K. Akita and F. Yoshida, Bubble size, interfacial area, and liquid-phase mass transfer coefficient in bubble columns, Industrial & Engineering Chemistry Process Design and Development, vol.13, issue.1, pp.84-91, 1974.

E. Camarasa, C. Vial, S. Poncin, G. Wild, N. Midoux et al., Influence of coalescence behaviour of the liquid and of gas sparging on hydrodynamics and bubble characteristics in a bubble column, Chemical Engineering and Processing, vol.38, pp.329-344, 1999.

H. Chaumat, A. Billet, and H. Delmas, Hydrodynamics and mass transfer in bubble column: Influence of liquid phase surface tension, Chemical Engineering Science, vol.62, pp.7378-7390, 2007.

R. Clift, J. R. Grace, and M. E. Weber, Bubbles, Drops, and Particles, 1978.

P. Dargar and A. Macchi, Effect of surface-active agents on the phase holdups of three-phase fluidized beds, Chemical Engineering and Processing, vol.45, pp.764-772, 2006.

A. Das and P. K. Das, Numerical study of bubble formation from submerged orifice under reduced gravity condition, Procedia IUTAM, vol.18, pp.8-17, 2015.

A. Forret, Hydrodynamics scale-up of slurry bubble columns, 2003.

A. Frumkin and V. G. Levich, On the surfactants and interfacial motion, Z. Fizicheskoi Khimii, vol.21, pp.1183-1204, 1947.

N. Kantarci, F. Borak, and K. O. Ulgen, Bubble column reactors, Process Biochemistry, vol.40, pp.2263-2283, 2005.

R. Krishna, A scale-up strategy for a commercial scale bubble column slurry reactor for Fischer-Tropsch synthesis, Oil & Gas Science and Technology, vol.55, issue.4, pp.359-393, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02054048

A. A. Kulkarni and J. B. Joshi, Bubble formation and bubble rise velocity in gas-liquid systems: A review, Industrial & Engineering Chemistry Research, vol.44, pp.5873-5931, 2005.
DOI : 10.1021/ie049131p

V. G. Levich, Physicochemical Hydrodynamics, 1962.

C. Liu, B. Liang, S. Tang, and E. Min, Effects of orifice orientation and gas-liquid flow pattern on initial bubble size, Chinese Journal of Chemical Engineering, vol.21, issue.11, pp.1206-1215, 2013.

T. Miyauchi and C. Shyu, Flow of fluid in gas-bubble columns, Chemical engineering, vol.34, issue.9, pp.958-964, 1970.

J. M. Schweitzer, Local gas hold-up measurements in fluidized bed and slurry bubble column, Chemical Engineering Science, vol.56, issue.3, pp.1103-1110, 2001.
DOI : 10.1016/s0009-2509(00)00327-4

Y. T. Shah, B. G. Kelkar, S. P. Godbole, and W. D. Deckwer, Design parameters estimations for bubble column reactors, American Institute of Chemical Engineering Journal, vol.28, issue.3, pp.353-379, 1982.
DOI : 10.1002/aic.690280302

A. Smolianski, H. Haario, and P. Luukka, Numerical study of dynamics of single bubbles and bubble swarms, Applied Mathematical Modelling, vol.32, issue.5, pp.641-659, 2008.

K. Wiswanathan, Flow Patterns in Bubble Columns, 1969.

J. Xue, Bubble velocity, size and interfacial area measurements in bubble columns, 2004.
DOI : 10.1002/aic.11386

J. Zahradník, M. Fialová, F. Ka?tánek, K. D. Green, and N. H. Thomas, The effect of electrolytes on bubble coalescence and gas hold-up in bubble column reactors, Chemical Engineering Research and Design, vol.73, pp.341-346, 1995.

J. Zahradník, M. Fialová, M. Røu?i?ka, J. Draho?, F. Ka?tánek et al., Duality of the gas-liquid flow regimes in bubble column reactors, vol.52, pp.3811-3826, 1997.

E. Alméras, C. Plais, F. Euzenat, F. Risso, V. Roig et al., Scalar mixing in bubbly flows: Experimental investigation and diffusivity modelling, Chemical Engineering Science, vol.140, pp.114-122, 2016.

E. Alméras, F. Risso, V. Roig, S. Cazin, C. Plais et al., Mixing by bubble-induced turbulence, Journal of Fluid Mechanics, vol.776, pp.458-474, 2015.

B. Andersson, R. Andersson, L. Håkansson, M. Mortensen, R. Sudiyo et al., Computational Fluid Dynamics for Engineers, 2012.

G. Besagni, A. Di-pasquali, L. Gallazzini, E. Gottardi, L. P. Colombo et al., The effect of aspect ratio in counter-current gas-liquid bubble columns: Experimental results and gas holdup correlations, International Journal of Multiphase Flow, vol.94, pp.53-78, 2017.

