, for all X% e B(X,?), the sequence {X*} en+ generated by
(4.29b) is well-defined, converges to X and obeys

X5 = X|| < By [1XF — X% (4.33)
Chitng minh. See [41, §5.2]. O

There is another famous convergence theorem for Newton’s method, due to Kantorovich.
Contrary to the regular-zero theorem, the Newton-Kantorovich theorem does not make any
requirement about the existence of a zero X. Its assumptions are rather focused on the initial
point XV, It asserts that if VF(X?) is nonsingular, VF is Lipschitz-continuous in a neighborhood
of X°, and the first Newton step is small enough relative to the nonlinearity of ', then there must
be aroot X in this region, and furthermore it is unique. In exchange for these broader hypotheses,
the rate of convergence is slightly weaker: it is only R-quadratic instead of Q-quadratic. This
means that the error sequence can be bounded by || X* — X|| < p*, where {p*}ien+ converges
Q-quadratically to zero.

Theorem 4.7 (Newton-Kantorovich). Let F : D < R — R’ be continuously differentiable on
the open convex domain D. Assume that VF(X°) is nonsignular and that there exist %, B,
v >0 andn = 0 such that

o, _1-vI-2Bm
ro=zr_ =

, , B(X° r%) c D, 4.34a
By ( ) ( )

Byn <

N | =

and

VX < B, IIVEEOITFXY) <n,  VFeLip (B(X",1%).  (4.34b)
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Then, there is a unique root X of F'in B(XY r_). The sequence {X*}ren# generated by (4.29b)
is well-defined and converges to X. If pyn < 1/2, then X is also the unique zero of F in

B(XY min(r°, ry)), where
1—+/14+2Bvyn

ryo= ,
' By
and the sequence of iterates obeys
o 2By
| X* - X|| < Ry (4.35)
Chitng minh. See [41, §5.3] and [68, §5.5]. O

The Newton-Mysovskikh? theorem, a third one, resembles the Newton-Kantorovich theorem
in that: (i) it does not make any requirement about the existence of a solution, and (ii) it assumes
that the first Newton step is sufficiently small. However, it differs from the Newton-Kantorovich
in three aspects. Firstly, it explicitly makes the stronger assumption on the invertibility of
VF(X) in a neighborhood of the initial point X°. Secondly, it ensures the existence of a zero X
but does not make any claim about uniqueness. Thirdly, it supplies us not only with a nearly
quadractic rate of convergence (4.37a), but also with an a posteriori error estimate (4.37b) for
the current iterate. Indeed, the upperbound in (4.37b) can be computed even if the exact solution
X is not known, but provided that the various constants are known.

Theorem 4.8 (Newton-Mysovskikh). Let F : D < R — R be continuously differentiable on
the open convex domain D. Assume that there exist v, B, v > 0 and 1 = 0 such that

Byn<2, > —1__  BX°)cD, (4.36a)
1- §BYT]
and
IIVEX)I <8,  NVEE)]T'F(X)|<n,  VFeLip,(B(X" %),  (4.36b)

for all X € B(Xo,r(i). Then, the sequence {X"*}ren= generated by (4.29b) is well-defined and
converges to a zero X € B(XY,r%) of F. Moreover, the sequence of iterates obeys

1 2k_1
X% - X|| < ”(QBY)Q,C (4.37a)
1—(3Byn)
1
Ik - %« — 2P yxk et (437h)
1 - (3B¥n)
Chitng minh. See [97, §12.4.6] O

There are many possible improvements and other theorems born out of other motivations.
A summary can be found in [52,120], along with the historical developments of the convergence
theory of smooth Newton’s method. Another series of results, due to Deuflhard [42], is worth
mentioning. Deuflhard investigated the question of affine invariance for the convergence theo-
rems of Newton’s method. This questions comes from the observation that Newton’s method is

3also spelled “Mysovskii”
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invariant with respect to affine transformation of the variables and of the equations. In other
words, let My and Mp are two invertible matrices of R‘. If we perform the change of vari-
ables X = MxX (e.g., by adopting other units of measurements) and the change of equations
F = MpF (e.g., by rescaling the laws of physics), the Newton iterates for the system

F(X)=MpF(MxX) =0 (4.38)
are

Xk+1 _ Xk _ [viﬁ()?k)]flﬁ()?k)
= XF — [MpVxF(MxX*)Mx] "MpF(Mx X"
= XF — M [V F(Mx X% F(Mx XF),

and exactly match those of the original system F(X) = 0, up to the same transformation of
variable Mx. Affine invariance of the Newton method is fundamental for industrial codes to be
robust with respect to a change of units in the quantities computed and to a rescaling of the
equations.

However, the convergence theorems such as Newton-Kantorovich and Newton-Mysovskikh
are not affine invariant, in that they are not automatically preserved by affine transforma-
tions. In fact, the inequaltities still hold but with a different set of constants which can be
much more defavorable than the original ones. It is therefore a serious research topic to find an
affine-invariant formulation for the classical theorems. Below we write down the affine covariant
versions of the last two theorems. By “affine covariant,” we mean invariance with respect to an
arbitrary rescaling Mp of the equations (but no change of variables is considered, i.e., Mx = I).

Theorem 4.9 (affine covariant Newton-Kantorovich). Let F': D < R — R’ be a continuously
differentiable on the open convex domain D. Assume that VF(XV) is nonsignular and that there
exist 9, w > 0 andn = 0 such that

1 1 yT—2wm
on<z,  srois L etndl S 15 CRE ) R ) (4.392)
w

and

IIVEXO)]HVE(X) - VEX))|| _

VF(XO ' F(XY)) <, _
IIVFXD)]FXT) <n X x|

w, (4.39D)

forall X # X € B(X",7°). Then, the sequence {X*Ypen+ generated by (4.29b) is well-defined
and converges to a zero X € B(X%,r_) of F. If wn < 1/2, the convergence is R-quadratic.

Chitng minh. See [42, Theorem 2.1]. O

In comparison with the formulation of Theorem 4.8, the two conditions |[VF(X®)]7Y| < B
and VF € Lip, (B(X",r°)) have been merged into the single covariant condition

IVFXO)]H(VF(X) = VE(X))|| < w||X - X]|.

Likewise, the constants 3 and y have been telescoped into the single constant w. In the same
spirit, we have the following reformulation of Theorem 4.8.
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Theorem 4.10 (affine covariant Newton-Mysovskikh). Let F': D < RY — R’ be continuously
differentiable on the open convex domain D. Assume that there exist 0, w > 0 and 1 = 0 such
that

wn<2, 01 B(X°,7%) c D, (4.40a)

T 11— %wn’
and

IVFE)) (VFE) - VFEO)E - X))
1% - x|

IIVEXO)] T FXO)) <, <w,  (4.40b)

for all collinear X # )v(, X e B(XO,’I“O_). Then, the sequence {X*}renx generated by (4.29b) is
well-defined and converges to a zero X € B(X°,7%) of F. Moreover, the sequence of iterates
obeys

IX* = XF| < Sl XF - X1, (4.41a)
_ Xk+1 _ Xk”
XF - X|| < | : 4.41b
Chitng minh. See [42, Theorem 2.2]. O

4.3.1.3 Globalization with line search

The above Theorems testify to an excellent theoretical rate of convergence in a neighborhood

of a zero of F'. However, Newton’s method may fail to converge if the starting point is too far

from the desired zero. In an effort to improve its behavior, we can use a globalization strategy

such as line search or trust region [32]. In this thesis, we will focus on the line search technique.
To this end, let us consider the least-squares potential

O (X) = S|IF (X)? (4.4

as the merit function. If there exists a zero X € D of F, then minxep O(X) = 0 and X is a
solution of the minimization problem whose objective function is ©. The next Lemma provides
the gradient VO, represented as a row vector, and defines a descent direction for ©.

Lemma 4.1. If F' is smooth, then the function © defined by (4.42) is also smooth and
VO(X)d =(F(X),VF(X)d)

for all d € RY, where (-,-) denotes the dot product in Rt. In particular, if VF(X) is invertible,
then the Newton direction (4.30) exists and

VO(X)d(X) = —20(X). (4.43)

We say that d € R? is a descent direction for © at X if VO(X)d < 0. Lemma 4.1 implies
that Newton direction, whenever it is well-defined, is a descent direction for the least-squares
potential. The idea is then to replace the full increment d(X¥) by ¢*d(X*), where ¢* € (0,1), in
the update formula (4.31), which yields the damped Newton iteration

Xk-‘rl _ Xk +§kd(Xk)
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The flexibility of being able to choose ¢* € (0,1) is vital for global convergence. Usually, this
damping parameter is selected so as to decrease the potential, i.e.,

O(X* + Fa(X*)) < ©(X*) + {some negative term}.

This will always be possible for ¢* > 0 small enough, because the Newton direction is a descent
direction. Nevertheless, it is interesting to take ¢* as close to 1 as possible, in order to benefit
from superlinear convergence.

Algorithm 4.4 sketches out the Newton method with a line search technique due to Armijo [5].
This technique rests upon a backtracking procedure described in Step 4, the purpose of which
is to meet the Armijo condition

O(X" + FdP) < O(XF) + kP [VO(XF) d¥] (4.44)

for some constant x € (0,1/2). For the least-squares potential (4.42), the Armijo condition is
equivalent to (4.46).

Algorithm 4.4 Newton algorithm with Armijo line search

1. Choose X°e D cR!, ke (0,1/2), o€ (0,1). Set k = 0.
2. If F(X*) =0, stop.
3. Find a direction d* € R? such that

F(X* + VE(X*)dr = o. (4.45)

4. Choose ¢* = pi* € (0,1), where j; € N is the smallest integer such that

O(X* + o d¥) < O(X*) + k® [VO(XF) d*] = (1 — 2k07F) O(XH). (4.46)

5. Set XF+t1 = X+ 4 ¢*dF and k «— k + 1. Go to step 2.

It has to be pointed out that there are many other possible conditions [94, §3.1] for line
search, such as

e the Wolfe conditions:

(X" + Fd*) < O(X*) + k" [VO(X*) d"],
VO(XF + kakydb = A[Ve(x*)d],

where 0 <k < A < 1.
e the Goldstein conditions:
O(X") + (1 — k)F[VO(XF) d¥] < O(XF + Fd¥) < O(XF) + rF[VO(XF) d],

where 0 < k < 1/2.
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The theoretical advantage of the Wolfe or Goldstein conditions is that by Zoutendijk’s theorem
[94, Theorem 3.2], it can be guaranteed that, for any initial point X, the sequence of iterates
is globally convergent in the sense that

lim [|[VO(X®)|| = 0.
k—+c0
It is important to be aware that this does not mean that the iterates converge to a minimizer
X, but only that they are attracted by stationary points. For stronger global results, we need
stronger assumptions. In practice, however, our preference goes to Armijo’s condition and the
associated backtracking procedure for its greater efficiency, despite the lack of theoretical results.

4.3.2 Smoothing functions for complementarity conditions

In the previous section, we revisisted the smooth Newton method for computing a root of the
regularized function F (;v) hypothetically set up in (4.27). In this section, we elaborate on
how such a regularized function can be actually built up from the initial function (4.23). Our
smoothing technique is based on the continuous approximation of a more elementary object,
namely, the step function.

4.3.2.1 #-smoothing of the step function
The step function is understood to be the function & : Ry — {0, 1} defined as

0 if t=0
S(t) = ’ 4.47
() {1 if ¢>0. (4.47)

As an indicator of positive arguments ¢ > 0 over R, the step function & “discriminates” the
argument t = 0 by assigning a zero value to it. The price to be paid for this sharp detection is
the discontinuity of & at t = 0. Analogously to (4.27), we wish to have a regularization of &,
that is, a family of functions

{S(5v): Ry —[0,1), v>0}, (4.48)
such that
° é(, v) is a smooth function of ¢ > 0, for all v > 0;
° é(, v) is continuous with respect to v, in some functional sense;

e lim,|o S(-;v) = &(-), in some functional sense.

To obtain such a family, we follow the methodology developed by Haddou and his coauthors
[7,55], the key ingredient of which is a smoothing function. This notion turned out to be a
versatile tool in a wide variety of pure and applied mathematical problems [19,56,57,93]. We
begin with a “father” function, from which all other regularized functions will be generated.

Definition 4.11 (f-smoothing function). A function # : Ry — [0, 1) is said to be a #-smoothing
function if it is continuous, nondecreasing, concave, and

0(0) = 0, (4.49a)
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lim 6(t) = 1. (4.49D)

t—+00

Furthermore, if 6 can be defined for negative arguments t € (—7,0), with 7' > 0, while remaining
continuous, nondecreasing and concave, it is required that

0(t) <0 for te (-T,0). (4.49¢)
The two most common examples of smoothing functions are:
1. the rational function 0! : (=1, +00) — (—o0,1) defined by
t

0L(t) = R (4.50a)

2. the exponential function 6% : R — (—o0,1) defined by
02(t) = 1 — exp(—t). (4.50b)

A more general “recipe” to build #-smoothing functions is to consider nondecreasing probabil-
ity density functions f : Ry — R, and then take the corresponding cumulative distribution
function, i.e.,

0(t) = L fly)dy, t=0, (4.51)

to get a continuous, nondecreasing function. The nonincreasing assumption on f gives the con-
cavity of . Finally, it is straightforward to check that conditions (4.49) are satisfied by the
function (4.51). Once a favorite f-smoothing has been selected, the next step is to dilate and to
compress it in order to produce a family of regularized functions for the step function &.

Definition 4.12 (6-smoothing family). Let 6 be a #-smoothing function. The family of functions

{@(t) — e(i) V> o} (4.52)

is said to be the #-smoothing family associated with 6.

Obviously, 0, is a smooth function of ¢ > 0 for all v > 0. It is also continuous with respect
to v at each fixed ¢ > 0. From the defining properties (4.49), it can be readily shown that

lim 0, (1) = &(1), ¥t 0. (4.53)

In other words, & is the limit of #, in the sense of pointwise convergence. Thus, {S(-,v) =
0,, v > 0} is a good family of regularized functions in the sense of (4.48). Associated with the
two examples (4.50) are:
1. the rational family 6! : (—v, +00) — (—00,1) defined by
t

0L(t) = t (4.54a)

2. the exponential family 62 : R — (—0,1) defined by

02(t) = 1 — exp(—t/v). (4.54b)

Figures 4.1-4.2 display the two families (4.54) for a few parameters v. We can see that the
smaller v is, the steeper is the slope at t = 0 and the closer to & the function is.
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Figure 4.1: Function 6} for a few values of v.

Figure 4.2: Function 62 for a few values of v.
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4.3.2.2 #-smoothing of a complementarity condition

A O-smoothing family of the step function paves the way for a smooth approximation of a
complementarity condition. Let (v,w) € R? be two scalars such that

0<vlw=0, (4.55a)

that is,
v =0, w =0, vw = 0. (4.55b)

In the (v, w)-plane, the set of points obeying (4.55) is the union of the two semi-axes {v = 0, w =
0} and {v =0, w = 0}. Visually, the nonsmoothness of (4.55) is manifested by the “kink” at the
corner (v,w) = (0,0). We consider two possible smooth approximations of (4.55), depending
how it is rewritten in terms of the step function &.

“Sum-to-one.” The first approximation, to which we give the name sum-to-one, comes from
the following observation.

Lemma 4.2. Assuming v = 0 and w = 0, we have the equivalence
vw=0 < 6(v)+6(w)<1. (4.56)

Chitng minh. If v = 0 for instance, then &(v) + &(w) = &(w) € {0, 1} because &(0) = 0. This
proves “=". Conversely, the inequality &(v) +&(w) < 1 forbids &(v) + &(w) to take the value 2.
But this is precisely the value reached by the sum when v > 0 and w > 0. This proves “<”. [

The equivalence (4.56) suggests us to impose
v =0, w =0, 0,(v) + 0, (w) =1 (4.57)

for v > 0, as a smooth approximation of (4.55). Replacing & by 6, in (4.56) is logical. Replacing
“<” by “=" in (4.56) seems to be a bold move, but this is motivated by the fact that we want
an equality to be mounted into the system of equations. Let us examine the impact of this
“sum-to-one” approach on the examples (4.54).

1. For the rational family (4.54a), we have the remarkable equivalence
Ol(v) + 0 (w) =1 & vw =12, (4.584a)

as can be shown by a straightforward calculation. The equality vw = v? appears to be a
natural relaxation of vw = 0, which could have been worked out directly, without resorting
any #-smoothing function! As will be seen later, this is the smoothing paradigm used in
interior-point methods, with v in the right-hand side instead of v? though.

2. For the exponential family (4.54b), the equality 62(v) + 62(w) = 1 leads to the equivalence
02(v) + 02(w) = 1 = —vnfexp(—v/v) + exp(—w/v)] = 0, (4.58D)
as can be shown by a straightforward calculation. In the left-hand side, the function

min, (v, w) := —vIn[exp(—v/v) + exp(—w/v)]
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can be interpreted as a smooth approximation of min(v, w). Indeed, assuming 0 < v < w,
we can see that exp(—wv/v) prevails over the other term when v | 0. Therefore, this is a
natural relaxation of min(v,w) = 0. It could have been worked out without the help of
any #-smoothing function, since the smooth approximation

max, (v, w) := vnf[exp(v/v) + exp(w/v)]

of max(v,w) is rather well-known in the literature [10, 18].

“Sum-to-theta.” The second smooth approximation, which we refer to as sum-to-theta, comes
from another observation.

Lemma 4.3. Assuming v = 0 and w = 0, we have the equivalence
w=0 < 6(v)+6(w) =6(v+w). (4.59)

Chitng minh. If v = 0 for instance, the left-hand side is equal to &(0) + &(w) = &(w), while
the right-hand is also equal to &(w). This proves “=". Conversely, the equality &(v) + S(w) =
S(v + w) prevents the sum &(v) + &(w) from being equal to 2. But this is precisely the value
reached by the sum when v > 0 and w > 0. This proves “<". ]

The equivalence (4.59) suggests us to impose
v =0, w =0, 0, (v) + 0, (w) = 6,(v+ w) (4.60)

for v > 0, as a smooth approximation of (4.55). But this time, the approximation turns out to
be exact, as demonstrated by the following Proposition.

Proposition 4.3. For all v > 0 and for all v,w = 0, we have
0, (v) + 0, (w) = 0, (v + w). (4.61)
FEquality holds if and only if vw = 0.

Ching minh. By the concavity of 8, which follows from that of 6, we have

0, (1) = 6, (vt + (1 =7)0) = 70, (v) + (1 =7) 6,(0) = 76, (¢) (4.62)

for all v € [0,1] and ¢t € R, with equality if and only if v € {0,1} or t = 0. If v = w = 0,
inequality (4.61) is obvious, since 6,(0) = 0. Assume that at least one of the two quantities v, w
is positive, so that v +w > 0. Then, owing to (4.62),

v:w(v+w)) +9V(Ufw(v+w))

w
QV(U + QU) + m 01,(7.1 + ’UJ)

0,(v) + 0, (w) = 9y(

v
=

v+ w

=0,(v+ w).