G. Besagni, L. Gallazzini, and F. Inzoli, On the scale-up criteria for bubble columns, 2018.

R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, revised second edn, 2007.

J. Boussinesq, Théorie de l'écoulement tourbillonnant et tumultueux des liquides dans les lits rectilignes à grande section, 1897.

A. G. Bridge, L. Lapidus, and J. C. Elgin, The mechanics of vertical gasliquid fluidized system i: Countercurrent flow, American Institute of Chemical Engineering Journal, vol.10, issue.6, pp.819-826, 1964.
DOI : 10.1002/aic.690100610

A. Buffo and D. L. Marchisio, Modeling and simulation of turbulent polydisperse gas-liquid systems via the generalized population balance equation, Reviews in Chemical Engineering, vol.30, pp.73-126, 2014.

A. D. Burns, T. Frank, I. Hamill, and J. M. Shi, The favre averaged drag model for turbulent dispersion in eulerian multi-phase flows, 5th International Conference on Multiphase Flow, 2004.

L. F. Burns and R. G. Rice, Circulation in bubble columns, American Institute of Chemical Engineering Journal, vol.43, issue.6, pp.1390-1402, 1997.

V. Cappello, Simulation of heterogeneous flow in large bubble column with mixing of species, 2016.

R. Clift, J. R. Grace, and M. E. Weber, Bubbles, Drops, and Particles, 1978.

D. P. Combest, P. A. Ramachandran, and M. P. Dudukovic, On the gradient diffusion hypothesis and passive scalar transport in turbulent flows, Industrial & Engineering Chemistry Research, vol.50, issue.15, pp.8817-8823, 2011.

K. Ekambara, M. T. Dhotre, and J. B. Joshi, CFD simulations of bubble column reactors: 1D, 2D and 3D approach, vol.60, pp.6733-6746, 2005.

S. E. Elghobashi and T. W. Abou-arab, A two-equation turbulence model for two-phase flows, Physics of Fluids, vol.26, pp.931-938, 1983.

D. F. Fletcher, D. D. Mcclure, J. M. Kavanagh, and G. W. Barton, CFD simulation of industrial bubble columns: Numerical challenges and model validation successes, Applied Mathematical Modelling, vol.44, pp.25-42, 2017.

A. Forret, Hydrodynamics scale-up of slurry bubble columns, 2003.

L. Gemello, C. Plais, F. Augier, A. Cloupet, and D. L. Marchisio, Hydrodynamics and bubble size in bubble columns: Effects of contaminants and spargers, Chemical Engineering Science, vol.184, pp.93-102, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01899599

J. Grace, T. Wairegi, and T. H. Nguyen, Shapes and velocities of single drops and bubbles moving freely through immiscible liquids, Transactions of the Institution of Chemical Engineers, vol.54, pp.167-173, 1976.

G. R. Guédon, G. Besagni, and F. Inzoli, Prediction of gas-liquid flow in an annular gap bubble column using a bi-dispersed eulerian model, Chemical Engineering Science, vol.161, pp.138-150, 2017.

G. Hillmer, L. Weismantel, and H. Hofmann, Investigations and modelling of slurry bubble columns, Chemical Engineering Science, vol.49, issue.6, pp.837-843, 1994.

M. Hlawitschka, P. Kováts, K. Zähringer, and H. Bart, Simulation and experimental validation of reactive bubble column reactors, Chemical Engineering Science, vol.170, pp.306-319, 2017.

M. Ishii and N. Zuber, Drag coefficient and relative velocity in bubbly, droplet or particulate flows, American Institute of Chemical Engineering Journal, vol.25, issue.5, pp.843-855, 1979.

H. A. Jakobsen, H. Lindborg, and C. A. Dorao, Modeling of bubble column reactors: Progress and limitations, Industrial & Engineering Chemistry Research, vol.44, issue.14, pp.5107-5151, 2005.

J. B. Joshi, Computational flow modelling and design of bubble column reactors, Chemical Engineering Science, vol.56, issue.21, pp.5893-5933, 2001.

I. Kataoka, D. C. Besnard, and A. Serizawa, Basic equation of turbulence and modelling of interfacial transfer terms in gas-liquid two-phase flow, Chemical Engineering Communications, vol.118, pp.221-236, 1992.

Y. Kawase and M. Moo-young, Turbulence intensity in bubble columns, The Chemical Engineering Journal, vol.40, issue.1, pp.55-58, 1989.