Equality holds if and and only if v = 0 or w = 0. This completes the proof. O
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The exactness of the sum-to-theta smoothing (4.60) looks attractive at first sight. A close
inspection reveals, however, that this comes at the price of a singularity at (v,w) = (0,0).
Indeed, let

Py (v, w) = 0,(v) + 0, (w) — 0, (v + w).

Then, V,(0,0) = (0,0), where the gradient is taken with respect to v,w. This phenomenon
is similar to what was already pointed out for the Mangasarian C-function in §4.1.2. Let us
contemplate the impact of this “sum-to-theta” approach on the examples (4.54).

1. For the rational family (4.54a), we have the equivalence
0L(v) + 0L (w) = 0L (v + w) = vww +w+2v) =0, (4.63)

which follows from a simple but tedious calculation. The latter condition is also equivalent
to the exact condition vw = 0.

2. For the exponential family (4.54b), we have the remarkable equivalence
02(v) + 0%(w) = 62(v + w) = [1 —exp(—v/v)][1 — exp(—w/v)] = 0, (4.64)

as can be shown by a factorization procedure. From the latter, we can see the exactness
of the smoothing in this particular case.

4.3.2.3 Integration into the system of equations

The “sum-to-theta” smoothing approach will not be used in this thesis due to this singularity.
Restricting ourselves to the “sum-to-one” approximation, we consider the family {F'(-,v), v > 0},

where
A(X)
{ v(0,(G(X))+0,(H(X)) — 1)] (4.65)

~

F(X,v)=

is a regularized function of F' defined in (4.23). Here, it is understood that 6, operates compo-
nentwise on G(X) and H(X), while 1 € R™ is the vector whose entries are all equal to 1. It is
highly recommended that the smoothed complementarity equations in (4.65) be premultiplied
by v, so as to control the magnitude of their partial derivatives. Indeed, for all ¢ = 0,

1 t

/ N
o~ 1o(1)
can be seen to blow up when v | 0, while v0),,(¢) tends to the finite limit 6’(0).

4.3.3 Standard and modified interior-point methods

The general philosophy of smoothing, presented at the beginning of §4.3, also lies at the heart of
an important category of algorithms for constrainted optimization called interior-point methods.
Despite some pioneering work in 1967 by Dikin [43], which remained unknown for a long time,
the field really took off in 1984 with the publication by Karmakar [67] of an algorithm with
polynomial-time complexity for linear programming, capable of outperforming even the simplex
method. For a historical review of interior-point methods, see [54,118].

Karmakar’s algorithm is primal, i.e., it is crafted only in terms of primal variables, without
any reference to the dual problem. It was not long before theoreticians realized the power and
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the superiority of primal-dual methods [119], in which the primal variables (original unknowns)
and the dual ones (Lagrange multipliers) are put on an equal footing. A primal-dual method
is then none other than a “clever” way to solve the system of equations made up by the KKT
optimality conditions of the minimization problem. The idea is therefore natural to draw inspira-
tion from existing primal-dual methods in order to solve nonlinear algebraic systems containing
complementarity equations that do not necessarily come from any minimization problem.

4.3.3.1 General principle
Let us consider the family of regularized problems

A(X) =0, (4.66a)
G(X)OH(X) =1, (4.66b)

where v > 0 is the smoothing parameter, 1 € R™ is the vector whose components are all equal
to 1, and ® denotes Hadamard’s componentwise product. System (4.66) takes the abstract form

F(X;v) =0, (4.67a)
with

~

F(X;v) = AX) ] e R (4.67h)

[ GX)OH(X)—-v1
Equation (4.66b), which can be explicitly written as

Go(X)Ho(X) = v, Vae{l,...,m},

means that we are using the same parameter v for all the complementarity equations. This
common practice corresponds to what is known as the central path in the theory of interior-
point methods. In considering (4.66), we have somehow “forgotten” the positivity conditions

In reality, these conditions will be specifically taken into account in the algorithm. We will go
back to this later.

To unfold the mechanism of interior-point methods to our system, it is more convenient to
reformulate system (4.66) as

A(X) =0, (4.68a)
G(X)-V =0, (4.68b)
H(X)—W =0, (4.68¢)
VOW =1, (4.68d)

where (V,W) € R™ x R™ are called slack variables. These are of course subject to the compo-
nentwise positivity conditions

V=0 W=>0, (4.69)

which must be constantly “remembered” during the algorithm. System (4.68) can be given the
abstract form
F(X;v) =0, (4.70a)
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where
A(X)
X G(X) -V
X=|V]|eDxR"xR®"cR*>™  F(X;v)= e R“2m (4.70b)
- H(X)-W
Vow -l

Enlarging the size of the system and the number of unknowns does not change the determinant
of the Jacobian matrix at the corresponding solution. Let us formally state this result, since it
will be useful later. Due to definitions (4.67b) and (4.70b), the Jacobian matrices VxF(X;v)
and VxF(X;v) do not depend on v. For short, they will be denoted by VE(X) and VF(X).

Lemma 4.4. Let X € D and X = (X,V,W) € D x R™ x R™ such that V = G(X) and
W = H(X). Then,
det VF(X) = det VF(X). (4.71)

In particular, the two Jacobian matrices are singular or nonsigular at the same time.

Chiing minh. The determinant of the Jacobian matrix of F (-;v) is equal to

VA(X)

(4.72)
where the Hadamard product VG(X) ® H(X) between the m x f-matrix VG(X) and the m-
vector H(X) is defined as the m x f-matrix whose each column is the Hadamard product of

a column of VG(X) and H(X), and similarly for VH(X) ® G(X). The determinant of the
Jacobian matrix of F(X;v) is equal to

VAX) 0 0
VG(X —In 0

0 I, OW 1,0V

with the same definition for I,,, ® V and I,,, © W. By linear combination of the last (block)-row
with the second and third (block)-rows, this can be shown to be equal to

VA(X) 0 0
B VG(X) —I, 0
det VF(X) = VH(X) 0 1|
VGX)OW+VH(X)0V 0 0
By means of 2m row permutations, we end up with
VA(X) 0 0
det VE(X) — VGX)OW+VH(X)0V 0 0] VA(X)
B VG(X) ~I, 0| |[VGX)OW+VHX)OV|
VH(X) 0 —In

Invoking V' = G(X), W = H(X) and comparing with (4.72), we have the desired conclusion.
Note that the Lemma does not require X to be a solution of (4.67). O
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A primal-dual interior-point method strives to generate a sequence {X’TC = (X k vk Wk)} keN
c R*2?™ and an auxiliary sequence {v/*}reny < R% such that

Xk vE Wk - (X, G(X), H(X)), V0,

where X € D is a zero of F = F (+;0). This sequence must satisfy the componentwise strict
positivity condition
vk >0, Wk >0,

for all £k > 0. Another way to express this strict positivity condition is to define the interior
TEGILON
J={X=(X,V,W)eR* | V>0, W >0}, (4.73a)

and to require
Xk = (xk vk Wk esd (4.73b)

for all k = 0. The interest of enforcing these strict bounds is to avoid spurious solutions, which
satisfy F(X,V,W) = 0 but not V > 0 and W > 0. Some interior-point methods require the
iterates to be strictly feasible, that is, (V¥ Wk) = (G(X*), H(XF)) for all k > 0. We shall not
request feasibility.

To go from current iterate X* to the next one , primal-dual interior-point methods
modify the Newton algorithm in some judicious way to compute a search direction

Xk+1

d* = (X%, dvF, dwk)
as the solution of a linear system of the form
VF(X*)d* + {something homogeneous to F} = 0.

Usually, the full step along this direction is not acceptable, since the corresponding update would
violate (4.73). To circumvent this difficulty, a truncation is performed so that

Xk 4 ckdrh e

for some ¢* € (0,1], as close to 1 as possible. This operation can also be viewed as a damped
Newton iteration, as in §4.3.1.3 where the purpose was not positivity but global convergence.

We are now going to scrutinize two embodiments of this general principle: a simplistic version
called single-stage method and a highly sophisticated version known as Mehrotra’s predictor-
corrector method. From now on, we use the notation

V, W) = i VaWa (4.74)

a=1

to designate the dot product in R™.

4.3.3.2 Single-stage interior-point method

We first consider a very simple interior-point method, perhaps the simplest that could possibly
be imagined. It is described in Algorithm 4.5 and consists primarily of one Newton iteration
(Step 3) followed by a truncation (Step 4) and an update for the regularization parameter (Step
6). Let us comment the steps in more details.
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Algorithm 4.5 Single-stage interior-point algorithm

1. Choose X € 3. Set k=0, 0= (VO W% /m, v =0.99.
2. If F(X*;0) =0, stop.
3. Find a direction d* = (dX*, dV*, dW*) e R‘*+?™ such that
F(X* ;%) + VF(X")d" = 0. (4.75)
4. Compute ¢* € (0,1) such that X* + ¢*d* e 3 by
¥ =y argmax{se[0,1] | VF +cdV*¥ =0, WF+cdW* = 0}. (4.76)
5. Set XFH! = Xk 4 chdF

6. Set v**! = one of the heuristic strategies (4.77).

7. Set k«— k+ 1. Go to step 2.

The name of the method comes from the fact that there is only one linear system to be
solved at each iteration. This single Newton iteration (4.75), in Step 3, is aimed at finding an
approximate solution to F(X ;%) = 0, starting from X*. The full Newton step d* is truncated in
Step 4, where we look for the largest possible reduction factor ¢* in the interval (0, 1). The initial
value ¥ of the regularization parameter, set to (V?, W) /m, has the flavor of centrality. But
this will be soon forgotten in the course of the iterations, where v* is no longer required to be
(VE, Wk /m. Instead, the parameter v* “lives its own life” according to an a priori procedure.
Below are a few common heuristic ways to progressively drive v* to 0:

e A geometric sequence
L= 050", (4.77a)

the advantage of which is to go slowly to zero, which is useful when v* is still large;

e A power sequence
R = (V)2 (4.77D)

k is already small;

the advantage of which is to go quickly to zero, which is useful when v
e A hybrid geometric-power sequence
V1 = min (0.5 v, (Vk)Q), (4.77¢c)
which combines the advantages of the first two strategies.
e A hybrid geometric-power sequence compared to a duality measure

V1 — min (0.5 VR (WF)2, (v Wk+1>/m), (4.77d)

the interest of which is to reconnect the sequence to some current “reality” [56, §5].
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Unfortunately, there is no universal magic formula to monitor the sequence of regularization
parameter {*}. A heuristic strategy that works fine with one problem may fail miserably with
another. We have to try several sequences {v*} before knowing which one is best suited to the
problem at hand. This seems to be the Achilles heel of such smoothing methods, for which we
will propose a novel approach in chapter §5.

4.3.3.3 Mehrotra’s predictor—corrector method

Most of today’s interior-point general-purpose softwares for linear programming are based on
Mehrotra’s predictor-corrector algorithm [88]. In Algorithm 4.6, we have extended it to our
equation-solving problem. Unlike the previous single-stage method, each iteration of Mehrotra’s
method consists of two stages, namely, the prediction stage (from Step 3 to Step 7) and the
correction stage (from Step 8 to Step 11). In each stage, there is a linear system to be solved.
Nevertheless, the two linear systems (4.78) and (4.80) share the same matrix, which allows for
some cost-savings by means of factorization.

Mehrotra’s original algorithm for linear programming combines several key ingredients that
had been separately suggested and implemented by other authors before [119, §10]. But the
subtle order in which these ingredients are assembled and organized, as well as some ingenious
heuristics of his own for the adaptive centering parameter and the step lengths, are the real
assets that have contributed to its outstanding success. These ingredients are still present in the
extended version. Let us comment on Algorithm 4.6 step-by-step.

Prediction stage. The algorithm starts by computing an affine-scaling direction dgff. By
“affine-scaling,” it is meant that we leave the current parameter v* aside and set our sights
on the ultimate goal v = 0 right away. This accounts for equation (4.78) in Step 3, which is
the first-order linearization of F(X* 4 d¥;;0) = 0 around X*. We recall that here the Jacobian
matrix VF(X*) does not depend on v and thus can be viewed as being located at v = 0. After
truncation in Step 4, we need to assess the payback of this audacious attempt. This is done in
Step 5 and Step 6, where we compute the centrality measure l/fff of the state X];ff. The prediction
stage culminates in Step 7, where we compute Mehrotra’s ratio

ok = <”§ff>3 (4.82)

vk

This heuristic ratio, called adaptive centering factor and found by trial and error on a wide
range of problems, has proved its remarkable effectiveness. It is a special feature of Mehrotra’s
algorithm. A value o « 1 means that our ambitious affine-scaling venture has been rewarded
with success. The predicted state is significantly closer to the boundary than at the beginning
of the iteration. A value o » 1 implies that we took too many risks and the odds have been
against us. In the former case, we must follow the predictor’s advice by reducing v significantly.
In the latter case, we must return inside the interior region in hope for a better update at the
next iteration.

Correction stage. Thanks to the centering factor (4.82), the second stage can deal with both
cases in a “unified” fashion, by simply targeting c*v* as the new parameter value at which an
approximate zero of F must be searched for. Indeed, equation (4.80) in Step 8 can be seen as a
local model for F(X¥ 4 d¥ _:c**) around X*. In spite of appearances, this local model is not
quite linear. In fact, it is quadratic but in a special way. For one, the second-order terms are
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Algorithm 4.6 Mehrotra predictor—corrector algorithm

10.
11.

12.

. Choose X €7J. Set k=0, 9=V W% /m, v =0.99.
. If F(X*;0) =0, stop.

Find a direction d¥; = (dX%,, dVE, dWE,) e R“+?™ such that

a;

F(X*;0) + VF(XF)d%; = 0.

Compute ¢% € (0,1) such that X"+ ¢¥.d¥; e 7 by

Fe=r-arg max { ¢ € [0,1] | VF 4 cdVE =0, WF 4 cdWh, > 0}.

Set Xk = X + fp dl.
Set V:fff = <Vz§f’ W:ff>/m-
Set of = (V. /vF)3.

Find a direction d* e R{*2™ guch that

cor

0
F(X";0"/") + 8 + VF(XF) d*

cor

= 0.
AVl © aWk

Compute ¢* € (0,1) such that X* +¢* d* €7 by

cor

k=7 argmax{ce[0,1] | VF +cadVE, o

Set XFHL = XF ¢k dF .

Set pFt+l = <Vk+1, Wk+1>/m.

Set k «— k + 1. Go to step 2.

>0, WrF+cdwh, >0}

(4.78)

(4.79)

(4.80)

(4.81)
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present only for the last block of equations containing V' & W. For another, the corresponding
increments dV* and dIW* have been “freezed” at the predicted affine-scaling values, instead of
being considered as unknowns, which would have given rise to an intricate quadratic equation
with respect to the direction. Anyhow, Mehrotra’s algorithm demonstrates an effort to take
into account curvature information in order to speed up convergence. To our knowledge, there
is no theoretical results on the exact rate of convergence and on the polynomial complexity
of Mehrotra’s algorithm for linear programming, although such results are available for some
variants [123,124], the analysis of which is easier.

In Mehrotra’s algorithm, the regularization parameter v* is always equal the duality measure
<Vk , Wk>/m Paradoxically, it never appears as the target of the linearized Newton iterations:
the predictor sets out to achieve v = 0, while the corrector aims to reach v = o*v*. Finally, it
is worth noticing that

k

0 0 0
k. ko k 0 _ k. 0 0
F(X";0"") + 0 =F(X";0) + 0 + 0 ,

so that the direction d”

cor can be regarded as the aggregation of three increments, namely,

dt +df s (4.83)

= djg + d)

cen
where d¥; is the affine-scaling direction (4.78), d¥; is the centering direction defined by

+ VF(X¥) df,

cen

=0,

>0 O O

—okk1

and dgua is the quadratic correction defined by

0

0 kN gk

0 + VE(XF)dE, = 0.
AV © AW

Therefore, if no damping occurred, that is, if §§ff = ¢k =1, then the final state

+d*

XkJrl = x];ff + (dk qua)7

cen

could be thought of as a correction brought to the predicted state XF;. This justifies the name
of the second stage. For linear programming, Mehrotra’s algorithm can also be insightfully
reinterpreted as a perturbed composite damped Newton method [113].

4.4 What may go wrong?

The numerical methods described so far all “look good” on the paper. To gain insight into the
actual difficulties at the practical level, let us run them on the toy model

u~+7q—u, =0, (4.84a)
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min(l — ¢, u?> —q) =0 (4.84Db)

in the unknown X = (u,q) € R?. Here, (u,,7) € R% x R% are the parameters of the problem.
System (4.84) comes from the Euler implicit discretization of the ordinary differential equation

% =—q¢,  ¢=min(l,u?),
using 7 > 0 as the time-step and w, as the current state. This system is an extremely reduced
model for stratigraphy?. More on the above continuous model will be said in §6.1.1.

System (4.84) is the model of interest to us. It is made up of a linear equation (4.84a), i.e.,
¢—m =1, and a nonlinear complementarity equation (4.84b), i.e., m = 1. We will use (4.84) as
a benchmark test for various numerical methods, insofar as we know its solution.

Theorem 4.11. For all (u,, 7) € R% xR% , system (4.84) has a unique solution (u, q) € R xR%,
called reference solution and given by

(Ub—T, 1) 2f7‘<ub—1
(@, q) = 2u, 4u? , (4.85)
, otherwise.
1+ /T+ 47w, (14 4/1+47uw,)?

If 7 < uy+1, then (u, g) is also the unique solution of (4.84) over R2. If 7 = w, +1, then system
(4.84) has two other solutions with negative values for w.

Chitng minh. It is more convenient to carry out the analysis for the scalar equation p(u) = 0,
where the graph of the continuous function

o(u) = u + 7min(u?, 1) — u,

consists of three parts. Over (—oo, —1] and [1, +00), it coincides with two half-lines belonging to
the straight line ¢ = u + 7 — w,. Over [—1, 1], it coincides with an arc of the convex parabola
¢ = u + 7u? — u,. This arc always lie below the segment ¢ = u 4+ 7 — u,. Moreover,

o(=1) = =147 —u,,  ©0)=—u, (1) =1+7—u,.
It then appears that:

1. If (1) < 0, i.e.,, 7 < w, — 1, there is a unique solution over R which is given by the
intersection of the right half-line and the axis of abscissae. This solution is in the saturated
regime (g = 1), given by @ + 7 — u, = 0.

2. If p(1) > 0, since p(0) < 0 and because ¢'(u) = 1 + 27u > 0 over [0, 1], there is only
one u € (0,1) for which p(u) = 0. By solving the quadratic equation 7u? + u — u, = 0
and by choosing the positive root, we end up with the unsaturated solution @ = 2u,/(1 +
V1 +47u,), ¢ = u?. But there are two subcases to be discussed.