B. E. Launder and D. B. Spalding, Lectures in Mathematical Models of Turbulence, 1972.

G. Li, X. Yang, and G. Dai, CFD simulation of effects of the configuration of gas distributors on gas-liquid flow and mixing in a bubble column, Chemical Engineering Science, vol.64, issue.24, pp.5104-5116, 2009.

D. D. Mcclure, T. P. Dolton, G. W. Barton, D. F. Fletcher, and J. M. Kavanagh, Hydrodynamics and mixing in airlift contactors: Experimental work and CFD modelling, Chemical Engineering Research and Design, vol.127, pp.154-169, 2017.

D. D. Mcclure, J. M. Kavanagh, D. F. Fletcher, and G. W. Barton, Development of a CFD model of bubble column bioreactors: Part one-A detailed experimental study, Chemical Engineering & Technology, vol.36, issue.12, pp.2065-2070, 2013.

D. D. Mcclure, J. M. Kavanagh, D. F. Fletcher, and G. W. Barton, Experimental investigation into the drag volume fraction correction term for gas-liquid bubbly flows, Chemical Engineering Science, vol.170, pp.91-97, 2017.

D. D. Mcclure, H. Norris, J. M. Kavanagh, D. F. Fletcher, and G. W. Barton, Validation of a computationally efficient computational fluid dynamics (CFD) model for industrial bubble column bioreactors, Industrial & Engineering Chemistry Research, vol.53, issue.37, pp.14526-14543, 2014.

T. Miyauchi and C. Shyu, Flow of fluid in gas bubble columns, Kagaku Kogaku, vol.34, issue.9, pp.958-964, 1970.

D. Pfleger and S. Becker, Modeling and simulation of the dynamic flow behavior in a bubble column, Chemical Engineering Science, vol.56, pp.1737-1747, 2001.

S. Radl and J. G. Khinast, Multiphase flow and mixing in dilute bubble swarms, American Institute of Chemical Engineering Journal, vol.56, pp.2421-2445, 2010.

P. M. Raimundo, Analysis and modelization of local hydrodynamics in bubble columns, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01267349

V. Ranade, Modelling of turbulent flow in a bubble column reactor, Process and Product Development, vol.75, pp.1-23, 1997.

I. Roghair, Y. M. Lau, N. G. Deen, H. M. Slagter, M. W. Baltussen et al., On the drag force of bubbles in bubble swarms at intermediate and high reynolds numbers, Chemical Engineering Science, vol.66, pp.3204-3211, 2011.

H. Rusche and R. Issa, The effect of voidage on the drag force on particles, droplets and bubbles in dispersed two-phase flow, in '2nd Japanese European Two-Phase Flow Meeting, 2000.

R. Rzehak and E. Krepper, CFD modeling of bubble-induced turbulence, International Journal of Multiphase Flow, vol.55, pp.138-155, 2013.

S. Sasaki, K. Hayashi, and A. Tomiyama, Effects of liquid height on gas holdup in air-water bubble column, Experimental Thermal and Fluid Science, vol.72, pp.67-74, 2016.

G. B. Wallis, One-dimensional two-phase flow, 1969.

D. C. Wilcox, Turbulence modeling for CFD, 1998.

P. M. Wilkinson, A. P. Spek, and L. L. Van-dierendonck, Design parameters estimation for scale-up of high pressure bubble column, American Institute of Chemical Engineering Journal, vol.38, pp.544-554, 1992.

V. Yakhot and S. A. Orszag, Renormalization group analysis of turbulence i basic theory, Journal of scientific computing, vol.1, issue.1, pp.1-51, 1986.

W. Yao and C. Morel, Volumetric interfacial area prediction in upward bubbly two-phase flow, International Journal of Heat and Mass Transfer, vol.47, pp.307-328, 2004.

D. Zhang, Eulerian modeling of reactive gas-liquid flow in a bubble column, 2007.

D. Zhang, N. G. Deen, and J. A. Kuipers, Numerical simulation of dynamic flow behavior in a bubble column: A study of closures for turbulence and interface forces, Chemical Engineering Science, vol.61, pp.7593-7608, 2006.

V. Alopaeus, J. Koskinen, K. I. Keskinen, and J. Majander, Simulation of the population balances for liquid-liquid systems in a nonideal stirred tank. part 2-parameter fitting and the use of the multiblock model for dense dispersions, Chemical Engineering Science, vol.57, issue.10, pp.1815-1825, 2002.

B. Andersson, R. Andersson, L. Håkansson, M. Mortensen, R. Sudiyo et al., Computational Fluid Dynamics for Engineers, 2012.

Z. Bilicki and J. Kestin, Transition criteria for two-phase flow patterns in vertical upward flow, International Journal of Multiphase Flow, vol.13, pp.283-298, 1987.