(a) If o(—1) <0, i.e., 7 < uy, + 1, there is obviously no other root over R.

(b) If o(—1) = 0,i.e., 7 = w,+1, then there are two spurious roots, one saturated solution
in (—o0, —1] and one unsaturated solution in [—1,0).

This completes the proof. ]

“a branch of geology concerned with the study of sedimentary rock layers (strata) and layering (stratification)
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B B (b)

? / N

: 1/\ s

Figure 4.3: Analysis of solutions for the stratigraphic system (4.84).

4.4.1 Issues with nonsmooth methods

The existence of non-physical solutions when the time-step is large enough (7 > u;,+1) may cause
an iterative solver to converge toward a wrong solution. This indeed occurs to the Newton-min

method. Let
_|u 2 . U+ 79 — W
X_[Q]ER’ F_[min(l—q,UQ—Q)]’

so that system (4.84) reads F(X) = 0. Let us apply the Newton-min method described in the
previous chapter, using the initial point

X0 = [mmab’ 2) ] (4.86)

This initial point is the most “natural" one, insofar as u;, represents the value of v at the previous
discrete time. Thanks to the extreme simplicity of the model, it is possible to predict the behavior
of this Newton-min algorithm. The following statement should be read in conjunction with Figure
4.4.

Theorem 4.12. Let (uy, 7) € R x R% . The Newton-min method applied to system (4.84) using
the starting point (4.86)

e converges to the reference solution X = (,g) if and only if u, <1 orwu, > 7+ 1—1/7;

e exhibits a cyclic behavior, namely, oscillates between two iterates, if and only if w, >
max(l;7—1) and w, <7+ 1—1/7;

e converges to a wrong solution if and only if u, > 1 and w, < 7 — 1.

Chitng minh. The basic idea is to do the Newton iterations by hands. See Hamani [58] for more
details. O
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Up

Figure 4.4: Behavior of the Newton-min algorithm for (4.84) with starting point (4.86). Yellow:
convergence toward the correct solution; blue: periodic oscillation between two iterates; red:
convergence toward a wrong solution.

4.4.2 Issues with smoothing methods

When working with smoothing methods, the issue may occur when we update the values of
variables for the next iteration. In the single-stage interior-point Algorithm 4.5, this is in Step
4 where we compute ¢*. In the Mehrotra predictor—corrector Algorithm 4.6, this is in Step 9
where we compute cé“or. Similarly, with #-smoothing techniques, we also need all variables of
f-functions to remain nonnegative during iterations. We will also use stratigraphic model as an
illustration.

At the k-th iteration, we obtain Au*, A¢* and we need to find ¢ € [0, 1] such that uf*! =
uF + cAuF and ¢F ! = ¢F 4+ ¢A¢F satisty

1— qk—i-l

(uk+1)2 - qk-i-l

I

0
0

A2\

Rewriting these conditions in terms of the current iterates at k, we have
1-¢" —<Ad* >0,
(AuF)26% + (2uF Auk — AgF)e + (uF)? — ¢F > 0.
We analyze the second inequality as a quadratic inequation with respect to ¢. In the neighbor-

dhood of a solution (but the iterations have not finished yet), (u¥)? — ¢* may be very small or
even zero. Hence, the quadratic inequality becomes

(AuF)2% + (2uF Auk — AgF)s = 0.
Unfortunately, in some cases,
—(2uFAuF — AgF)

(Auk)Q > 1.
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Therefore, the unique solution we obtain is ¢ = 0. This means that values of v and ¢ do not
change from this iteration, even though we are close to a solution. Another difficulty coming
from the single-stage interior-point algorithm is that it is not easy to find a good strategy to
define values of * during iterations.

0.9
08
0.7 1
0.6 -

S
05

log, serror
IS

0.4

0.3

02

0.1

Iteration Iteration

(a) Errors during iterations (b) ¢ during iterations

Figure 4.5: Stratigraphy model, Predictor-Corrector Mehrotra, uw, = 0.9, 7 = 0.1, ug = 0.54, go =
0.07.

The smoothing methods require all the terms of complementarity equations positive during
all iterations. However, it may make the algorithm stay at a point without progress. From these
disadvantages, we believe a new approach could be one that does not require positivity on the
arguments of complementarity equations during the iterations, but still ensures positivity at the
end, when the algorithm converges.
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Chapter 5

A new nonparametric interior-point
method
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Les difficultés numériques signalées a la fin du chapitre précédent, ainsi que celles qui seront exposées en
détails au chapitre suivant, indiquent que la généralisation & nos problémes des méthodes existantes pour
loptimisation et pour les problemes de complémentarité purs ne débouche pas nécessairement sur une
méthode de résolution adaptée. Nous avons toutefois pu constater une relative supériorité des méthodes
de points intérieurs du point de vue de la robustesse et souhaitons poursuivre dans cette voie.

L’absence d’une stratégie systématique pour piloter le parameétre de régularisation étant la principale
faiblesse des méthodes de points intérieurs, nous avons entrepris de chercher une maniére plus automa-
tique de faire tendre ce parameétre vers zéro, laquelle préserverait les avantages des méthodes par points
intérieurs sans en subir les inconvénients. La section §5.1 est consacrée a notre nouvelle méthode, appelée
nonparametric interior-point method (NPIPM). L’idée clé est de traiter le paramétre de régularisation
comme une inconnue 4 part entiere en introduisant une nouvelle équation dans le systéme. On est ainsi
ramené a l'application de la méthode de Newton lisse a un probleme lisse, ce qui permet de dérouler une
analyse de convergence locale et globale reposant sur la régularité du zéro en question.

La régularité, c’est-a-dire la non-singularité de la matrice jacobienne évaluée en un point solution,
devient ainsi un critere essentiel pour le bon fonctionnement de la nouvelle méthode. Nous la vérifions
en §5.2 sur le modéle diphasique compositionnel introduit dans la premiére partie. Par un enchainement
de calculs non-triviauzx, notre montrons que sous l’hypothése de stricte convexité des fonctions d’énergie
molaire de Gibbs, la solution est réguliere dés qu’elle n’est ni transitionnelle ni azéotropique.

137
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The numerical issues mentioned at the end of the previous chapter, as well as those that will
be illustrated in the next chapter, show that the existing methods are not well suited to our
problems. For the models considered in our numerical tests, however, the interior-point methods
turned out to be far more robust than the others, at least when the sequence of regularization
parameters is properly adjusted. We also said that the lack of a systematic strategy to steer this
sequence toward zero is the main weakness of interior-point methods. Therefore, we undertook
to look for a more automatic way to decrease this parameter, which preserves the advantages of
interior-point methods without suffering from their drawbacks.

Section §5.1 is devoted to our new method, called the nonparametric interior-point method
(NPIPM). The key idea is to treat the regularization parameter as a full-fledged unknown by
introducing a new equation into the system. We are thus brought back to applying the smooth
Newton method to a smooth problem, which allows for local and global convergence analysis
based on the regularity of the zero at hand. In section §5.2, we verify the regularity condition
on the zeros of the two-phase multicomponent model introduced in Part I.

5.1 Design principle and properties of NPIPM

We recall that the interior-point methods considered in §4.3.3 have replaced the original nons-
mooth problem (4.1) by a sequence of regularized problems

F(X;v) =0, (5.1a)
where
x SO0 v
X=|V|[eDxR"xR™cR*™  F(X;v)= e REF2m  (5.1h)
- H(X)-W
VoW -l

where v > 0 is the smoothing parameter, 1 € R™ is the vector whose components are all equal
to 1 and (V, W) € R™ x R™ are the slack variables, subject to

V =0, W = 0. (5.1c)

5.1.1 When the parameter becomes a variable

In system (5.1), the status of the parameter v is very distinct from that of the variable X.
While X is computed “automatically” by a Newton iteration, v has to be updated “manually”
in an ad hoc manner. On two occasions, we witnessed that progress occurs when two objects
of ostensibly different natures are put on an equal footing and given a unified treatment: the
present and absent phases in the phase equilibrium problem (chapter §2), the primal and dual
variables in interior-point methods (chapter §4). From this experience, we feel that it would be
judicious to incorporate the parameter v into the variables X.

5.1.1.1 Enlarged equivalent systems

Let us therefore consider the enlarged vector of unknowns

X:{X}erRmeme+cR“%ﬁﬁ (5.2)
14
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and let us try to find a system of £ 4+ 2m + 1 equations
F(X) =0 (5.3)

to be prescribed on X. To this end, let us remind ourselves that our ultimate goal is to solve
F(X,0) = 0, together with the inequalities (5.1c). Thus, it is really natural to first consider

F(X) = {F(X ) ] . (5.4)

v

This construction turns out to be too naive. Indeed, if we start from some v° > 0 and solve the
smooth system (5.3)—(5.4) by the smooth Newton method, since the last equation is linear, we
end up with v! = 0 at the first iteration. Once the boundary of the interior region is reached,
we are “stuck” there.

To prevent v from rushing to zero in just one iteration, we could set

re - | O30, 55)

v
which is equivalent at the continuous level. At the level of Newton iterates, there is still a
deficiency: since v = 0 is now a double root of the last equation, quadratic convergence will be
lost when v* approaches 0! A remedy to this is to add a small linear term, that is,

F(X) = [F(X;V) ] (5.6)

v+ v?

where 7 > 0 is a small parameter. The price to be paid for recovering quadratic convergence
is that there is now a spurious negative solution v = —n < 0. This should not be a problem,
however, if we start from a positive value for v.

At this stage, system (5.6) is not yet fully adequate. Indeed, the last equation is totally
decoupled from the others. Everything happens as if v follows a prefixed sequence, generated by
the Newton iterates of the scalar equation nv + v? = 0, regardless of X. It is desirable to couple
v and X in a tighter way. In this respect, we advocate

F(X;v) ]
F(X) = - ! : 5.7a
%) {MV!P+ﬂMfW+mv+ﬂ (5-7a)
where . .
IV=I? = ) (min(V,,0))%, W[ = > (min(W,, 0))>. (5.7b)
a=1 a=1

This choice has the benefit of taking into account the nonnegativity condition (5.1c). Indeed,
the last equation of (5.7a) implies that, as long as v > 0, we are ascertained that V— = W~ = 0.
This amounts to saying that V' > 0 and W = 0. Should a component of V' or W become negative
during the iteration, this equation would contribute to “penalize” it.

5.1.1.2 Globalized algorithm

From now on, the enlarged equations (5.7) are selected as the reference system in the design
of our new algorithm. The idea is simply to apply the standard Newton method to the smooth
system (5.3), (5.7). To enforce a globally convergent behavior, we also recommend using Armijo’s
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line search, as in Algorithm 4.4. Before writing down the new algorithm, let us investigate the
new Jacobian matrix.

We saw in §4.3.3.1 that VxF(X;v), the Jacobian matrix of F with respect to X, does not
depend on v and can be denoted by VF(X). It is useful to decompose it in (block)-columns as

VE(X) = [VxF(X) VyF(X) ViwF(X)].

Since v is now considered as a variable, it makes sense to define the partial derivatives 0, F(X).
From (5.1), we deduce that

0

0 {+2m

o,F(X) = ol € R
-1

does not depend on X and therefore can be safely written as d,F. On the other hand, the scalar
function z — 3| min(z,0)|? is differentiable and its derivative is equal to min(z,0). From this
observation, it follows that

VF(X>={VXF(X) VvF(X) VwF(X)  oF ]

0 vHYr wHT n+2w (5-8)

where V'~ is the vector of components V- = min(V,,0) and similarly for W~. Below is a result
about this Jacobian matrix, which is in the same vein as Lemma 4.4 and which will be useful
for later purposes.

Lemma 5.1. Let X € J, where J is the interior region defined in (4.73). Let v € R and
X = [XT;v]T. Then,
det VIF(X) = (n + 2v) det VF(X). (5.9)

If v > —n/2, the two Jacobian matrices are singular or nonsigular at the same time.

Chaing minh. Thanks to the assumption X € J, we have V > 0and W > 0,so that V- =W~ =
0. Expanding the determinant of (5.8) with respect to the last row yields the desired result. Note
that the Lemma does not require (X;v) to solve (5.1a)—(5.1b) or X to solve (5.3), (5.7). O

Introduce the least-squares potential
1
O(X) = §HF(X)H2-

A detailed description of NPIPM is given in Algorithm 5.1. A few comments are in order:

e The initial point X% = (X% »°) must be an interior point, namely, X° € J. Furthermore,
it is often taken at equilibrium, that is, V° = G(X°) and W° = H(X?"), so that the initial
parameter 0 = (VO W% /m has the correct order of magnitude.

o If X* € 3, then (V¥)~ = (W*)~ = 0 and
g [9XF] _ [ VFXh) —aF TOE(XE R
dv¥ 0 n + 20k ok + (vF)?
provided that the Jacobian matrix is invertible. The increment for the parameter is then

vk + (1/"“)2

vt =
v N+ 2k
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Algorithm 5.1 Nonparametric interior point algorithm with Armijo line search

1. Choose X% = (X%29), X°e 3, 10 =V WO%/m, xe (0,1/2), o€ (0,1). Set k = 0.
2. If F(X*) =0, stop.
3. Find a direction d* e R‘+?m+1 such that
F(Xx*) + VF(X®d* = 0. (5.10)
4. Choose ¢* = g/ € (0,1), where j; € N is the smallest integer such that
O(X* + ord¥) < (1 — 2k07F) O(XP). (5.11)

5. Set Xkt = X* + ¢*d* and k — k + 1. Go to step 2.

e There is no need to truncate the Newton direction d* to preserve positivity for V**1 and
W+ since nonnegativity is “guaranteed” at convergence. However, if we wish all the
iterates to belong to the interior region J, then we are free to carry out an additional
damping after Step 4 (Armijo’s line search).

A final remark concerns the qualification of the method as monparametric. It can be rightly
objected that the method still involves a small positive parameter 7. Nevertheless, this parameter
is chosen once and for all and does not need to be driven to zero. It is in this sense that the
term nonparametric is to be understood.

5.1.2 Global convergence analysis

The main interest of Algorithm 5.1 lies in the prospect of global convergence, as envisioned by
the theory that we are developing now. This global convergence theory, due to Bonnans [21, §6],
is primarily based on the regularity of zeros [Definition 4.10], an assumption that we will be
able to check for each model under consideration. We reproduce most of Bonnans’ theory here,
in view of its importance to our algorithm.

We first need to define the continuity modulus of a function and some useful lemmas. We
denote ¢ the continuity modulus of F' at X defined by

cr(y) = sup |F(X)-F(X)], (5.12)
X - X<y

and cyp, cyp-1 are defined similarly. The first Lemma establishes that near a regular zero X,
the quantities ||F(X)| and || X — X]|| are of the same order.

Lemma 5.2 (Lemma 6.5, [21]). Let X be a regular zero of F' and assume that cp(vy) is well-
defined. There exist y1 > 0,¢1 > 0 and co > 0 such that

175 (5.13a)
2| F (X)), (5.13b)

for all X satisfying || X — X|| <y <.
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Chitng minh. We consider all 41 > 0 such that cgp(y1) < [|[VF (X)~!|7!. Let X such that
|X — X <+ <. Since F(X) =0, then

F(X)=FX)-F(X)= Ll VF(X + (X — X))(X — X) dt,

and
|F(X)| < tS[lépl]HV]F(X +HX - X)|IX - X||
€lu,

Let t € [0,1] and X; = X + (X — X)), then
1% — X = [[#(X = )| = t)|X - X < 7.
This means that
IVE(Xy)|| - [VF(X)|| < [VE(X:) = VF(X)| < cvr(m),

or

IVF(Xy)|| < |VF(X)|| + evr(y) for all t € [0,1].

So, we have

S[tlp]HVlF(X + (X - X)) < [VFX)| + evr(m)
te[0,1

and then
F(X) < (IVEX)[ + cvr(1)) - (5.14)

Thus, (5.13a) holds with ¢; := | VEF(X)|| + cvr(71). To prove (5.13b), we start from

F(X) = VF(X)(X - X) + Jl [VF(X + (X — X)) - VF(X)] (X — X) dt. (5.15)
0

Hence,
IF(X)|| = [VF(X)(X — X)|| - evr ()X — X]|. (5.16)

We also have
IX - X = [VF(X)"'VF(X)(X - X)| < |[VF(X)|VF(X)(X - X)]. (5.17)
Combining (5.16) and (5.17), we get
IFX)| = [IVFX) ™ = evr(m)]1X — X,
so that (5.13b) holds true with
c2 = [[VFX) ™ —evp()] ! > 0,
which completes the proof. O

The second Lemma gives an estimation of the distance to a regular zero after a Newton step.
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Lemma 5.3 (Lemma 6.6, [21]). Let vy be constant of by Lemma 5.2. There exist 2 € (0,71), c3 >
0,cq4 > 0 and c5 > 0 such that

< 37, (5.18a)
< aevr(esy)y, (5.18b)

X +d(X) — X|
for all X satisfying || X — X|| = v < 7.
Ching minh. Let v2 € (0,71) such that cgp-1(72) < 1. Owing to (5.13a),
la(X)|| < [VEX)HIFX)| < [IVEX) ™ + eop1 (]err. (5.19)
In other words, we obtain (5.18a) with
c3 = a[|[VF(X) ™| + eyp1(12)]-
Defining c5 := c3 + 1, we have the upper-bound
1%+ d(X) - X|| < [|X - X[| + [|d(X)]| < 5| X - X]]. (5.20)

As d(X) is the Newton direction of ' at X, we can write
1
F(X + d(X)) = F(X) + f VF(X + td(X))d(X) dt
0

= Jl [VF(X + td(X)) — VF(X)] d(X) dt,
0

from which we infer that

IF (X + d(X))[| < ts[t(l)ri]IIVF(X +td(X)) = VE(X)|[[|d(X)]- (5.21)

Since ¢5 > 1 and cyr is a nondecreasing function of its argument,

IVF(X +td(X)) - VF(X)|| < |[VF(X + td(X)) — VF(X)|| + |[VF(X) — VF(X)||

<
< evr(esY) + evr(Y) < 2evp(csy).
Combining with (5.21) and (5.18a), we obtain

IF(X + d(X))|| < 2¢e3¢vr(cs57)7-
Using (5.13b), we obtain (5.18b) with ¢4 := 2cacs. O
Theorem 5.1 (Theorem 6.4, [21]). Let X be a regular zero of IF.

(i) If X° is close enough to X, the sequence {X*} in (4.28a) is well-defined and converges
superlinearly to X.