A. Buffo, Multivariate population balance for turbulent gas-liquid flows, 2012.

A. Buffo, J. De-bona, M. Vanni, and D. L. Marchisio, Simplified volumeaveraged models for liquid-liquid dispersions: Correct derivation and comparison with other approaches, Chemical Engineering Science, vol.153, pp.382-393, 2016.

A. Buffo, M. Vanni, D. L. Marchisio, and R. O. Fox, Multivariate Quadrature-Based Moments Methods for turbulent polydisperse gas-liquid systems, International Journal of Multiphase Flow, vol.50, pp.41-57, 2013.

L. F. Burns and R. G. Rice, Circulation in bubble columns, American Institute of Chemical Engineering Journal, vol.43, issue.6, pp.1390-1402, 1997.

P. M. Carrica and A. A. Clausse, A Mathematical Description of the Critical Heat Flux as Nonlinear Dynamic Instability, Gouesbet and A. Berlemont. Instabilities in Multiphase Flow, 1993.

G. Casamatta and A. Vogelpohl, Modeling of fluid dynamics and mass transfer in extraction columns, German Chemical Engineering, vol.8, pp.96-103, 1985.

A. K. Chesters, The modeling of coalescence processes in fluid-liquid dispersions: A review of current understanding, Chemical Engineering Research and Design: transactions of the Institution of Chemical Engineers: Part A, vol.69, pp.259-270, 1991.

D. Colella, D. Vinci, R. Bagatin, M. Masi, and E. Abu-bakr, A study on coalescence and breakage mechanisms in three different bubble columns, Chemical Engineering Science, vol.54, issue.21, pp.4767-4777, 1999.

C. Colin, X. Riou, and J. Fabre, Turbulence and shear-induced coalescence in gas-liquid pipe flows, ICMF 2004-5th International Conference on Multiphase Flow, 2004.

C. A. Coulaloglou, Dispersed phase interactions in an agitated flow vessel, 1975.

C. A. Coulaloglou and L. L. Tavlarides, Description of interaction processes in agitated liquid-liquid dispersions, Chemical Engineering Science, vol.32, pp.1289-1297, 1977.

J. De-bona, A. Buffo, M. Vanni, and D. L. Marchisio, Limitations of simple mass transfer models in polydisperse liquid-liquid dispersions, Chemical Engineering Journal, vol.296, pp.112-121, 2016.

H. Dette and W. J. Studden, The Theory of Canonical Moments with Applications in Statistics, Probability, and Analysis, 1997.

L. Doubliez, The drainage and rupture of a non-foaming liquid film formed upon bubble impact with a free surface, International Journal of Multiphase Flow, vol.17, pp.783-803, 1991.

S. Falzone, A. Buffo, M. Vanni, and D. L. Marchisio, Simulation of turbulent coalescence and breakage of bubbles and droplets in the presence of surfactants, salts, and contaminants, Advances in Chemical Engineering, vol.52, pp.125-188, 2018.

A. Forret, Hydrodynamics scale-up of slurry bubble columns, 2003.

T. Frank, P. J. Zwart, E. Krepper, H. M. Prasser, and D. Lucas, Validation of cfd models for mono-and polydisperse airâ??water two-phase flows in pipes, Nuclear Engineering and Design, vol.238, issue.3, pp.647-659, 2008.

S. K. Friedlander, Smoke, Dust and Haze, 1977.

X. Y. Fu and M. Ishii, Two-group interfacial area transport in vertical airwater flow: I. mechanistic model, Nuclear Engineering and Design, vol.219, issue.2, pp.14-168, 2003.

Z. Gao, D. Li, A. Buffo, W. Podgórska, and D. L. Marchisio, Simulation of droplet breakage in turbulent liquid-liquid dispersions with CFD-PBM: Comparison of breakage kernels, Chemical Engineering Science, vol.142, pp.277-288, 2016.

L. Gemello, V. Cappello, F. Augier, D. L. Marchisio, and C. Plais, CFDbased scale-up of hydrodynamics and mixing in bubble columns, Chemical Engineering Research and Design, vol.136, pp.846-858, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01952005

L. Gemello, C. Plais, F. Augier, A. Cloupet, and D. L. Marchisio, Hydrodynamics and bubble size in bubble columns: Effects of contaminants and spargers, Chemical Engineering Science, vol.184, pp.93-102, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01899599

F. B. Godin, G. Cooper, D. Rey, and A. D. , Numerical methods for a population-balance model of a periodic fermentation process.', American Institute of, Chemical Engineering Journal, vol.45, pp.1359-1364, 1999.

R. G. Gordon, Error bounds in equilibrium statistical mechanics, Journal of Mathematical Physics, vol.9, pp.655-663, 1981.