(i) Moreover, if - -
IVF(X) - VF(X)| = O(| X - X)), (5.22)

then the convergence is quadratic.
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Chiing minh. Let a € (0,1). By Lemma 5.3, if | X* — X|| = v < 72, then
IX* — X|| < cacor(esy)|X* - X (5.23)

When 7, € (0,71) is small enough, cscvr(csy) < . For a certain k, € N such that || X — X|| <
Ya, we have || X* — X|| < aF~Fa||Xke — X]|| for all k > ko. If X0 is close enough to X, then
the sequence {X*} is well-defined and converges linearly to X. Furthermore, for all a € (0, 1),
there exists an integer k, < 7, and the convergence is linear with rate «. This implies that the
convergence is superlinear. If (5.22) is satisfied, then cyp(vy) = O(v). Combining with (5.23),
we deduce that the convergence is quadratic. O

Theorem 5.2 (Theorem 6.9, [21]). Let IF : Ré+2m+1  REF2m+L be o continuously-differentiable
function.

(i) [Local analysis| Let X be a regular zero of F. If X° is close enough to X, then ¢, = 1 for
all k, and X*¥ — X superlinearly (and we recover the standard Newton method).

(i) [Limit point] Let X be a limit point of sequence {X*). If VIF(X) is invertible, then X is a
reqular zero of F. If X is a regular zero of F, then g, = 1 for k big enough and X* — X
superlinearly.

(iii) [General behavior] At least one of three possibilities below holds:

(a) F(X*) — 0.
(b) ||d(XF)|| is unbounded.
(¢) The sequence {X*} converges to X where VIF(X) is not invertible.

The three items of the Theorem illustrate the conditions and the qualities of convergence of
the algorithm. Item (i) corresponds to the behavior of the algorithm near a regular zero. Item
(ii) states the rate of convergence in some particular situations. Item (iii) summarizes all of the
possible scenarios when running the algorithm. In particular, if VIF'(X) is invertible everywhere
(or at least during the iterations of the algorithm) and || F(X)|| — o as || X]|| — oo, then only the

possibility (a) of (iii) can occur; conditions of (ii) are satisfied so that if the algorithm converges,
it will converge superlinearly to a regular zero.

Chatng minh. (i) If XY is close enough to X, then sequence {X*} is generated by the standard
Newton method, i.e., X**1 = X* + d(X*). By (5.13b) [Lemma 5.2], we have || X* — X|| <
c2||F(X*)||. By the proof of Lemma 5.3, we have

IF (X + d(XP))[| < 2esevp(es7) | X* — X.

Hence,
IF(X* )| < 2cacsevr(esy) | F(XP)]).

Since ¢y (csy) — 0 as v — 0, we can choose 7 such that
IE(XMD] < (1= 28) [ F(XP)]).

It satisfies (4.46) with j = 0 or ¢* =1 for all k. By Theorem 5.1, X* — X superlinear.
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(ii) Let X be a limit point of {X*} and VIF(X) is invertible. Suppose X is not a zero of F.
We have

O(X + ¢d(X)) = O(X) + ¢ Jl VO(X + ted(X))d(X) dt
0
= O(X) + <VO(X)d(X) + cA(X, ¢)d(X),

where .

A(X,q) = f [VO(X + ted(X)) — VO(X)] dt.
0

When X — X and ¢ — 0, we get A(X,¢) — 0 and d(X) is bounded. There exist v > 0

and ¢ > 0 such that, if || X — X|| <y and ¢ <<, we have |A(X,¢)d(X)| < ©(X), and then

O(X + ¢d(X)) < O(X) +<VO(X)Td(X) + cO(X) = (1 —¢)O(X)

(1 —2¢K)O(X).

NN

This proves that (4.46) is satisfied when |X* — X|| <y and o < o, or ji < J. If X is a
limit point of {X*}, using O(X) > $O(X*), for k large enough, we obtain

O(X 1) — 0(X*) < —2k070(X*) < —ko’O(X)
for the corresponding subsequence. Since ©(X*) decreases, this implies that ©(X*) tends
to —oo, which is impossible. Therefore, if a limit point of X* is not a zero of I, then VIF
is not invertible at this point. Since this leads to a contradiction, X must be a zero of F.
If X is a regular zero of F, then XF is close enough to X for k big enough. Apply point
(i), we conclude that ¢* = 1 for k big enough and X* — X superlinear.

(iii) We consider the point (c). We assume that limy,_, , oo || F(X*)|| > 0 and ||d(X¥)|| is bounded.
Then, with the inequality (4.46)

—0(X%) < lim O(X") — O(X%) = Y (O(X ) — 0(X*)) < —2r ) FO(XF).
k=0 k=0

. If d(X*) is bounded, then

X0
Put [ := lim ©(X*) > 0, it implies 3 ¢* < OX)
k k>0 2kl

DX = XF) = Y Fla(xh)) < eo.
k=0 k=0

Hence, {X*} is a Cauchy sequence. It converges to a certain X. But X is not a regular
zero of . We conclude that VF(X) is not invertible by point (ii).
This completes the proof. ]

5.2 Regularity of zeros for the two-phase multicomponent model

According to Theorem 5.2, the promise of global convergence for the NPIPM algorithm hinges
on the regularity of the zeros of the system at hand. Put another way, if we could prove that the
Jacobian matrix VIF(X) at a solution X is nonsingular, this would be an auspicious sign of the
adequacy of the NPIPM algorithm to the problem. In this section, we derive the necessary and
sufficient conditions for a zero of the two-phase multicomponent model (2.77) to be regular.
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5.2.1 A general proof for strictly convex laws

We begin with a proof of the regularity of all nondegenerate zeros of (2.77), i.e., solutions that
are neither a transition point [Definition 2.1] nor an azeotropic point [Definition 2.2], in the most
general case. By “general,” we mean that the Gibbs functions go and gy, satisfy Hypotheses 2.2.

5.2.1.1 Preliminary lemmas

We first need a few technicalities to transform the determinant to be computed into a simpler
one.

Lemma 5.4. Let X = (X,7) € R“2™ x R be a solution of (5.3), (5.7), with X = (X,V,W) €
J < R x R™ x R™, where J is the interior region (4.73). Then,

VA(X)

det VIF(X) = (n + 2v) VG((X)0H(X) + VH(X) 0 G(X) |

(5.24)

In particular, if v > —n/2, the two determinants above are singular or nonsigular at the same
time.

Chaing minh. By virtue of Lemma 5.1 and from X € J, we have det VIF(X) = (n+27) det VF(X).
Since X is a solution, V = G(X) and W = H(X). We are thus in a position to apply Lemma
4.4 and to obtain det VIF(X) = (1 + 27) det VEF(X). The latter determinant is given by (4.72),
which leads to the desired result. O

The matrix in the left-hand side of (4.72) is of order ¢+ 2m + 1, while that in the right-hand
side of (4.72) is of order ¢. In addition to this reduction in size, the following transformation will
be helpful. Assume that for some i € {1,...,¢ —m}, the i-th component of A takes the form

Ai(X) = pia(X) — wiL(X),

where ¢; ¢ is associated with the G-phase and ¢; 1, is associated with the L-phase. Typically,
this can be an equality of extended fugacites (2.77b) for some species. Let us consider A/ the
vector-valued function in which A; has been replaced by

A (X) = f(ic(X)) = fleiL(X)),

where f is an increasing and differentiable scalar function. Typically, f is the logarithm function,
by which an extended fugacity is mapped to an extended chemical potential. It is obvious that
since A;(X) = 0 is equivalent to A{(X) =0, A(X) = 0 is equivalent to A/ (X) = 0. But what can
be said about the determinant of the Jacobian matrix at a solution when we write A/ (X) = 0
instead of A(X) =07

Lemma 5.5. Let X = (X,V,W,0) e D x R™ x R™ x R be a solution of (5.3), (5.7). Then,

VAS (X)

o VA(X)
VG(X) 0 H(X) + VH(X) 0 G(X) ’ = 1'(@)

VG(X) o H(X) + VH(X) o 6(x) | %)

where @; = v g(X) = gai,L()?) is the common value of p; ¢ and @; 1, at the solution. In particu-
lar, for an increasing function f, the two determinants above are singular or nonsingular at the
same time.
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Chitng minh. The gradient (row) of Alf with respect to X reads

VA (X) = F(pia(X)Veia(X) = /(0i0(X)) Vi L(X).

At a solution, we have ¢; ¢(X) = ¢;.1.(X) =: ;. Hence, f'(pic(X)) = f'(¢ir(X)) = f(®;) can
be factorized, so that - -
VAL (X) = f/(,) VAI(X).

The proof is completed by taking this factor out of the i-th row of the Jacobian matrix. O

Our last preparatory Lemma is concerned with with positive definite symmetric matrices,
which will be needed at the end of the proof.

Lemma 5.6. Let A and B be two positive definite symmetric matrices. Then, C = A—/2BA~1/2
and D = I — (I + C)~! are also positive definite symmetric matrices.

Ching minh. It easy to see that C is symmetric. Besides,

2Cz = ZTATV2BATY2, = (A7122)TB(A™Y22) > 0,
where equality holds if and only if A=%/2z = 0, that is, if and only if z = 0. Thus, C is positive
definite. Therefore, its eigenvalues are all positive. In the a basis that diagonalizes C, the matrix

D =1—(I+C)"!is also transformed into a diagonal form. If A > 0 is one of the eigenvalues of
C, the corresponding eigenvalue of D is

1-(1+N1=-"=>0.
Therefore, D is positive definite. O

5.2.1.2 Criterion for a regular zero
The two-phase multicomponent system (2.77) corresponds to
£ =2K+1, m=2.

Let X = (Y, &L,..., &8, &b, .., €8) e R?F! be the vector of unknowns. The functions A, G
and H associated with (2.77) are

VEL+(1-Y)E) —

YVEET + (1 =Y)Es =K

_ 2K—1
AO =1 "l (ae) - o) | °F (5.262)
KD (wg) — €K DK ()
and L K
N I O I e = (5.260)

where g = (zk,...,25 ") and =1, = (z},...,257") are defined in (2.38b) as functions of X.
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Theorem 5.3. Let X = (X,V,W,v) € R¥+6 be q solution of (5.3), (5.7) using the functions
(5.26). Assume that v = 0 and that the Gibbs energy functions gg and gr, meet Hypotheses 2.2.

Then, X is a reqular zero if and only if X is neither a transition point (in the sense of
Definition 2.1) nor an azeotropic point (in the sense of Definition 2.2).

Chiing minh. If v = 0, then the last equation of (5.7) implies V- =W~ =0, that is X € J. By
Lemma 5.4, we have det VIF(X) = 70, where

5_ ‘ VA(X) ’

VG(X) O H(X) + VH(X) 0 G(X)

By Lemma 5.5, we know that 9 is zero or nonzero simultaneously with

60 . VA.(X)
T VEX)OH(X) + VH(X)OG(X) |’
where
Yeb+(1-Y)e -t
T I PRt M

In(¢L P4 (x6)) — In(¢L Y (21))

| (5K (xq)) — In(EKBK (1)) |

Henceforth, we shall be studying 2°. Each of the last K components of A®(X) can be rewritten
as ‘ A

In(og) + iz — In(or) — s
for i e {I, II, ..., K}, with

og =5+ ...+ €8, o =&+ 4K
pig = In(zg 4 (z)), pr, = In(zy, @7 (xr)).

After this transformation, 0° has the structure

AL Y ... 0 0 1-Y ... 0 0
AEK-L 0 . Y 0 0 .. 1-Y 0
0 MIG,I s Mg},K—l MéK _Mi,l s _Mi,K—l _Mi,K
= : : : : :
A7K—1 ArK—1 ArK—1 ArK—1 ArK—1 ArK—1
0 MG,I s MG,K—l MG,K _ML,I s _ML,K—l _ML,K
0 Mgy MEx_y Méx —Mpy My, —Mfix
[ I v -Y -Y 0 0 0
~1+o0y 0 0 0 Yy -1 Yy —1 Yy -1
where o
. . . 1 Iu]’ _
A [~ | = ra 5.27
g gG §L7 a,j T 6&& (Ea)? ( )
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for a € {G, L}, (i,7) € {I, ..., K}2. We subtract the (K 4+ 1)-th column to each of the columns
from the 2-nd to the K-th. Likewise, we subtract the (2K + 1)-th to each of the columns from
the (K + 2)-th to the 2K-th. This yields

AT y ... 0 0 1-Yy ... 0 0
ALK 0 Y 0 0 . 1-Y 0
0 Mgy oo MGy, MGy —Mpy ... =Mjyg, —Mpg
TTK—1 T7K—1 arK—1 TTK—1 TTK—1 arK—1
0 MG,I s MG,K—l MG,K _ML,I s _ML,K—I _ML,K
0 Mgl MgK_l MgK —MEI —MEK_l —MEK
1—-o¢ 0 0 -Y 0 0 0
—1+0or 0 ... 0 0 0 ... 0 Y —1

with

oul, ol = 1 out, ,_
3 _ Ha = oz 5.28
cel ek (&) = 5 o] (Za) (5.28)
forae {G,L},ie{l,..., K}, je{l, ..., K—1}. The last equality follows from the chain rule

Ougy Oy _15j1<ax§ 0w§>0u6

7 i v
Mayj = Ma’j — Ma,K = [

oel, gk S \og ok ) oak
and from .
51’]; _ 5j,k0'a & % _ _ﬁ
ogl, o5 o, i
Now, we subtract the (2K — 1)-th row to each of the rows from the K-th to the (2K — 2)-th.
This gives
ALt Y . 0 0 1-Y ... 0 0
AEK1 0 . Y 0 0 . 1-Y 0
0 ML, .. B, Mic N, .. -BE, M
3 = ' : : o
K1 7K1 K—1 7K1 7K1 K—1
0 Mg Mgk Mgy  —Mp; Mpx—, —Mpx
Mg,l e Mgk MgK _MEI —Mpx _MEK
1—-o¢ 0 . 0 -Y 0 ... 0 0
-1+35, 0 0 0 0 o 0 V-1
with

. - - 1 [0t ouK 1 02
M =M — MK = —| e TGy = Tz, (5.29)
J ’J o oaloxl, ol Oa 0xt, 01,

for a € {G, L}, (i,5) € {I, ..., K — 1}? in view of (2.24c), and

— . — o, . — 0 (09a\ =
% _ i K _ i _ K _ [e]
a,K — a,K Ma,K 55}5 ('ua Ko )(ga) 055 <5ib‘a> (ga)'
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By the chain rule,

Z om0 1 KZl -0 (5.30)
afa ﬁfa a Oa j:I aax‘zx .
Applying this to dg. /0, we obtain
K-1 2
— 1 . o
k= S H ()

)
Oa o 0z, 0}

This can be further transformed by observing that the Gibbs-Duhem condition (2.25) can be

recast as

K—1 j
; Oy I K1y Ole
0= =+ 1 —zy— ...y )=
= *oxt, @ ¢ o,
K—1 K
0 1
= X o — ) +
= aaxa « « ) Za
K—1
.02 ouXk
= Y Py The (5.31)
j=I afﬁl 833 axa
Hence,
L= ———2(Zy). 5.32
= @) (532

Single-phase solution. Assume Y = 1, i.e., the solution is in the gas phase. Because 7 = 0,

we must have og = 1. Then,

ALl 1 . 0 0 0 0 0
AECL o 0 o ... 0 0
0 My oo Mg, Mex  —Mpy ... —Mpgx, -Mjg
¥ - : : ' : : L
0 METY OMERL, MEY -METU o -MEEL, MR
0 7S 7. S 7 S 7 S 7 S 7/ )
0 0 .. 0 —1 0 .. 0 0
—1+0p 0 .. 0 0 0 e 0 0
Expanding the determinant with respect to the last two rows, we get
1 0 0 0 0
0 .. 1 0 ... 0 0
= -k -3y MIGI Mé‘,K—l _Mi,l _Mi,K—l _ﬁiK
MES o MEL SMET L =M, M
M/gl . M/é{,m —M/EI . —M/EKA —~M[k
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Taking advantage of the block-triangular structure and using (5.27)-(5.29), (5.32),

M Mpx.1 Mpx ) K\T
: _ | Vir(zr)  (Vpp)' (zL)
= (-on)| . I I ok
METE MRS MR OO Vi (@) 1+ 01 oae(E)
MEI MEK—l MEK

Let C; denote the j-th column of the latter K x K-matrix. We perform the column substitution
Ck < Ck + Z;(;ll 77 C; and invoke (5.30)—(5.31) to end up with
1—-¢7

— (E'T)KL det Vgr(Z1).

V2gL(C_CL) 0

60 o 1—-0p
Vup(r) 1

(o)X

Thanks to the strict convexity assumption, det V2gr(Z) > 0. Because of the complemen-
tarity condition 0 < 1 —Y 1L 1 —&7 > 0, we have d° > 0. If 1 — 5, > 0, that is, if the
solution is not a transition point, then d° > 0 and we have a regular zero. Otherwise, the
zero is singular. The other single-phase case Y = 0 can be dealt with analogously. We obtain
" = [(1 - 7g)/(Fq)¥] det V2gg(Z¢), from which a similar conclusion can be drawn.

Two-phase solution. Assume Y € (0,1). Then, 6 = 51, = 0 and £, = Z,. We shall therefore
write AZ’ instead of A¢!. Expanding

AZ! Y . 0 0 1-Y ... 0 0
AV s 0 .. Y 0 0 ... 1-Y 0
0 Mé,l s M(I},K—l MéK *Mi,l s *Mi,K—l *Mi,K
S . ) 5 ; )
A7rK—1 T7K—1 K-1 A7K—1 T7K—1 A rK—1
0 MG,I MG,K—l MG,K _ML,I _ML,K—l _ML,K
0 Mé‘(,l Mg,Kfl Mg,K _MEI _ML,Kfl _ML,K
0 0 0 -Y 0 0 0
0 0 0 0 0 0 Yy -1
with respect to the last two rows, we arrive at
AZ! Y ... 0 Yy—-1 ... 0
AZKL 0 . Y 0 . Y -1
V=Y(1-Y) 0 Mé,{ Mé,K—l Mi,l - Mi,K—l
I7K—1 IrK—1 TrK—1 T7K—1
MG,I MG,K—l ML,I e ML,K—l
Mé{,l MG k-1 MEI - MEK—I
Az Yk, (Y -1)Ik
=Y(1-Y)| 0 VZgc(ze) VZgr(zp)
0 Vug(Za) Vii(zr)
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For j € {2, ..., K}, we perform the column substitution C; < C; + %Cjﬂq,l to obtain
Az 0 (Y — DIk
P =vYa-V)| 0 Vie(zc)+ - ?VQQL@L) V291 (Z1)
0 Vu@e)+ Vi@ Vi)

Expanding with respect to the first column, we have

K-1
0 =Y(1-Y) ) (-1 Az,
i=I

where M; is the K x K-matrix obtained by removing the i-th line and the first column of 3°. To
compute M;, we expand it with respect to its first K — 2 rows, each of which contains exactly
one nonzero entry, equal to Y — 1. When doing the expansion, we must pay a lot of attention to
the sign of the various minors involved. At the end of the algebra, we obtain

_ Y _ AVt
| | vista) + oV @)
(_1)271Mi = (1 - Y)K72 Y aulé )
Vug(@a) + ﬁvﬂ}f(fﬁ axi (zr)

where 6(VgL)T/5xiL(§leis the i-th column of V2gr(z1). Multiplying by Ax?, summing over i
and redistributing (1 — Y)X¥~! to the first K — 1 columns result in

(1-Y)V?gg(xc) + YVigr(zr) V9r(Z)AZ

(1-Y)Vug(@e) + YV (ZL)  Vap(zr)Az

Y
Let R; denote the i-th row of the latter K x K-matrix. We perform the row substitution Rk «
Rk + ZK ' LR, After (5.31),

E6V296(26) + Vg (Ea) = 0.
To compute :Egvsz(zT:L) + V,u%(:iL), we start from

z1Vigr(@r) + Vg (@) =0,
which is also due to (5.31). Since g = &1 + Az, we have

ELV2g(®L) + Vg (2L) = AZTVgr (2 1)

As a result,

(1-Y)Vge(zc) + YVgL(ZL) Vigr(z)A
YAz"V?gr () AZTV?gL(Z) AT

— — x
=Y

Now, we expand this determinant with respect to the last row. In doing so, we see that each
entry of the row vector Y (AZ)TV2g,(z) will be multiplied by the determinant of a matrix in
which the corresponding column of (1 — Y)V?gq(Zag) + YV2gL(ZL) has been replaced by the
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column vector V2gy (Z)AZ, up to a permutation. This is reminiscent of Cramer’s rule for solving
a linear system, except for the fact that the determinant of (1 — Y)V2gq(Zg) + Y V2gr(ZL) is
missing here. Guided by this intuition, we can readily check that

" =Ydet[(1 -Y)V%gs + YV | Az"M Az, (5.33)

with
My = V2g, — Y V2g.[(1 — V)V2g6 + Y V1] V201,

where we have dropped the arguments ¢ and x;, for short. This matrix can be rearranged as

My = V29L{[V29L]_1 - [Vsz + VQQG]A}V%JL

1-Y -1
= (V2QL)1/2{IK71 - [IKfl +— (V2g1) V2 V3gq (VQQL)_I/Q] }(VQQL)I/Q-

We could have done calculations the other way around and this would have given us
"= (1-Y)det[(1 - Y)V?e + Y V3| AzTMcAZ, (5.34)
with

1-Y -1
Mg = (VQQG)l/Z{IK—l — [IK_l + (V3ga)V? Vg, (VQgG)*m] }(V290)1/2.

To restore symmetry, we consider the combination (1 —Y)- (5.33) +Y (5.34) and thus obtain
" =Y(1-Y)det[(1-Y)V?g; + YV?g.] AZT (M + M) AZ.

By Lemma 5.6 and the strict convexity assumption, the symmetric matrix Mg + My, is positive
definite. Hence, ° > 0 and equality 9° = 0 occurs if and only if AZ = 0, that is Zg = Z. This
is precisely the characterization of an azeotropic solution. ]

5.2.2 A special proof for Henry’s law

In the special case where the Gibbs functions gg and gj, are derived from the ideal or Henry’s
law (see §3.1.1), there is a shorter proof of regularity for the nondegenerate zeros of (2.77). We
present it below for mathematical completeness. Let us consider the fugacity laws

L =1, ol =k, iel{l,...,K},

where the constants ks are positive. The equality of extended fugacities (2.77b) becomes 5& =
k¢t forie {1, ...,K}. By eliminating the liquid fractions ¢ in (2.77), we obtain an equivalent
system of K + 1 equations

1
YeL + (1 - Y)%’ — =0, (5.35a)
K-1
Vet +(1- Y)iﬁ_l — K=, (5.35b)

min (Y, 1 - Y5, &) =0, (5.35¢)
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min (1—Y,1— Y%, ¢L/k7) = 0. (5.35d)

in the unknowns X = (Y, &, ... €5) e REF1. With respect to the abstract framework, this
model corresponds to
{=K-1, m = 2,

with the continuous-differentiable functions

1
YeL + (1 —Y)%‘ —
AX) = : e RK!
Y K-1 1 Y gg_l K—1
§o o+ (1- )kK—l - ¢
and . <
Y 1—¢h—... —
G(X) = eR?’,  H(X)= . SCI’ i? «| eR%
1-Y 1— L /K — .. — €8 /k
The determinant to be computed reads
3= _ VAX) _
T | VG(X)OHX)+VHX)0GX)
AL Y+ (1 -Y)/E L 0 0
— | AgKA 0 s Y+ (1-Y)/ERA 0 ,
1—a6¢ -Y . -y Y
~1+a, (Y- .. (Y -1k (Y -1)/kK

where

AL =8 —& =&(1—1/k"), Ga=¢Eb+...+E6, TL=EG/K .+ EG/ER.

Single-phase solution. Assume Y = 1, i.e., the solution is in the gas phase. Because 7 = 0,
we must have 6 = 1. Then, the last row of the above matrix is zero except for 1 — 5. By
expanding the determinant with respect to this row, we have

-1 ... -1 -1

This can only vanish if 1 — or = 0. Combined with 1 — Y = 0, this implies that the solution is
a transition point. The case Y = 0 can be dealt with analogously, with

2= (-1)X(1 —5g)/(K" - EXTHES),
and the conclusion is the same.

Two-phase solution. Assume Y € (0,1). Then, 66 = o7 = 1 and f& =) forae {G, L},
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je{l, ..., K}. Let R; be the i-th row of the matrix defining 9. We perform the row substitution
Rygi1 < Rgy1 + Rk + ...+ Ry to obtain

AZL Y + (1-Y) /K 0 0

7= | AzK! 0 Y +(1-Y)/kK 0 ,
0 -Y -Y -Y
—AzK 0 0 -Y — (1 -Y)/kK

the last entry of the first column being due to

K-1  K-1 A

N aw = 3 (@ - ) = (1-28) - (1 - 75) = (@ - 75).

j=1 j=1

By swapping the last two rows, changing signs in the penultimate row and factorizing by —Y

from the last one, we get

AZl Y+ (1-Y)/K! 0

d=-Y| AzK-! Y +(1-Y)/EK
AzZK 0 0
0 1 1

0
(1-Y)/kX
1

(5.36)
Y +

Starting from the original matrix, if we had performed the row substitution Rx «— Rki1 +

Ryx + ...+ Ry instead, we would have ended up with

AZh Y +(1-Y) /K 0
2= | AzK-l 0 Y + (1Y) kK
—Azk 0 0
0 (Y —1)/k! (Y —1)/kK-1

0
0 .
Y —-(1-Y)/kK
(Y —1)/kK

Changing signs in the last two rows and factorizing by —(1 — Y in the last row, we obtain

Ry + ...+ Rj instead, we would have ended up with

AZL Y 4+ (1Y) 0 0
d=—(1-Y)| AzK! 0 Y +(1-Y)/kK 0 (5.37)
Az 0 0 Y+ (1-Y)/kK
0 —1/k! —1/kK-1 —1/kK
To recover symmetry, we consider (1 — Y)- (5.36) +Y- (5.37). This yields
AZt Y+ (1-Y) /K 0 0
d=-Y(1-Y)| AzKH 0 Y +(1-Y)/kEK 0
Az 0 0 Y+ (1-Y)/kK
0 1—1/k! 1—1/kK- 1—1/kK
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After K column permutations, we can put the determinant under the form

Y+(1-Y)k ... 0 0 Azl
= (—D)XY(1-Y) 0 s Y+ (1Y) ERAT 0 AzZR-L
0 0 Y+(1-Y)kE Az
1—1/k 1—1/kK 1—1/kK 0

Arguing that 1 — 1/k7 = (:xG — :UG/k:J)/a:G = Amj/(l}G, we can write

Y+(1-Y)/k ... 0 0 Azt
= (DK1Y (1-Y) 0 o Y+ (1Y) kR 0 AzK-1)
0 0 Y+(1-Y)kE  AzK
Azl/zk o AZKLEETT AzK/zK 0

To make the determinant even more symmetric, let us multiply each column j by (Z7 )1/ 2
and divide each row 7 by (xG)l/ 2. Overall, after sweeping over all columns and all rows, we do
not change the determinant. Setting

L Az ‘
Z:ﬁ, ZE{I,...,K},
we can now write the determinant as
Y+(1-Y)k ... 0 0 Z!
= (-)X*Y(1-Y) 0 o Y+ (1Y) ERT 0 ZEh
0 Y+(1-Y)EK 2K
Z ZK-1 K 0

We expand this new form of the determinant with respect to the last row, using the same

technique as in the previous section for the general proof: each entry of the row vector 27 =
(Z1, ..., zKk) will be multiplied by the determinant of a matrix in which the corresponding column
of

D=diag (Y + (1 -Y)/k', ..., Y + (1 = Y)/kX)

has been replaced by the column vector z € RK, up to a permutation. This somehow reminds
us of Cramer’s rule for solving a linear system. Exploring this path, it can be then proven that

3= (1K V(1 -7) 27adj(D)z,

where adj(D) = det(D) D! denotes the adjugate matrix of D. This adjugate matrix is easily
seen to be symmetric and positive definite. Therefore, ® = 0 if and only if z = 0, which is
equivalent to Ax = g — &1, = 0. In other words, the solution is azeotropic.
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Ce chapitre rend compte des essais numériques que nous avons effectués avec plusieurs algorithmes
sur cing modéles représentatifs des problémes avec conditions de complémentarité qui intéressent les
chercheurs d’IFPEN.

Nous qualifions de “simplifiés” les quatre premiers modéles, présentés en §6.1, en raison de leurs
petites tailles (moins d’une dizaine de variables). Deuz sont de nature intrinséquement stationnaire, deuz
proviennent de la discrétisation d’un probléme d’évolution. Classés par ordre de difficulté croissante, ils
permettent de trier, par élimination progressive des plus mauvais, les algorithmes en compétition et de
faire émerger le meilleur d’entre eux, NPIPM, ainsi que la méthode de référence pour la famille semi-lisse,
Newton-min.

Ceua-ci sont ensuite appliqués en §6.2 a un modele d’écoulement diphasique (partiellement triphasique)
compositionnel en deux dimensions d’espace, qui n’est certes pas aussi complexe qu’un modéle de réservoir
usuel mais dont les lois thermodynamiques sont complétes et réalistes. Nous décrirons le modéle, mais
pas la discrétisation en temps et en espace. Deux tests d’injection de COq seront considérés et mettront
en évidence les lacunes actuelles de NPIPM.
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We apply the numerical methods of chapters §4-85 to various physical models of interest, pre-
sented here in the order of increasing complexity. The competing algorithms are gradually left
out, based on their performance. At the end of this process, only two of them remain NPIPM
and Newton-min. The latter is the default method in many industrial codes and serves as the
reference semismooth algorithm for our comparison.

6.1 Simplified models

6.1.1 Stratigraphic model

Continuous model. We consider the differential equation

du _
i —min(u?, 1), (6.1a)
u(t =0) = ug. (6.1b)

The unknown u represents the height u(t) € RT of sediments in a basin as a function of time
t. Since the right-hand side of (6.1a) is always nonpositive, u is a nonincreasing function of t.
In other words, the basin is always eroding. However, this erosion can occur at two different
regimes: (i) if u? < 1, then the erosion rate is equal to —u?; this is the “unsaturated" regime; (ii)
if u? > 1, then the erosion rate is equal to —1, a maximal erosion rate prescribed by geologists;
this is the “saturated" regime.

It is very easy to show that the solution of system (6.1) is given by

ug —t for 0 <t < ty,
u(t) = u(ts) for £~ (6.2)
1+ u(ty)(t —ts) *

where ¢, = max(0, up—1) is the instant when the regime switches from saturated to unsaturated.
But the exact solution at the continuous level is not our center of interest.

Discretized system. Our center of interest is what happens when (6.2) is numerically solved
(6.1) by the Euler backward scheme

n+1 n

u —Uu

- — (@), (6:3)

where At > 0 is the time-step. Scheme (6.3) results in the nonlinear scalar equation

w4+ Atmin((u")?, 1) —u" =0 (6.4)

in the unknown u"*!. Changing the notations from u"*! to u, u™ to w,, At to 7 and introducing

the auxiliary variable ¢ = min(u?, 1), we can cast (6.4) under the equivalent system

u+ 79— u, =0, (6.5a)
min(1 — ¢, u? — q) = 0, (6.5b)

in the two unknowns (u, ¢) € R?, given the parameters (u,,7) € R% x R*.



6.1. Simplified models 159

In Theorem 4.11, we proved that

(u, — 7, 1) ifr<wu,—1
(@, q) = 2u, u? _ (6.6)
, otherwise.
1+ /1T+41u,” (1++/1+47u,)?

is a solution of (6.5), called reference solution. This solution is unique if 7 < w, + 1. If 7 = u, + 1,
there appear two spurious solutions.

Regularity of zeros. Let X = (u,q), A(X) =u+71¢—uy, G(X)=1—¢q, H(X) = u?>—q We
wish to known whether or not the solution X = (%, g) given by (6.6) gives rise to a regular zero
X of FF for the NPIMP algorithm. To this end, we must check that det VIF(X) or det VF(X) is
nonzero. But by Lemma 5.4 and Lemma 4.4, we can also compute

1 T
’ 20-qu —[1-79) + (@ -7q)]

3=

VA(X)
VG(X)® H(X) + VH(X)® G(X) ‘

Since w > 0, and it follows from
d=—(1+2r0)1—-7q) — (@ —7)

that @ < 0. Equality holds if and only if %>

=1¢q =1, that is, w = § = 1 because u > 0. By
inverting (6.6), we find that this is equivalent to

w, =7+ 1. (6.7)

Therefore, the zeros are regular except for the singular situation (6.7).

Numerical results. We compare the NPIPM algorithm with four other methods: Newton-
min, Newton-min with line search, Mehrotra predictor-corrector, and §'-smoothing. The stop-
ping criterion is ||F(X)| < 1077. We set the maximum number of iterations to be 50. If the
number of iterations of the algorithm exceeds this maximum number, the case will be considered
as divergent. With NPIPM, the parameters for the line search are k = 0.4 and o = 0.99. In the
last equation of the NPIPM system, we take n = 1075,

We sweep over the grid of parameters

(up,7) € {0.1; 0.2; ...; 10} x {0.1; 0.2; ...; 10}.
and the set of initial points
D’ = {(u%¢") € {0.1; 0.2; ...; 10} x {0.1; 0.2; ...; 0.9} | (u")* —¢" > 0}.

The number of initial points used for the tests is |D°| = 843. For each pair (u,,7), we count the
number of initial points for which the method converges and then plot the percentage of success
for each algorithm.

The results are displayed in Figures 6.1-6.3. It is clearly seen that Mehrotra, Theta-1 and
NPIPM all give better results than Newton-min. More accurately, NPIPM and Theta-1 reach
an impressive rate of 100% of initial points with convergence. Mehrotra seems to be as perfect
as the other two in Figure 6.2(a), but in fact it diverges in a small region, as evidenced by the
close-up in Figure 6.2(b).
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Figure 6.1: Stratigraphic model: Newton-min without and with line search.



6.1. Simplified models 161

10 100
9 90
8 80
7 70
6 60

"5 50
4 40
3 30
2 20
1 10
0 0

0 2 4 6 8 10
Yp

(a) Mehrotra’s predictor-corrector algorithm

100

0.2 0.4 06 08 1
Uy

(b) Close-up of the divergence zone in Mehrotra’s algorithm

Figure 6.2: Stratigraphic model: Mehrotra’s algorithm.
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Figure 6.3: Stratigraphic model: #'-smoothing and NPIPM.
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6.1.2 Stationary binary model

After the stratigraphic model as an “appetizer,” we return to thermodynamics with the two-
phase binary model (2.83) of §2.4.2. For this phase equilibrium problem, we will consider four
families of fugacity coefficients in the order of increasing complexity: Henry’s law, Van Laar’s
law, Van der Waals’ law and Peng-Robinson’s law.

6.1.2.1 Henry’s law

The gas phase is ideal, while the liquid phase has constant fugacity coefficents. In other words,
oL=1, ol=1, ol=k o=l (6.8)

To fix ideas, we assume that
E>1>kt>o0. (6.9)

Reference solution. Thanks to the simplicity of (6.8), we can eliminate fIL, ILI by substituting
¢L/kY, €8 /KM into (2.83). This leads to the three-equation system

YEL+ (1 -Y)EL /K —c =0, (6.10a)
min(Y, 1 — & — £5) =0, (6.10b)
min(1 —Y, 1 — &5 /k' — 5/ =0, (6.10c)

in the unknowns (Y, &, €2) € [0,1] x R4 x R4 The following Proposition provides the solution
of (6.10), which we call reference solution.

Proposition 6.1. For k' > 1> k' > 0, the quantities

kZI(l o ]{,‘H) 1— ij
Ko= "  Ko=1r—m (6.11)

are well-defined and satisfy 0 < K;, < Kg < 1. Then, the solution of system (6.10) is given by

(0, ke, k(1 —¢)) if ce [0,KL],
(?7 éTIG” gg) = (.K?G_—I(;{JL’ Kg, kH(l — KL)) ifce (KL,Kg), (612)
(I,e,1—¢) if ce [Kg,1].

Ching minh. This follows from Gibbs’ geometric construction described in Theorem 2.5. For
k' > 1 > k" > 0, there is exactly one common tangent to the graphs of gg(-) and gr(-). A little
algebra shows that the contact points are precisely (K1, g1 (Kr)) and (Kq, ga(Kq)), the former
being on the left of the latter. The lower convex envelope ¢ of min(gg, gz.) coincides with gr,(+)
over [0, K], with the common tangent over (K, K¢), and with gg(+) over [Kg, 1]. O

Regularity of zeros. As a consequence of Proposition 3.1 (strict convexity of the Gibbs
functions) and the general Theorem 5.3 (a special proof for Henry’s law was given §5.2.2),
the reference solution X = (Y, f_IG, Eg) gives rise to a regular zero X of the NPIPM system
F(X) = 0, provided that it is not a transitional or azeotropic point.
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Numerical results. We compare NPIPM with other methods as we did in stratigraphic
model. We fix k! = 2, k! = 0.5. The stopping criteria is ||F(X)| < 10~7. We set the maximum
number of iterations to be 50. With NPIPM, the line search parameters are x = 0.4 and o = 0.99.
In the last equation of the system, we take 1 = 1076,

We sweep over the grid of parameters

ce {0.01; 0.02; ...; 0.99}.
and the set of initial points
DY = {(Y, & €6)" e M? | 1= (&)° = (€6)° > 0 and 1 — (£)°/&" — (£6)° /K" > 0}.

where M = {0.1; 0.2; ...; 0.9}. The number of initial points used for the tests is |D"| = 216.
For each ¢, we count the number of initial points for which the method converges and then plot
the percentage of success for each algorithm in Figure 6.4. Since the percentages for Newton-
min with line search, Mehrotra and Theta-1 are less than 10%, we just show the results for
Newton-min and NPIPM. Figure 6.4 testifies to the remarkable efficiency of NPIPM relatively
to Newton-min, with 100% of convergence.