R. Gunawan, I. Fusman, and R. D. Braatz, High resolution algorithms for multidimensional population balance equations, American Institute of Chemical Engineering Journal, vol.50, pp.2738-2749, 2004.

R. P. Hesketh, T. W. Russell, and A. W. Etchells, Bubble size in horizontal pipelines, American Institute of Chemical Engineering Journal, vol.33, pp.663-667, 1987.

T. Hibiki and M. Ishii, One-group interfacial area transport of bubbly flows in vertical round tubes, International Journal of Heat and Mass Transfer, vol.43, pp.2711-2726, 2000.

T. Hibiki, T. Takasama, and M. Ishii, Interfacial area transport of bubbly flow in a small diameter pipe, Journal of Nuclear Science and Technology, vol.38, pp.614-620, 2001.

W. J. Howarth, Coalescence of drops in a turbulent flow field, Chemical Engineering Science, vol.19, pp.33-38, 1964.

G. V. Jeffreys and G. A. Davies, Coalescence of Liquid Droplets and Liquid Dispersion: Recent Advances in Liquid-Liquid Extraction, 1 st edn, 1971.

S. Kalkach-navarro, R. T. Lahey, and D. A. Drew, Analysis of the bubbly/slug flow regime transition, Nuclear Engineering and Design, vol.151, issue.1, pp.15-39, 1994.

M. Kato and B. E. Launder, The modeling of turbulent flow around stationary and vibrating square cylinders, '9th Symposium on Turbulent Shear Flows, 1993.

Y. Kawase and M. Moo-young, Turbulence intensity in bubble columns, The Chemical Engineering Journal, vol.40, issue.1, pp.55-58, 1989.

E. H. Kennard, Kinetic Theory of Gases, 1938.

S. E. Kentish, G. W. Stevens, and H. R. Pratt, Estimation of coalescence and breakage rate constants within a kühni column, Industrial & Engineering Chemistry Research, vol.37, issue.3, pp.1099-1106, 1998.

M. Konno, T. Muto, and S. Saito, Coalescence of dispersed drops in an agitated tank, Journal of Chemical Engineering of Japan, vol.21, pp.335-338, 1988.

R. Kuboi, I. Komasawa, and T. Otake, Collision and coalescence of dispersed drops in turbulent liquid flow, Journal of Chemical Engineering of Japan, vol.5, pp.423-424, 1972.

J. Kumar, M. Peglow, G. Warnecke, and S. Heinrich, The cell average technique for solving multi-dimensional aggregation population balance equations, Computers & Chemical Engineering, vol.32, pp.1810-1830, 2008.

M. Laakkonen, V. Alopaeus, and J. Aittamaa, Validation of bubble breakage, coalescence and mass transfer models for gas-liquid dispersion in agitated vessel, Chemical Engineering Science, vol.61, pp.218-228, 2006.

M. Laakkonen, P. Moilanen, V. Alopaeus, and J. Aittamaa, Modelling local bubble size distributions in agitated vessels, Chemical Engineering Science, vol.62, pp.721-740, 2007.

J. C. Lasheras, C. Eastwood, C. Martínez-bazán, and J. L. Montañés, A review of statistical models for the break-up of an immiscible fluid immersed into a fully developed turbulent flow, International Journal of Multiphase Flow, vol.28, pp.247-278, 2002.

C. H. Lee, L. E. Erickson, and L. A. Glasgow, Bubble break-up and coalescence in turbulent gas-liquid dispersions, Chemical Engineering Communications, vol.59, pp.65-84, 1987.

F. Lehr and D. Mewes, A transport equation for the interfacial area density applied to bubble columns, Chemical Engineering Science, vol.56, pp.1159-1166, 1999.

F. Lehr, M. Millies, and D. Mewes, Bubble-size distributions and flow fields in bubble columns, American Institute of Chemical Engineering Journal, vol.48, issue.11, pp.2426-2443, 2002.

V. G. Levich, Physicochemical Hydrodynamics, 1962.

D. Li, Z. Gao, A. Buffo, W. Podgórska, and D. L. Marchisio, Droplet breakage and coalescence in liquid-liquid dispersions: Comparison of different kernels with EQMOM and QMOM, American Institute of Chemical Engineering Journal, vol.63, issue.6, pp.2293-2311, 2017.

Y. Liao and D. Lucas, A literature review of theoretical models for drop and bubble breakup in turbulent dispersions, Chemical Engineering Science, vol.64, pp.3389-3406, 2009.

Y. Liao and D. Lucas, A literature review on mechanisms and models for the coalescence process of fluid particles, Chemical Engineering Science, vol.65, pp.2851-2864, 2010.

H. Luo, Coalescence, breakup and liquid circulation in bubble column reactors, 1993.

H. Luo and H. F. Svendsen, Modeling and simulation of binary approach by energy conservation analysis, Chemical Engineering Communications, vol.145, pp.145-153, 1996.

D. L. Marchisio and R. O. Fox, Computational Models for Polydisperse Particulate and Multiphase Systems, Cambridge Series in Chemical Engineering, 2013.

D. L. Marchisio, R. D. Vigil, and R. O. Fox, Implementation of the quadrature method of moments in CFD codes for aggregation-breakage problems, Chemical Engineering Science, vol.58, pp.3337-3351, 2003.

D. L. Marchisio, R. D. Vigil, and R. O. Fox, Quadrature method of moments for aggregation-breakage processes, Journal of Colloid and Interface Science, vol.258, pp.322-334, 2003.

L. Mazzei, D. L. Marchisio, and P. Lettieri, New quadrature-based moment method for the mixing of inert polydisperse fluidized powders in commercial cfd codes, American Institute of Chemical Engineering Journal, vol.58, issue.10, pp.3054-3069, 2012.

D. D. Mcclure, J. Deligny, J. M. Kavanagh, D. F. Fletcher, and G. W. Barton, Impact of surfactant chemistry on bubble column systems, Chemical Engineering & Technology, vol.37, issue.4, pp.652-658, 2014.

D. D. Mcclure, J. M. Kavanagh, D. F. Fletcher, and G. W. Barton, Development of a CFD model of bubble column bioreactors: Part one-a detailed experimental study, Chemical Engineering & Technology, vol.36, issue.12, pp.2065-2070, 2013.

D. D. Mcclure, H. Norris, J. M. Kavanagh, D. F. Fletcher, and G. W. Barton, Towards a CFD model of bubble columns containing significant surfactant levels, Chemical Engineering Science, vol.127, pp.189-201, 2015.

R. Mcgraw, Description of aerosol dynamics by the quadrature method of moments, Aerosol Science and Technology, vol.27, pp.255-265, 1997.

T. Menzel, T. In-der-weide, O. Staudacher, O. Wein, and U. Onken, Reynolds stress model for bubble column reactor, Industrial & Engineering Chemistry Research, vol.29, issue.6, pp.988-994, 1990.

T. Miyauchi and C. Shyu, Flow of fluid in gas bubble columns, Kagaku Kogaku, vol.34, issue.9, pp.958-964, 1970.

G. Narasimhan, D. Ramakrishna, and J. P. Gupta, A model for transitional breakage probability of droplets in agitated lean liquid-liquid dispersions, Chemical Engineering Science, vol.34, pp.257-265, 1979.

N. Nevers and J. L. Wu, Bubble coalescence in viscous fluids, American Institute of Chemical Engineering Journal, vol.17, pp.182-186, 1971.

J. Y. Park and L. M. Blair, The effect of coalescence on drop size distribution in an agitated liquid-liquid dispersion, Chemical Engineering Science, vol.30, pp.1057-1064, 1975.

M. Petitti, A. Nasuti, D. L. Marchisio, M. Vanni, G. Baldi et al., Bubble size distribution modeling in stirred gas-liquid reactors with QMOM augmented by a new correction algorithm, American Institute of Chemical Engineering Journal, vol.56, pp.36-53, 2010.

W. Podgórska and D. L. Marchisio, Modeling of turbulent drop coalescence in the presence of electrostatic forces, Chemical Engineering Research and Design, vol.108, pp.30-41, 2016.

M. J. Prince and H. W. Blanch, Bubble coalescence and break-up in airsparged bubble columns, American Institute of Chemical Engineering Journal, vol.36, pp.1485-1499, 1990.

P. M. Raimundo, Analysis and modelization of local hydrodynamics in bubble columns, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01267349

Y. Renardy, V. Cristini, and J. Li, Drop fragment distributions under shear with inertia, International Journal of Multiphase Flow, vol.28, pp.1125-1147, 2002.

S. T. Revankar, Coalescence and breakup of fluid particles in multi-phase flow, in 'ICMF 2001-4th International Conference on Multiphase Flow, 2001.

J. A. Roels and J. J. Heijnen, Power dissipation and heat production in bubble columns: Approach based on nonequilibrium thermodynamics, Biotechnology and Bioengineering, vol.22, issue.11, pp.2399-2404, 1980.

Y. Sato and K. Sekoguchi, Liquid velocity distribution in two-phase bubble flow, International Journal of Multiphase Flow, vol.2, issue.1, pp.79-95, 1975.

R. Shinnar and J. M. Church, Predicting particle size in agitated dispersions, Industrial and Engineering Chemistry, vol.52, pp.253-256, 1960.