The next test takes place between NPIPM and Newton-min method. Starting from the
same initial point (Y, 510, fg) = (0.2, 0.6, 0.3), we run the two algorithms for all values of
¢ € {0.0001, 0.0002, ..., 0.9999}. In each panel of Figure 6.6, we also plot the Gibbs energy
functions gg and gr. The common tangent between the graphs of go and g7, is represented by
the orange line. The tangency points represent transitional solutions, between a single-phase
regime and a two-phase regime. The black line is the value of Y for each ¢ when the algorithm
converges. If the algorithm diverges at a value ¢, we assign the value —1. We observe that NPIPM
(lower panel) converges with all values of ¢ tested. Newton-min (upper panel) is also not bad
either, with just one case of divergence.

The last test with Henry’s law is the number of iterations if the algorithm converges. We
still use the same parameters for the convergence test. However, in Figure 6.5, we display the
number of iterations versus the “index” of c¢. This index is the rank of ¢ within the subset
of {0.01; 0.02; ...; 0.99} containing those values of ¢ for which convergence occurs for both
methods.

6.1.2.2 Van Laar’s law

In the two-phase binary model (2.83), we now assign Henry’s law to the gas phase, that is,
o =k, o =k", (6.13)

while the liquid phase obeys Van Laar’s law (3.12), namely,

Apn(1—z) T
I B 21
In (I)L(x) = A12 |:A12:E T A21(1 — SU)] 5 (6.14&)

Algx 2
A12$ + AQl(l — SU) ’

In®(z) = Ay { (6.14b)

Regularity of zeros. By Proposition 3.1, the Gibbs function go of the gas phase satisfies
Hypotheses 2.2 for k!, k! > 0. By Proposition 3.3, if the pair (A;2, A21) belongs to the “good”
region (3.14), the Gibbs function gy, of the liquid phase satisfies Hypotheses 2.2. Then, owing to



6.1. Simplified models 167

Theorem 2.5 ensures existence and uniqueness of a solution for those ¢ at which azeotropy does
not occur. Thanks to Theorem 5.3, this solution gives rise to a regular zero X of the NPIPM
sytem F'(X) = 0, provided that it is not a transition point.

Numerical results. We fix k! = 2, k' = 0.5 and select the pair
Ao = —0.8643, Ao = —0.5899,

which corresponds to acetone (species I) and chloroform (species II). It can be readily checked
that this pair belongs indeed to the strict convexity region (3.14) of Van Laar’s law.

The first test is between NPIPM and Newton-min method. We choose the same initial
point (Y, SIG, §g, {IL, E)O = (0.1, 0.3, 0.6, 0.2, 0.1) and run both algorithms for each value of
c € {0.0001, 0.0002, ..., 0.9999}. The stopping criteria is || F(X)| < 10~7. We set the maximum
number of iterations to be 50. With NPIPM, we choose parameters for line search step: k = 0.4
and o = 0.99. In the last equation of the system, n = 107%. In each panel of Figure 6.7, we
plot the Gibbs energy functions ge and gr. The black line is the value of Y for each ¢ when the
algorithm converges. If the algorithm diverges at a value ¢, we assign the flag value —1.

After this first test, we display in Figure 6.8 the number of iterations at convergence corre-
sponding to the two methods. The last test with Van Laar’s law involves many initial points. We
compare the NPIPM algorithm and Newton-min algorithm for several values of ¢ € {0.01; 0.02; ...; 0.99}.
For each value of ¢, we sweep over the set of initial points

DO = {(Y, &, &6, €1, 60)° e MP | 1= (€6)° = (€68)° > 0 and 1— (£)° — (¢1)° > 0},

where M = {0.1; 0.2; ...; 0.9}. The number of initial points used is |D°| = 11664. We count the
number of initial points for which the method converges and then plot the percentage on the
figure for each algorithm. Again, Figure 6.9 demonstrates the outstanding efficiency of NPIPM,
with a 100% rate of convergence. Nevertheless, it needs slightly more iterations than Newton-min
when the latter converges.

6.1.2.3 Van der Waals’ law

We consider the two-phase binary model (2.83) with Van der Waals’ fugacity coefficients (3.37),
namely,

B 2Ai(x)] A(z) 615)

In @}, () = [za<x>—1]—ln[Za@)—B(‘””)]*[B(w) Al@) ] Zalz)’

B(x)

for i e {I, I1}, a € {G, L}, z € [0, 1], where Z,(x) is a real root of the cubic equation (3.33), that
is,

Z3(z) — [B(x) + 1]2%(z) + A(x)Z(z) — A(z)B(z) = 0. (6.16)

The mixing rules (3.31b)—(3.32) have been used, i.e.,

A(z) = (aVAT + (1 — 2)v/Al ), (6.17a)
B(z) = «B"+ (1 —z)B™. (6.17b)
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Existence, uniqueness and regularity? Due to the complexity of Van der Waals’ law, it
is difficult to tell anything about the strict convexity of the Gibbs functions g and gr, the
excess parts of which are given by (3.34). In the binary case, these Gibbs functions can be
numerically plotted as functions of z. Extensive numerical investigations by Le Hénaff [79] have
confirmed that, in general, we do not have strict convexity for two arbitrary pairs (A, BY)
and (A, B) in the subcritical region of the (A, B)-plane, although there are some “choices”
for which strict convexity holds. As a consequence, there is nothing we can predict about the
existence, uniqueness and regularity of a solution.

Need for domain extension. In general, go and gy, are not even defined on the whole interval
(0,1), as explained at length in §3.3.1 and as corroborated by numerical studies. Here, we wish
to illustrate this issue numerically. Let us choose

(A, B = (0.33, 0.0955), (A B = (0.35, 0.08)

as depicted in Figure 6.10, so as to ensure that each of the Gibbs functions gg and gy, is “visually”
strictly convex on its domain of definition, which is not (0, 1).

0.1} Super critical region (A,B

1 root 1root Z (A,.B,)

0.05 1 root ZL .

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
A

Figure 6.10: Van der Waals’ law: (A, B") = (0.33, 0.0955) and (A', B') = (0.35, 0.08).

We run NPIPM without and with the extension procedures described in §3.3.2-83.3.3 us-
ing the same initial point (Y, &, €8, &5, €)Y = (0.8, 0.4, 0.2, 0.2, 0.6) and sweeping over all
c € {0.001, 0.002, ..., 0.999}. Figure 6.11 represents Y at convergence, with the flag value —1
when NPIPM diverges or “crashes.” Without extension, NPIPM abruptly stops when the cubic
equation has a unique real root. With the direct extension of §3.3.2, the problem is fully avoided.

Numerical results. As we did with Van Laar’s law, we first compare NPIPM and Newton-min
method with the same initial point (Y, &, €8, &, ¢)? = (0.8, 0.4, 0.2, 0.2, 0.6). The results are
provided in Figure 6.12 for the direct extension and in Figure 6.15 for the indirect extension. With
NPIPM, the line search parameters are k = 0.4 and ¢ = 0.99. In the last equation of the system,
we take 7 = 1075, We run Newton-min and NPIPM for all values of ¢ € {0.001, 0.002, ..., 0.999}.
The stopping criteria is || F(X)|| < 10~7. We set the maximum number of iterations to be 50.

Next, we analyze the number of iterations at convergence. The corresponding results are
given in Figure 6.13 for the direct extension and in Figure 6.16 for the indirect extension. The
last test with Van der Waals’ law aims at measuring the percentage of convergence over many
initial points. To this end, we sweep over the set of parameter ¢ € {0.01; 0.02; ...; 0.99}. For
each value of ¢, the set of initial points is

DY = {(Y, &, &4, €L, €0)° € M* | 1= (&6)° — (€0)° > 0 and 1 (£1)° = (&2)" > 0}
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Figure 6.11: Van der Waals’ law without extension and with extension for the same initial point.

where M = {0.2; 0.4; 0.6; 0.8}. The number of initial points used for the tests is |DY| = 144.
We count the number of initial points for which the method converges and then display the
percentage of success, in Figure 6.14 for the direct extension and in Figure 6.17 for the indirect
extension.

For the direct extension, the width parameter is w = 0.05. For the indirect extension, the
width parameter is € = 0.03. One more time, we observe that the new algorithm converges for
all initial points, despite the high complexity of Van der Waals’ law. This behavior is promising.

6.1.2.4 Peng-Robinson’s law

We consider the two-phase binary model (2.83) with Peng-Robinson’s fugacity coefficients (3.53),
namely,

In @7, (x) = [Za(z) = 1] = In[Za(z) — B(x)]

S

(z)
+[ B _2Ai(:c)} A(z) ln{Za(x)—F(l—F\/i)B(:r)]
B(z)  A@) | 2v2Ba) | Za(z) - (V2— D)B) |

(6.18)

for i e {I, I1}, a € {G, L}, z € [0, 1], where Z,(x) is a real root of the cubic equation (3.51), that
is,

Z%(x) + (B(z) = 1)Z%(x)
+ [A(z) — 2B(z) — 3B*(z)]Z(x) + [B*(z) + B*(z) — A(z)B(x)] = 0. (6.19)

The mixing rules (3.31b)—(3.32) have been used, i.e.,

A(z) = (aVAT + (1 — z)v/A ), (6.20a)
B(z) = «B"+ (1 —z)B™. (6.20b)
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Figure 6.12: Van der Waals’ law with direct extension, tested with the same initial point.
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0 Average number of iterations: 6.25 (Newton-min), 4.71 (NPIPM)
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Figure 6.13: Van der Waals’ law with direct extension: number of iterations with the same initial
point.
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Figure 6.14: Van der Waals law with direct extension: percentage of convergence over all initial
points.
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Figure 6.15: Van der Waals’ law with indirect extension, tested with the same initial point.
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. Average number of iterations: 6.36 (Newton-min), 5.62 (NPIPM)
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Figure 6.16: Van der Waals’ law with indirect extension: number of iterations with the same
initial point.
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Figure 6.17: Van der Waals law with indirect extension: percentage of convergence over all initial
points.
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Existence, uniqueness and regularity? Due to the complexity of Peng-Robinson’s law, it
is difficult to tell anything about the strict convexity of the Gibbs functions go and gy,, the excess
parts of which are given by (3.52). In the binary case, the Gibbs functions can be numerically
plotted as functions of x, and we can try to select the pairs (A!, BY) and (A", BY) in such a
way that gg and gj are “visually” strictly convex on their respective domains of definition. An
example of two such pairs is

(AL, BY = (0.322, 0.053),  (AY, B = (0.33, 0.03)

as depicted in Figure 6.18. We carry out numerical simulations with these values.

(1

B0.05 Super critical region 1 root Z .
3 roots *2) 1 root z,
G — A
0 : ! L = | L L | ! I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
A

Figure 6.18: Peng-Robinson’s law: (A, BY) = (0.322,0.053) and (A", B") = (0.33,0.03)

Numerical results. As we did with Van der Waals’ law, we first compare NPIPM and
Newton-min method with the same initial point (Y, &5, €2, &8, €00 = (0.2, 0.2, 0.4, 0.4, 0.2).
The results are provided in Figure 6.19 for the direct extension and in Figure 6.22 for the indi-
rect extension. With NPIPM, the line search parameters are x = 0.4 and o = 0.99. In the last
equation of the system, we take n = 1075, We run Newton-min and NPIPM for all values of
c € {0.001, 0.002, ..., 0.999}. The stopping criteria is ||F(X)|| < 10~7. We set the maximum
number of iterations to be 50.

Next, we analyze the number of iterations at convergence. The corresponding results are
given in Figure 6.20 for the direct extension and in Figure 6.23 for the indirect extension. The
last test with Van der Waals’ law aims at measuring the percentage of convergence over many
initial points. To this end, we sweep over the set of parameter ¢ € {0.01; 0.02; ...; 0.99}. For
each value of ¢, the set of initial points is

D = {(V, &6, €0, €L, €0 e MP | 1= (€6)° — (€6)° > 0 and 1 — (¢)° — (¢1)° > 0}.

where M = {0.2; 0.4; 0.6; 0.8}. The number of initial points used for the tests is |DY| = 144.
We count the number of initial points for which the method converges and then display the
percentage of success, in Figure 6.21 for the direct extension and in Figure 6.24 for the indirect
extension.

For the direct extension, the width parameter is w = 0.05. For the indirect extension, the
width parameter is ¢ = 0.03. One more time, we observe that the new algorithm converges for
all initial points, despite the high complexity of Peng-Robinson’s law.
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Figure 6.19: Peng-Robinson’s law with direct extension: one initial point.
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40Average number of iterations: 10.05 (Newton-min), 5.67 (NPIPM)
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Figure 6.20: Peng-Robinson’s law with direct extension: number of iterations with the same
initial point.
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Figure 6.21: Peng-Robinson’s law with direct extension: percentage of convergence over all initial
points.
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Figure 6.22: Peng-Robinson’s law with indirect extension: one initial point.
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Average number of iterations: 7.81 (Newton-min), 5.81 (NPIPM)

25
Newton-min
— NPIPM
20 .
wn
c
Ke)
§ 15 d
2
©
g
= 10 .
>
Z
5 = -
O 1 1 1 1 1 1
0 10 20 30 40 50 60

Index of ¢

Figure 6.23: Peng-Robinson’s law with indirect extension: number of iterations with the same
initial points.
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6.1.3 Stationary ternary model

Let us now go to the more complex case of a two-phase ternary model. With K = 3, system
(2.77) reads

YeL+(1-Y)Ep - =0, (6.21a)

YR+ (1 -Y)El - =0, (6.21b)

&6 G (ag, w6) — & O (g, 1) = 0, (6.21¢)
&6 @61, xg) — €L L (v, 2L) = 0, (6.21d)
&t od! (wg, ag) — €L L (2, 2L) = 0, (6.21e)
min(Y, 1 — &, — &8 — £6) = 0, (6.21f)

min(1 - Y, 1— ¢ —¢f =y =0 (6.21g)

The ternary phase equilibrium problem (6.21) will be considered with three families of fugacity

coefficients in the order of increasing complexity: Henry’s law, Van der Waals’ law and Peng-

Robinson’s law.

6.1.3.1 Henry’s law

The gas phase is ideal, while the liquid phase has constant fugacity coefficents. In other words,
oL =1, o =1, ol =1, (6.22a)
oy =k, @ =k", @f=k". (6.22b)

Thanks to the simplicity of (6.22), we can eliminate ¢&, ¢, €M by substituting &1/k!, €8/k™,
¢ /KM into (6.21). This leads to the four-equation system

YeL+ (1 -Y)eb /K - =0, (6.23a)

VeES + (1 —v)el /et — (= o, (6.23b)

min(Y, 1 — &5 — &8 —¢8h =0, (6.23c)

min(1 — Y, 1 — ¢5/k! — €8 /KN — 21/ = o, (6.23d)

in the unknowns (Y, &5, €8, &) € [0,1] x Ry x Ry x R,

Regularity of zeros. As a consequence of Proposition 3.1 (strict convexity of the Gibbs
functions) and the general Theorem 5.3 (a special proof for Henry’s law was given §5.2.2), the
reference solution X = (Y, &L, Té, gél) gives rise to a regular zero X of the NPIPM system
F(X) = 0, provided that it is not a transitional or azeotropic point.

Numerical results. We compare NPIPM with other methods as we did in stratigraphic
model. We fix k! = 0.2, k' = 6, k' = 2. The stopping criteria is ||F(X)| < 10712, We set the
maximum number of iterations to be 50. With NPIPM, the line search parameters are x = 0.4
and o = 0.99. In the last equation of the system, we take n = 1076,
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Figure 6.25: Henry’s law: one initial point.
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Average number of iterations: 8.72 (Newton-min), 5.79 (NPIPM)
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Figure 6.26: Henry’s law: number of iterations with the same initial point.

The first test takes place between NPIPM and Newton-min method. Starting from the same
initial point (Y, &, €&, ¢81) = (0.9, 0.1, 0.7, 0.1), we run the two algorithms for all values of

c=(c, CH). In each panel of Figure 6.25, we plot the phase regime for each parameter

CECZ{(CI,CH)EP2 | CI+CH<1},

where P = {0.01; 0.02; ...; 0.99}, when the algorithm converges. We assign the blue color to
the gas single-phase regime, the cyan color to the two-phase, the green color to the liquid single-
phase regime, and the red color to the case of divergence. NPIPM (lower panel) converges with
all values of ¢ tested, while Newton-min (upper panel) exhibits many cases of divergence.

The next test with Henry’s law is the number of iterations if the algorithm converges. We
still use the same parameters for the convergence test. However, in Figure 6.26, we display the
number of iterations instead of values of Y.

In the last test, we sweep over the grid of parameters ¢ € C and the set of initial points

D = {(V, &, &6, 8N e MY | 1—(66)° — (68)° — (¢61)" > 0 and
1— (66)° /K" — (€8)°/k" — (¢80 /6" > 0},

where M = {0.1; 0.2; ...; 0.9}. The number of initial points used for the tests is |DY| = 252. For
each ¢, we count the number of initial points for which the method converges and then plot the
percentage of success for each algorithm in Figure 6.27. Figure 6.27 testifies to the remarkable
efficiency of NPIPM relatively to Newton-min, with 100% of convergence.
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Figure 6.27: Henry’s law: percentage of convergence over all initial points.
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6.1.3.2 Van der Waals’ law

We consider the two-phase ternary model (6.21) with Van der Waals’ fugacity coefficients (3.35),
namely,

B(x) + Vg B(x) - (6 — x)

In @, () = e (Za() — 1] — I [Zo () — B(z)]
B(x) 4+ VgzB(x) - (6" — x) _ 2A(z) + Vo A(z) - (6' —x)] A(x)
| B(a) Alw) |7y o

for i e {I, IL, IIT}, v € {G, L}, w € {(z',2') € [0,1]* | ' + 2™ < 1}, where Z,(x) is a real root
of the cubic equation (3.33), that is,

Z3(x) — [B(x) + 1)1Z2%(x) + A(z)Z(x) — A(z)B(z) = 0. (6.25)

The mixing rules (3.31b)—(3.32) have been used, i.e.,

Az) = (a"WAT + 2IWVAT 4+ (1 — o — 2M)v/ATT ), (6.26a)
B(z) = z'B'+2"B" + (1 — 2! — 2B (6.26b)

Existence, uniqueness and regularity? Due to the complexity of Van der Waals’ law, it
is difficult to tell anything about the strict convexity of the Gibbs functions gg and gr, the
excess parts of which are given by (3.34). Thus, there is nothing we can predict about the
existence, uniqueness and regularity of a solution. In the ternary case, the Gibbs functions can
be numerically plotted as functions of = (z', 2!'), and we can try to select the pairs (A!, BY),
(A", By and (A™, B") in such a way that gg and gz, are “visually” strictly convex on their

respective domains of definition. An example of three such pairs is
(AL, BY = (0.33, 0.0955),  (AY, By = (0.35,0.08),  (AM, B = (0.355, 0.0953)

as depicted in Figure 6.28. We apply the indirect extension procedure of §3.3.3 with ¢ = 0.01.