M. Simon, Koaleszenz von Tropfen und Tropfenschwärmen, 2004.

O. Simonin and P. L. Viollet, Modeling of turbulent two-phase jets loaded with discrete particles, pp.259-269, 1990.

H. Sovova, Breakage and coalescence of drops in a batch stirred vessel-ii comparison of model and experiments, Chemical Engineering Science, vol.36, pp.1567-1573, 1981.

A. Tomiyama, Struggle with computational bubble dynamics, Multiphase Science and Technology, vol.10, issue.4, p.369, 1998.

A. A. Troshko and Y. A. Hassan, A two-equation turbulence model of turbulent bubbly flows, International Journal of Multiphase Flow, vol.27, issue.11, pp.1965-2000, 2001.

M. Vanni, Approximate population balance equation for aggregationbreakage processes, International Journal of Multiphase Flow, vol.221, pp.143-160, 2000.
DOI : 10.1006/jcis.1999.6571

T. F. Wang, J. F. Wang, and Y. Jin, A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow, Chemical Engineering Science, vol.58, issue.20, pp.4629-4637, 2003.
DOI : 10.1016/j.ces.2003.07.009

T. F. Wang, J. F. Wang, and Y. Jin, An efficient numerical algorithm for "a novel theoretical breakup kernel function of bubble/droplet in a turbulent flow, Chemical Engineering Science, vol.59, pp.2593-2595, 2004.

T. F. Wang, J. F. Wang, and Y. Jin, Population balance model for gasliquid flows: Influence of bubble coalescence and breakup models, Industrial & Engineering Chemistry Research, vol.44, issue.11, pp.7540-7549, 2005.

T. F. Wang, J. F. Wang, and Y. Jin, Theoretical prediction of flow regime transition in bubble columns by the population balance model, Chemical Engineering Science, vol.60, pp.6199-6209, 2005.

T. Wang, J. Wang, and Y. Jin, A CFD-PBM coupled model for gas-liquid flows, American Institute of Chemical Engineering Journal, vol.52, pp.125-140, 2006.
DOI : 10.1002/aic.10611

J. C. Wheeler, Modified moments and gaussian quadratures, Rocky Mountain Journal of Mathematics, vol.4, pp.287-296, 1974.
DOI : 10.1216/rmj-1974-4-2-287

URL : https://doi.org/10.1216/rmj-1974-4-2-287

H. Wilf, Mathematics for the Physical Sciences, 1962.

D. L. Wright, Numerical advection of moments of the particle size distribution in eulerian models, Journal of Aerosol Science, vol.38, pp.352-369, 2007.

H. Wright and D. Ramkrishna, Factors affecting coalescence frequency of droplets in a stirred liquid-liquid dispersion, American Institute of Chemical Engineering Journal, vol.40, pp.767-776, 1994.

Q. Wu, S. Kim, and M. Ishii, One-group interfacial area transport in vertical bubbly flow, International Journal of Heat and Mass Transfer, vol.41, pp.1103-1112, 1998.
DOI : 10.1016/s0017-9310(97)00167-1

W. Yao and C. Morel, Volumetric interfacial area prediction in upward bubbly two-phase flow, International Journal of Heat and Mass Transfer, vol.47, pp.307-328, 2004.
DOI : 10.1016/j.ijheatmasstransfer.2003.06.004

C. Yuan and R. O. Fox, Conditional quadrature method of moments for kinetic equations, Journal of Computational Physics, vol.230, pp.8216-8246, 2011.
DOI : 10.1016/j.jcp.2011.07.020

H. Zhao, A. Maisels, T. Matsoukas, and C. Zheng, Analysis of four MonteCarlo methods for the solution of population balances in dispersed systems, Powder Technology, vol.173, pp.38-50, 2007.

E. Alméras, F. Risso, V. Roig, S. Cazin, C. Plais et al., Mixing by bubble-induced turbulence, Journal of Fluid Mechanics, vol.776, pp.458-474, 2015.

M. Laakkonen, V. Alopaeus, and J. Aittamaa, Validation of bubble breakage, coalescence and mass transfer models for gas-liquid dispersion in agitated vessel, Chemical Engineering Science, vol.61, pp.218-228, 2006.

F. Lehr, M. Millies, and D. Mewes, Bubble-size distributions and flow fields in bubble columns, American Institute of Chemical Engineering Journal, vol.48, issue.11, pp.2426-2443, 2002.
DOI : 10.1002/aic.690481103

Y. Liao and D. Lucas, A literature review of theoretical models for drop and bubble breakup in turbulent dispersions, Chemical Engineering Science, vol.64, pp.3389-3406, 2009.

Y. Liao and D. Lucas, A literature review on mechanisms and models for the coalescence process of fluid particles, Chemical Engineering Science, vol.65, pp.2851-2864, 2010.