01 Super critical region
1 root 1root Z

0.05 1 root ZL -

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
A

Figure 6.28: Van der Waals’ law: (A', BY) = (0.33, 0.0955), (A, B") = (0.35, 0.08) and
(A By = (0.355, 0.0953)
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Figure 6.29: Van der Waals’ law: one initial point.
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20 Average number of iterations: 4.37 (Newton-min), 3.87 (NPIPM)
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Figure 6.30: Van der Waals’ law: number of iterations with the same initial point.

Numerical results. We first compare NPIPM and Newton-min method with the same initial
point (Y, &, €8, €81, & ¢l N0 = (0.4, 0.2, 0.2, 0.4, 0.4, 0.2, 0.2). The stopping criteria is
[F(X)|| < 10719 We set the maximum number of iterations to be 50. With NPIPM, the line
search parameters are k = 0.4 and p = 0.99. In the last equation of the NPIPM system, we take
n = 10~%. We run Newton-min and NPIPM for all parameters

ceC={(,dMeP?| f+<1},

where P = {0.01; 0.02; ...; 0.99}, when the algorithm converges. In Figure 6.29, we assign the
blue color to the gas single-phase regime, the cyan color to the two-phase regime, the green
color to the liquid single-phase regime, and the red color for divergence. NPIPM (lower panel)
converges with all ¢ tested, while Newton-min (upper panel) exhibits many cases of divergence.

The next test with Van der Waals’ law is the number of iterations when the algorithms
converge. We still use the same parameters for the convergence test. However, in Figure 6.30, we
display the number of iterations instead of values of Y. Figure 6.30 shows that when Newton-min
algorithm converges, it converges in fewer iterations than NPIPM.

In the last test, we sweep over the grid of parameters

ceC={(c,dMeP*| d+M<1},

where P = {0.05; 0.10; ...; 0.95} and the set of initial points
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Figure 6.31: Van der Waals’ law: percentage of convergence over all initial points.
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DY = {(Y, &, 6, €65 €0, &8, &) e MT | 1= (€6)° — (€6)° — (€61)° > 0 and
1— ()" = (¢H° = M° > 0},

where M = {0.1; 0.2; ...; 0.9}. The number of initial points used for the tests is |D°| = 64. For
each ¢, we count the number of initial points for which the method converges and then plot the
percentage of success for each algorithm in Figure 6.31. Figure 6.31 confirms the great efficiency
of NPIPM relatively to Newton-min, with 100% of convergence.

6.1.3.3 Peng-Robinson’s law

We consider the two-phase ternary model (6.21) with Peng-Robinson’ fugacity coefficients (3.53),
namely,

B(x) + VyB(x) - (6' — x)
B(x)
{B@) +VaB(m) (8' —x) 2A(z) + VaA(x) (8" — :1:)]
B(z) A(z)
Alx) [Za(a:) +(1+ ﬁ)B(m)]
2V2B(@) [ Za(x) - (V2-1)B(@) |

In @’ (x) =

[Za() — 1] = In[Za(z) — B(2)]

(6.27)

for i € {I, I, IIT}, € {G, L}, w € {(2',2") € [0,1]* | '+ 2™ < 1}, where Z, () is a real root
of the cubic equation (3.51), that is,

Z%(x) + (B(x) — 1) 7% (=)
+ [A(z) — 2B(z) — 3B*(z)])Z(z) + [B*(x) + B*(x) — A(z)B(x)] = 0. (6.28)

The mixing rules (3.31b)—(3.32) have been used, i.e.,

Az) = (aWAT + VAT 4 (1 — ot - 2M)VATT ), (6.292)
B(:L‘) _ xIBI + .’L'HBH + (1 o xI _ .’BH)BIH. (629b)

Existence, uniqueness and regularity? Due to the complexity of Peng-Robinson’s law, it
is difficult to tell anything about the strict convexity of the Gibbs functions gg and g, the
excess parts of which are given by (3.52). There is nothing we can predict about the existence,
uniqueness and regularity of a solution. In the ternary case, the Gibbs functions can be numeri-
cally plotted as functions of = (2!, z'1), and we can try to select the pairs (A!, BY), (All, B
and (A" B in such a way that gg and g, are “visually” strictly convex on their respective
domains of definition. An example of three such pairs is

(AL, BY) = (0.322, 0.053),  (AY, BYM) =(0.33,0.03),  (AM, BU) = (0.337, 0.048)

as depicted in Figure 6.32.
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Figure 6.32: Peng-Robinson’s law: (A!, BY) = (0.322, 0.053), (A, B') = (0.33,0.03) and
(AN By = (0.337, 0.048).

Numerical results. We first compare NPIPM and Newton-min method with the same initial
point (Y, &, &, €81, &, ¢, N0 = (0.4, 0.3, 0.5, 0.1, 0.325, 0.2, 0.17). The stopping criteria
is |F(X)| < 107!, We set the maximum number of iterations to be 50. With NPIPM, the
line search parameters are x = 0.4 and p = 0.99. In the last equation of the system, we take
n = 10~% We use indirect extension with ¢ = 0.03. We run Newton-min and NPIPM for all
parameters

cECZ{(cI,cH)EP2 | 4+ < 1},

where P = {0.01; 0.02; ...; 0.99} when the algorithm converges. In Figure 6.33, we assign the
blue color to the gas single-phase regime, the cyan color to the two-phase regime, the green color
to the liquid single-phase regime, and the red color for divergence. We observe that NPIPM
(lower panel) converges with all values of ¢ tested, while Newton-min (upper panel) exhibits
many cases of divergence.

The next test with Peng-Robinson’s law is the number of iterations if the algorithm converges.
We still use the same parameters for the convergence test. However, in Figure 6.35, we display the
number of iterations instead of values of Y. Figure 6.35 shows that when Newton-min algorithm
converges, it converges in fewer iterations than NPIPM.

In the last test, we sweep over the grid of parameters

ceC={(,Mer?| d+M<1},
where P = {0.05; 0.10; ...; 0.95} and the set of initial points
D = {(Y, &, 8 €8 &b e, N e MT | 1 (66)° — (68)° — (&))" > 0 and
L= ()" = (€2)" = (&) > 0},

where M = {0.1; 0.2; ...; 0.9}. The number of initial points used for the tests is |D°| = 64. For
each ¢, we count the number of initial points for which the method converges and then plot the
percentage of success for each algorithm in Figure 6.34. Figure 6.34 testifies to the remarkable
efficiency of NPIPM relatively to Newton-min, with 100% of convergence.
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Figure 6.33: Peng-Robinson’s law: one initial point.
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6 Average number of iterations: 6.79 (Newton-min), 4.62 (NPIPM)
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Figure 6.35: Peng-Robinson’s law: number of iterations with the same initial point.

6.1.4 Evolutionary binary model

Continuous model. In the two-phase binary model (2.83), the global fraction of the first com-
ponent c is a given data. We now consider a more sophisticated model in which this composition
depends on time. The model consists of an algebro-differential system

d 1
d{ —Y(1-Y)E, (1 - k:I) — 0, (6.30a)
YeL+ (1 -Y)EL /K — e =0, (6.30D)
min(Y, 1 — &5 — €8) =0, (6.30c)
min(1 — Y, 1 — &5/k! — €8k =0 (6.30d)

in the four unknowns (c, Y, fé, {g), equipped with the intial condition

(e, Y, &, €0)(t = 0) = (co, Yo, (€)o. (€0)0) (6.31)

subject to the equilibrium relations

Yo(66)o + (1= Yo)(€8)o/k' — co = 0, (6.32a)
min(Yp, 1 — (£6)o — (£6)o) = 0, (6.32b)
min(1 — Yy, 1 — (65)o/k' — (€8)o/k) = 0. (6.32¢)

Henry’s law with &', ' > 0 have been implicitly used.
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Let K, Kg be the constants defined by (6.11). It can then be easily proven that the exact
solution of (6.30)—(6.32) is given by

Co if Co € [O,KL],
Kgyoexp(t) + K .
c(t) = f K. K 6.33
" yexp(t) +1 %€ (K1, Ke), (633
Co if Co € [Kg, 1]7
where K
co— KL
== & .34
Ll o (6.34)

The values of Y (t), &5 (¢) and £2(t) are deduced from c(t) by formulas (6.12) [Proposition 6.1].

Discretized system. But our primary interest is the algebraic system that arises when we
apply the Euler backward scheme to (6.30) with a time-step At > 0. This system reads

c—cy,— ¢<1 — ];)551/(1 -Y) =0, (6.35a)
YEL+ (1 =Y)eL /K —c =0, (6.35b)
min(Y, 1 — &5 — £5) =0, (6.35¢)

min(1 — Y, 1 — &5 /kt — 8 /KM =0, (6.35d)

where the notations have been changed from At to 7, from ¢” to ¢, and from (¢, Y, {é, fg)”“
to (¢, Y, &5, €8). In (6.35), ¢, € [0,1], 7 > 0 and k' > 1 > k! > 0 play the role of parameters.
The upcoming Theorem addresses the question of its solutions.

Proposition 6.2. Let K, K¢ be the constants defined by (6.11). Except for the case 3(b) in the
enumeration below, system (6.35) has a unique solution (¢,Y, €L ,Eg,) €[0,1] x [0,1] x Ry x R
called reference solution.

1. If ¢, € [Kq, 1], then the reference solution is in the G single-phase regime and given by

c=0, Y=1 §&=0 &=1-c. (6.36)

2. If ¢, € (K1, Kg), then the reference solution is in the two-phase regime and given by

(6.37)

Ko+ K, Ko-Kif [ . Ke+tKp—2,  , 1/2
2 27 Kq— Ky, '

The values of Y, £ and €% are deduced from ¢ by formulas (6.12) [Proposition 6.1].

3. If ¢, € [0, K], then the number

KG'—I-KL—QCb Kg—i-KL—QCb 2
X 1 :
Tma Kg— Kp, Kg— Ky, (6.38)

is well-defined and greater than or equal to 1.
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(a) For T < Tmax, the reference solution is in the L single-phase regime and given by

c= Gy, Y = 07 EIG = kICb? gé = kH(l - Cb); (639)

(b) For T = Tmax, in addition to (6.39) that we declare to be the reference solution, there
are two spurious solutions (counted with multiplicity).

Chiing minh. The last three equations of model (6.35) are exactly the stationary binary model
(6.10). Therefore, (Y, 55, §IGI) can be expressed as functions of ¢ by means of (6.12). In particular,

c— Ky,

Y = o K, M) ()

for all phase regimes, using the characteristic function 1. Inserting this into the first equation
(6.35a) and invoking k' = K¢ /K[, we obtain a scalar equation on ¢, namely,

c—c + (c—=Kp)(c— Kg) Lk, kq)(c) = 0. (6.40)

-
K¢ — Ky,
The rest of the proof relies on studying the function representing the left-hand side of the above
equation. This part is not difficult and is left to the readers. O

REMARK 6.1. The choice ¢ = ¢, for the reference solution in case 3(b) is really natural insofar
as this is the continuous extension —with respect to 7— of the reference solution of case 3(a).

Regularity of zeros. The most significant result for this model is that the reference solution
corresponds most of the time to a regular zero.

Theorem 6.1. For all 7 > 0, the reference solution of (6.35) defined in Proposition 6.2 gives
rise to a reqular zero for the NPIPM system, except at transitional and azeotropic points.

Chitng minh. Let X = (c, Y, &, £8). Define

c—c,—1(1-1/EH)eLYy(1—-Y)
A(X):{ VEL +(1-Y) e K — ¢ ]

and

G(X) = [1 fy] - HX) = [1 —155/%—_%/%“ } |

By Lemma 5.4 and Lemma 4.4, we can study the sign of

VA(X)
VG(X)OH(X) + VH(X) 0 G(X)

)

o

where X = (¢, Y, &, EIGI) is the reference solution, instead of the sign of det VIF(X) or det VF(X).
In this case, we have

1 —7AL(1-2Y) —7A8Y(1-Y)/EL 0
5_ |1 AL Y+ (1-Y)/k! 0
10 1-0a -Y -Y ’

0 —1+aop (Y —1)/k! (Y —1)/k"
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with
A& =& - =G -1/,  Ge=E&+E,  oL=E+E
Expanding the determinant with respect to the first column, we find
=09 — 701, (6.41)
where _ _
A Y +(1-Y)/kK 0

Ww=| 1-05g Y Y

~1+4+a6, (Y =1/ (Y —1)/k"

is the determinant of the stationary binary model and was already computed in §5.2.2, and

AL(1-2Y) ALY(1-Y)/E, 0
= 1—0¢ -y -Y
—1+ 0o (Y —1)/k! (Y —1)/k"

Assume Y = 1, i.e., the solution is in the gas phase. Then, ¢ = 1. From §5.2.2, we know
that 99 = 1 — 7. By a direct computation, we have 9; = 0. Therefore, 9 = 99 = 1 — 7 > 0.
Equality holds at a transition point. The other single-phase case Y = 0 is similar.

Assume now Y € (0,1), i.e., the solution is in the two-phase regime. Then, ¢ = o7 = 1,
€ =xg and §; = x1. From §5.2.2, we know that

0 =A7 | S Y Y
0= AT — 1k (¥ - /a0

can be expressed as a quadratic form and hence 99 > 0, with equality if and only if x5 = =,

namely, at an azeotropic point. Let us compute 0;. By expanding with respect to its first column

and by noticing that the, we obtain

0 = (1—2Y)0y.

Coming back to (6.41), we get -
0=1079[1—7(1-2Y)].

From (6.37), we infer by (6.12) that

_ Ko+ Kp—2¢  o|"Y?
1-2Y)=1—(1-2 < 1.
7( ) [ Ko K, T+T
Consequently, 0 has the same sign behavior as 0g. This completes the proof. ]

Numerical results. We compare NPIPM with Newton-min. We fix k' = 2, ¥ = 0.5. The
stopping criterion is || F(X)| < 10~7. We set the maximum number of iterations to be 50. If the
number of iterations of the algorithm exceeds this maximum number, the case will be considered
as divergent. With NPIPM, the parameters for the line search are k = 0.4 and ¢ = 0.99. In the
last equation of the NPIPM system, we take n = 1075,

We sweep over the grid of parameters

(¢y,7) € {0.01; 0.02; ...; 0.99} x {0.1; 0.2; ...; 10}.
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Figure 6.36: Evolutionary binary model: percentage of convergence over all initial points.
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and the set of initial points
DY = {(Y, & &G, )" e MY | 1 (66)° — (66)° > 0 and 1 (&6)°/k! — (66)°/K" > 0}

where M = {0.1; 0.2; ...; 0.9}. The number of initial points used for the tests is |D°| = 1944.
For each pair (c,,7), we count the number of initial points for which the method converges and
then plot the percentage of success for each algorithm. The results are shown in Figure 6.36.
The specific case 7 = 1 is highlighted in Figure 6.37.
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— NPIPM
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C

Figure 6.37: Evolutionary binary model with 7 = 1.

6.2 Multiphase compositional model

After the simple models of the previous section, we now consider a relatively realistic multiphase
compositional fluid flow model used at IFPEN. Our purpose is to compare NPIPM to the
Newton-min method on this model developed in Fortran 90.

6.2.1 Continuous model
In this model, there can be up to three phases, namely,
'@ = {M/? O’ G}?

where W stands for water, O stands for oil and G stands for gas. Moreover, the water phase is
assumed to be pure and immiscible, that is, it contains only one component referred to as HoO
and this component does not appear in the two other phases.

K={L1I, ..., K}
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be the set of hydrocarbon components, with K > 2. As a consequence of the previous assumption
on the water phase, the hydrocarbons are present only in the oil and gas phases, which are
mixable and compositional. Assuming that the medium is isotherm with fixed temperature T,
we consider the following problem.

GIVEN

FIND

b, Py {Pataer vy, {PL}iaecx 2wy {Aataczs {Qatac,

{Sataez, (& Gaecxawy {tUataesr, P

as functions of (x,t) € Dy x Ry, where D, = R? is a bounded domain, satisfying

e the mass conservation of HoO and hydrocarbons

a O . 0]
¢§(PW5W) + divy (pyuw) = qw,
4 ] ' - i i i
¢=:(p0S0éo + pcScés) + divy(poépuo + paésua) = 4,

ot

for all ¢ € K, where the source terms are given by

aw = pwQw,
q' = poéoQo + paéaQa;

e the conservation of volume

DSy —1=0;

aeP

e the extended fugacity equalities

£oPh(xo,P) = PG (xa,P),  Viek,

where the components of z, = (2}, ..., 25X71) e RK~! are defined as

(%) «

g
Zjelc gé

Lo

e the complementarity conditions

min (Sa, 1— Z {g) =0, Va e 2\{W};

e

e the Darcy-Muskat law

Uq = —Aa V4P, Vo e L.

e homogeneous Neumann boundary conditions on ¢D,,.

(6.42a)

(6.42b)

(6.42c)

(6.42d)

(6.42¢)

(6.42f)
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The fugacity coefficents ®¢,, a € {O, G}, are those of the Peng-Robinson cubic law, elaborated
on in §3.2, where the liquid phase L has been replaced by the oil phasse O.

In comparison with the introductory model (1.4), there are two additional features. Firstly,
the phase densities p, for a € {O, G} are no longer constant. Instead, they are now known func-
tions of the pressure P and the extended composition &, in order to account for the compress-
ibility of the flow. Secondly, the source terms gy and ¢’ in (6.42a)-(6.42b) represent injection
and production wells located in the domain. The functions (), are concentrated in space and
depend on time by means of some given scenarios.

In practice, we do not really retain the velocity fields u, as unknowns. To reduce the size of
the system, the velocities u,, are eliminated by means of the last equation (6.42f). The number
of remaining unknown scalar fields and equations is then equal to 2K + 4. The compositional
multiphase model (6.42) is a PDE system, stated at the continuous level. It has to be discretized
in space and in time.

6.2.2 Discretized system and resolution

We use the cell centered finite volume method with an upstream two point flux discretization as
spatial discretization [4,12,84,101] and the backward Euler method with variable time step for
the time discretization. Let M;, be an admissible finite volume mesh of the reservoir D, a generic
control volume (or cell) of which are denoted by V. Let |[M| be the number of volumes. We also
introduce an increasing sequence of discret times {t"}o<,<xn such that t° = 0 and ¢V = T. The
vectors of the discrete unknowns in each finite volume V and at each time t" are denoted by

X3 = (P, Sw)i, (Sa)is (€O -+ (€607, (&)Y -+, (E8)F) e RFEHS,

which gives rise to a global unknown vector
X' = {X{ }vew, € REKHIMI,

Here, we have implicitly eliminated Sp from the set of unknowns by using Sp = 1 — Sy — S¢
from equation (6.42c). Therefore, in order to go from t" to t"*!, we need to solve a nonlinear
system of the form

Ap (X
min(Gp(X]), Hy(X7H) =

0, (6.43a)
. (6.43b)

The vector Ap(X7) = {Av(X]) bvew, € REKFDIM contains the discretized conservation laws
(6.42a)—(6.42b) and the extended equilibrium equations (6.42d). Note that the argument of Ay
is X! and not X", since the discretization of conservation laws (6.42a)—(6.42b) in a given
control volume involves its neighbor cells. Meanwhile,

Gr(Xp™) = {(Gv(XG ) bvew, € RML HL (X = (Hy(X3H) bven, € R,
come from (6.42e) and are strictly local to each cell, with

GV(X(/LJFI) _ [1 - (SW)3+1 - (SG)\T/LJFI - ZieK(gé)gJA} )

n+1y _
e R v
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Newton-min method. At each time-step t* — t"*! after combining all equations over all
finite volumes V € M, we have a system of (2K + 3)|My,| equations and then apply Newton-min
method to solve this system. In particular, if K = 3 the system has 9|M|. It is natural to choose
the solution X}’ = {X{'}vem, at time ¢" as the initial point (X}TLLH)O when applying the Newton-
min solver to (6.43). To alleviate notations, we shall henceforth omit the time label n + 1 in all
variables.

NPIPM. When applying NPIPM, we normally need to add three slack variables per cell. This
introduces 3 extra variables per cell, as well as one extra global variable v. The system to be
solved will have (2K + 7)|My| + 1 equations. In particular, if K = 3, the system has 13|M| + 1
equations. At each iteration, the Jacobian matrix must be inverted. In comparison to Newton-
min, the complexity of this task has thus increased by the ratio ((13|Mp| + 1) /9|Mp|)? ~ 2. To
avoid this waste of resource, we will add to our system just one extra variable v and no explicit
slack variable. With NPIPM, we need initial points which satisfy the positivity of the arguments
in complementarity conditions. Since X}' is not a strictly interior point, we cannot use it as an
intial point. Instead, we will have to modify it to obtain an appropriate value for (X,’L‘H)O.

6.2.3 Comparison of the results

We will compare NPIPM to the Newton-min method, which is currently used in IFPEN’s code
for the multiphase compositional model by means of two selected test settings. In order to reflect
the different physical phenomena present in these test cases, the following models are chosen.
In the triphasic cases, in which water oil and gas are present, the Brooks and Corey model is
used for the relative permeabilities. The relative permeability of the oil is computed from the
previous model and from the Stone IT model [112]. The other physical properties of oil and gas
such as the fugacities and the densities are computed using the Peng-Robinson cubic law and
for the computation of the viscosities the Lohrenz-Bray-Clark model [83] is used. The properties
of water (density and viscosity) are computed using data from [45].

Test of CO> injection in a three-component system. The first case is a miscible gas
(CO2) injection in a two-dimensional quarter of five-spot saturated with oil. The domain has a
size of 100m in both directions and it is discretized using [My,| = 20 x 20 regular grid blocks. The
reservoir model is homogeneous: the permeability is equal to 500 mD and the porosity is 0.3.
The gas, composed only of COy, is injected with a constant rate that is equal to 80 m?/day and
the pressure at the producer is fixed to 55 bar. The temperature is assumed to be constant at
80°C and the initial pressure is equal to 95 bar.

The total simulation time is 30 days, the initial time step is 0.05 day and the minimum and
maximum time step are respectively 107> day and 20 days. The initial water saturation is given
by Sy = 0.25 and the oil saturation is equal to 1 — Syy. The oil and gas phases are a mixture of
three components I = {C;, Cg, CO2} and the initial oil composition is given by C; (20%), Cg
(80%) and CO2 (0%).

Time steps | Number of iterations | Restarts
Newton-min 34 164 1
NPIPM 33 199 0

Table 6.1: Three-component system: numerical results of Newton-min method and NPIPM.
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Figure 6.38: Gas saturation and partial fraction of component COs in gas phase after 30 days:
Newton-min method and NPIPM.
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Figure 6.39: CO2 injection in a seven-component system: gas saturation and CO2 molar compo-
nent in gas phase after 100 days.

Test of CO; injection in a seven-component system. The second case study still simu-
lates a COq injection in a three-dimensional quarter of five-spot saturated with oil. The reservoir
size is 100 x 100 x 20 m and we use |[Mj| = 20 x 20 x 4 grid blocks to discretize the reservoir
model. The fluid is a seven-component mixture K = {C;Na, Ca, CO2, Cy6, Cr12, C1319, Cp},
with the following initial composition : C;Ng (38.8209%), Ca3 (14.5821%), CO2 (2.2685%), Cae
(11.9334%), Cr12 (19.4598%), Ci319 (8.7079%) and C3, (4.2274%). The initial pressure and tem-
perature are respectively 200 bar and 132.77°C. The COa is injected with a fixed rate of 200
m?/day and the production pressure is 150 bar.

Time steps | Number of iterations | Restarts
Newton-min 43 175 0
NPIPM 43 179 0

Table 6.2: Seven-component system: numerical results of Newton-min method and NPIPM.

Results and discussions. Figures 6.38 and 6.39 display the spatial distribution of the gas
saturation Sg and the partial fraction of CO2 in the gas phase at the end of the simulation
obtained by Newton-min and NPIPM algorithms. For each test, the two algorithms give the
same physical results in terms of saturations, pressure and molar fractions. Tables 6.2 and 6.1
summarize the numerical results in terms of number of time steps, number of Newton iterations
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and number of restarted time-steps for each case test. We observe that NPIPM converges at
every time step and does not need to restart by dividing the time-step by 2. However, NPIPM
takes a few more iterations. Further analysis shows that this is due to the choice of the initial
point, since NPIPM needs to start at interior point whereas Newton-min method uses the state
at the previous time-step as a starting point. For this realistic model, it was not easy to find a
good strategy to go back inside this region without taking several iterations to converge. Other
warm start strategies are under investigation.

While the four simplified models of §6.1 were simple enough to be implemented using Matlab,
the multiphase compositional model (6.42) required partially existing subroutines for realistic
physical closure laws and was therefore implemented in a heavier Fortran prototype. Due to a lack
of time, we were unable to code the domain extension for Peng-Robinson’s law in this prototype.
This is the reason why we observed that when one of the phases (oil or gas) disappears, the two
algorithms abruptly stopped because the cubic equation has a unique real root. Naturally, the
extension procedure described in §3.3.3.2 should be added to overcome this issue.
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7.1 Summary of key results

In response to the objectives stated in §1.1.3, we have conducted research works in two distinct
but interrelated directions. The corresponding developments and contributions have given rise
to several presentations at national and international conferences. We are now finalizing two
scientific publications directly related to the thesis.

7.1.1 Theoretical aspects of the unified formulation

The first direction, presented in Part I (chapters §2-§3), is concerned with a better mathematical
understanding of the unified formulation for the phase equilibrium problem. It was not initially
planned as such, but became increasingly evident as our investigations progressed. Let us single
out the most prominent results of this part.

When postulated as a founding model, the unified formulation is able to recover all the
properties known to physicists on phase equilibrium. Indeed, the complementary equations do
encapsulate the tangent plane criterion [Theorem 2.1], which cannot be derived from the nat-
ural variable formulation alone, without the help of some extra stability analysis. The unified
formulation can also be regarded as a characterization of a constrained minimization problem
[Theorems 2.3 and 2.4], in which the objective function is some modified Gibbs energy of the
mixture. This characterization is slightly stronger than the usual KKT optimality conditions,
insofar as it implies a choice (by a continuity principle) of one among an infinity of minimizers
when a phase vanishes.

The possibility of assigning well-defined values to the extended fractions of an absent phase
appears to be a theoretical strength of the unified formulation. Upon closer inspection, however,
this possibility can only be achieved if the Gibbs functions meet some restrictive requirements

205
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[Hypotheses 2.2]. In particular, they must be strictly convex over the whole domain of frac-
tions. Shedding light on the favorable assumptions for the unified formulation in terms of Gibbs
functions is perhaps the most consequential outcome of this part.

Unfortunately, Hypotheses 2.2 are not satisfied by all commonly used Gibbs functions. In
these circumstances, the obligation of assigning well-defined values to the extended fractions of
an absent phase becomes a weakness that dangerously jeopardizes the whole unified approach.
This is especially true for Gibbs functions derived from cubic equations of states, for which
they are not even defined on the whole domain of fractions. The extension procedures proposed
in §3.3 is another substantial contribution, which is merely aimed at improving the “survival”
chance of the unified formulation.

7.1.2 Practical algorithms for the numerical resolution

The second direction, presented in Part II (chapters §4-8§6), deals with numerical methods.
We reviewed and implemented several existing algorithms in the family of semismooth methods
(Newton-min) and that of smoothing methods (6-regularization, Mehrotra’s interior-point), each
having the line search option. These were tested on a hierarchy of models including not only
stationary binary and ternary two-phase mixtures but also evolutionary models.

The need for a new method appeared very soon. On the ground of previous numerical results,
we deemed interior-point methods to be a sound basis and built the NPIPM variant, in which the
regularization parameter receives the same status as the unknowns. The superiority of NPIPM
over Newton-min was overwhelming for small test cases. Therefore, it came as a disappointment
that on the big test cases corresponding to a real flow model, NPIPM could not achieve the same
astounding success. For some injection scenarios, it even performed rather poorly in comparison
with Newton-min.

The difference with small test cases lies in the initial point. For these, it was easy to start
with a good interior point. For the full flow model, the natural initial point is the state at the
previous time-step. However, because of thermodynamic equilibrium, this state is always on the
boundary of the interior region, and so far we do not have any good strategy to go back inside this
region. Taking inspiration from existing work in optimization around warm start strategies, we
have tried several perturbation techniques of the current state. However, we remain dissatisfied
and believe that there is still even better to do.

7.2 Recommendations for future research

We outline two avenues to pursue this work. The first one is a technique that could lead to a
good initial point for NPIPM on the full flow model. The second one is a further improvement
that could be essential for large time-steps.

7.2.1 Warm start strategy

At least in the context of optimization problems, interior-point methods work by following some
central path to an optimal solution. In practice, one needs to start the algorithm at a well-
centered interior point. Any even small change in the objective function or in the constraints
can cause the optimal solution from the previous version of the problem to move to the boundary
and thus to be far from the central path for the new problem, so the algorithm takes several
iterations to get back near the central path and to converge.
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This well-known issue can be addressed by using smart perturbations of the current iterate.
There are relatively few papers discussing these strategies for warm starting (see [64,121], for
instance). In some particular situations (linear programs), some of the strategies prove to be
efficient and reduce significantly the number of iterations. In our problems, we still need to
deeply understand what is a well-centered point and how to perturb the current state in order
to get closer to such a point.

7.2.2 Continuation Newton for large time-steps

Another source of stiffness unfavorable to Newton convergence for evolutionary problems lies in
a too large size of the time-step At, which is allowed by the backward Euler time-discretization.
As aremedy, Younis et al. [122] suggested a continuation Newton procedure, in which the iterates
match with intermediate times instead of being all targeted at t™ + At. This idea rests upon
homotopic continuation, which is not easy not implement.

It turns out that we can use the same “trick” as in NPIPM to work out a more automatic
version of this idea. We sketch out this prospect for the differential equation

dX
S = f(X), (7.1)

where f is a continuously differentiable function. By the backward Euler scheme

XXy

= —f(X), (72)

where X is the value at the next time-step and X the state at the current time-step, we are led
to solving the nonlinear system
X+ Atf(X)—Xp =0. (7.3)

When At is small, the nonlinearity is “mild.” As At grows larger and larger, we may run into
trouble. Instead of decreasing the time-step, we consider the equivalent system

X+ (1 -v)Atf(X)— X, =0, (7.4a)
0, (7.4b)

vV =

where v is considered as a new variable. Following the same lines as in §5.1.1, we arrive at
another enlarged system, i.e.,

X+ ({1 -v)Atf(X)— X, =0, (7.5a)
{coupling terms} + nv + v = 0, (7.5b)

where 1 > 0 is a small parameter. The last system can be solved by the classical Newton method
in the unknown (X, v), starting from the initial point (Xj, 1).
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Résumé : Dans les simulateurs de réservoir, la prise en
compte des lois d’équilibre thermodynamique pour les
mélanges polyphasiques d'hydrocarbures est une partie
délicate. La difficulté réside dans la gestion de 'appari-
tion et de la disparition des phases pour différents consti-
tuants. L'approche dynamique traditionnelle, dite de
variable switching, consiste a ne garder que les incon-
nues des phases présentes et les équations relatives a
celles-ci. Elle est lourde et cotiteuse, dans la mesure ou le
« switching » se produit constamment, méme d'une itéra-
tion de Newton a l'autre.

Une approche alternative, appelée formulation unifiee,
permet de maintenir au cours des calculs un jeu fixe
d'inconnues et d'équations. Sur le plan théorique, c'est un
progrés important. Sur le plan pratique, comme la nou-
velle formulation fait intervenir des équations de com-
plémentarité qui sont non-lisses, on est obligé aprés
discrétisation d'avoir recours a la méthode semi-lisse
Newton-min, au comportement souvent pathologique.

Pour aller au bout de I’intérét de la démarche unifiée,
cette thése a pour objectif de lever cet obstacle numé-
rique en élaborant des algorithmes de résolution mieux
adaptés, avec une meilleure convergence. Notre métho-
dologie consiste a s’inspirer des méthodes qui ont fait
leur preuve en optimisation sous contraintes et a les
transposer aux systémes généraux. Cela conduit aux mé-
thodes de points intérieurs, dont nous proposons une
version non-paramétrique appelée NPIPM, avec des
résultats supérieurs a Newton-min.

Une autre contribution de ce travail doctoral est la com-
préhension et la résolution (partielle) d’une autre obs-
truction au bon fonctionnement de la formulation uni-
fiée, jusque-1a non identifiée dans la littérature. 11 s’agit
de la limitation du domaine de définition des fonctions
de Gibbs associées aux lois d’état cubiques. Pour remé-
dier a I’éventuelle non-existence de solution du systéme,
nous préconisons un prolongement naturel des fonctions
de Gibbs.
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Abstract: In reservoir simulators, it is usually delicate to
take into account the laws of thermodynamic equilibrium
for multiphase hydrocarbon mixtures. The difficulty lies
in handling the appearance and disappearance of phases
for different species. The traditional dynamic approach,
known as variable switching, consists in considering only
the unknowns and equations of the present phases. It is
cumbersome and costly, insofar as "switching" occurs
constantly, even from one Newton iteration to another.

An alternative approach, called unified formulation, al-
lows a fixed set of unknowns and equations to be main-
tained during the calculations. From a theoretical point of
view, this is an major advance. On the practical level,
because of the nonsmoothness of the complementarity
conditions involved in the new formulation, the discre-
tized equations have to be solved by the semi-smooth
Newton-min method, whose behavior is often pathologi-
cal.

In order to fully exploit the interest of the unified ap-
proach, this thesis aims at circumventing this numerical
obstacle by means of more robust resolution algorithms,
with a better convergence. To this end, we draw inspira-
tion from the methods that have proven their worth in
constrained optimization and we try to transpose them to
general systems. This gives rise to interior-point meth-
ods, of which we propose a nonparametric version called
NPIPM. The results appear to be superior to those of
Newton-min.

Another contribution of this doctoral work is the under-
standing and (partial) resolution of another obstruction to
the proper functioning of the unified formulation, hither-
to unidentified in the literature. This is the limitation of
the domain of definition of Gibbs' functions associated
with cubic equations of state. To remedy the possible
non-existence of a system solution, we advocate a natu-
ral extension of Gibbs' functions.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery

Route de I'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France




	Introduction
	Gestion des phases d'un mélange compositionnel
	Simulation des écoulements polyphasiques multiconstituants
	Apports et revers des conditions de complémentarité
	Objectifs de la thèse

	Méthodes existantes pour les conditions de complémentarité
	Méthodes de Newton non-lisses
	Méthodes de régularisation

	Démarche, contributions et plan du mémoire
	Étude du problème de l'équilibre des phases
	Analyse de convexité des lois simples et prolongement des lois cubiques
	Élaboration de la méthode des points intérieurs non-paramétrique
	Comparaison numérique de plusieurs méthodes sur plusieurs modèles


	I Thermodynamic setting
	Phase equilibrium for multicomponent mixtures
	Preliminary notions
	Material balance
	Chemical equilibrium

	Two mathematical formulations
	Variable-switching formulation
	Unified formulation

	Properties of the unified formulation
	Behavior of tangent planes
	Connection with Gibbs energy minimization
	Well-definedness of extended fractions

	Two-phase mixtures
	The multicomponent case
	The binary case


	Convexity analysis and extension of Gibbs energy functions
	Convexity analysis for simple Gibbs functions
	Henry's law
	Margules' law
	Van Laar's law

	Cubic equations of state from a numerical perspective
	General principle
	Van der Waals' law
	Peng-Robinson's law

	Domain extension for cubic EOS-based Gibbs functions
	Trouble ahead
	Direct method for binary mixture
	Indirect method for multicomponent mixtures



	II Numerical methods and simulations
	Existing methods for sytems with complementarity conditions
	Background on complementarity problems
	Classes of problems
	Classes of methods

	Nonsmooth approach to generalized equations
	Nonsmooth Newton method
	Semismooth Newton method
	Newton-min method

	Smoothing methods for nonsmooth equations
	Newton's method
	Smoothing functions for complementarity conditions
	Standard and modified interior-point methods

	What may go wrong?
	Issues with nonsmooth methods
	Issues with smoothing methods


	A new nonparametric interior-point method
	Design principle and properties of NPIPM
	When the parameter becomes a variable
	Global convergence analysis

	Regularity of zeros for the two-phase multicomponent model
	A general proof for strictly convex laws
	A special proof for Henry's law


	Numerical experiments on various models
	Simplified models
	Stratigraphic model
	Stationary binary model
	Stationary ternary model
	Evolutionary binary model

	Multiphase compositional model
	Continuous model
	Discretized system and resolution
	Comparison of the results


	Conclusion and perspectives
	Summary of key results
	Theoretical aspects of the unified formulation
	Practical algorithms for the numerical resolution

	Recommendations for future research
	Warm start strategy
	Continuation Newton for large time-steps


	Bibliography