M. Simonnet, C. Gentric, E. Olmos, and N. Midoux, CFD simulation of the flow field in a bubble column reactor: Importance of the drag force formulation to describe regime transitions, Chemical Engineering and Processing: Process Intensification, vol.47, issue.9, pp.1726-1737, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00301071

A. Tomiyama, Struggle with computational bubble dynamics, Multiphase Science and Technology, vol.10, issue.4, p.369, 1998.

T. F. Wang, J. F. Wang, and Y. Jin, Theoretical prediction of flow regime transition in bubble columns by the population balance model, Chemical Engineering Science, vol.60, pp.6199-6209, 2005.

A. Table, 14: Sauter mean diameter at the column centre at different axial positions with a superficial gas velocity equal to 3 cm/s (homogeneous regime) with demineralised water (DMW) and

A. Table, Sauter mean diameter at the column centre at different axial positions with a superficial gas velocity equal to 16 cm/s (heterogeneous regime) with demineralised water (DMW) and, vol.15

A. Table, Local gas volume fraction at the column centre at different axial positions with a superficial gas velocity equal to 16 cm/s (heterogeneous regime) with demineralised water (DMW) and ethanol 0.05%: 92-holes sparger versus 7-holes sparger, vol.17

A. Table, Sauter mean diameter at the column centre at different axial positions with a superficial gas velocity equal to 3 cm/s (homogeneous regime) with demineralised water (DMW) and ethanol 0.05%: 92-holes sparger versus 7-holes sparger, vol.21

A. Table, Sauter mean diameter at the column centre at different axial positions with a superficial gas velocity equal to 16 cm/s (heterogeneous regime) with demineralised water and ethanol 0.05%: 92-holes sparger versus 7-holes sparger, vol.22

A. Table, Sauter mean diameter at the column centre at different axial positions with a superficial gas velocity equal to 25 cm/s (heterogeneous regime) with demineralised water and ethanol 0.05%: 92-holes sparger versus 7-holes sparger, vol.23

R. M. Davies and G. Taylor, The mechanics of large bubbles rising through extended liquids and through liquids in tubes, Proceedings A-The Royal Society 200, p.1062, 1950.

W. Dijkhuizen, I. Roghair, M. Annaland, and J. Kuipers, DNS of gas bubbles behaviour using an improved 3D front tracking model-drag force on isolated bubbles and comparison with experiments, Chemical Engineering Science, vol.65, issue.4, pp.1415-1426, 2010.

L. Fan, G. Yang, D. Lee, and X. Luo, Some aspects of high-pressure phenomena of bubbles in liquids and liquid-solid suspensions, Chemical Engineering Science, vol.54, pp.4681-4709, 1999.

R. Fdhila and P. Duineveld, The effect of surfactant on the rise of spherical bubble at high reynolds and peclet number, Physics of Fluid, vol.8, issue.2, pp.310-321, 1996.

S. Hosokawa and A. Tomiyama, Multi-fluid simulation of turbulent bubbly in pipe flows, International Journal of Multiphase flow, vol.28, pp.1497-1519, 2009.

M. Ishii and N. Zuber, Drag coefficient and relative velocity in bubbly, droplet or particulate flows, American Institute of Chemical Engineering Journal, vol.25, issue.5, pp.843-855, 1979.

V. G. Levich, Physicochemical Hydrodynamics, 1962.

T. Maxworthy, C. Gnann, M. Kürten, and F. Durst, Experiments on the rise of air bubbles in clean viscous liquids, Journal of Fluid Mechanics, vol.321, pp.421-441, 1996.

L. Schiller and N. Naumann, A drag coefficient correlation, Vdi Zeitung, vol.77, p.318, 1935.

G. G. Stokes, On the effect of the internal friction of fluids on the motion of pendulums, Cambridge Philos. Trans, vol.9, pp.8-106, 1851.

A. Tomiyama, Struggle with computational bubble dynamics, Multiphase Science and Technology, vol.10, issue.4, p.369, 1998.

A. Tomiyama, G. Celata, S. Hokosawa, and S. Yoshida, Terminal velocity of single bubbles in surface tension force dominant regime, International Journal of Multiphase flow, vol.28, pp.1497-1519, 2002.

D. Zhang, N. G. Deen, and J. A. Kuipers, Numerical simulation of dynamic flow behavior in a bubble column: A study of closures for turbulence and interface forces, Chemical Engineering Science, vol.61, pp.7593-7608, 2006.

D. Zhang and W. Vanderheyden, The effects of mesoscale structures on the disperse two-phase flows and their closures for dilute suspensions, International Journal of Multiphase Flow, vol.28, pp.805-822, 2002.

. Bibliography, A. D. Burns, T. Frank, I. Hamill, and J. M. Shi, The Favre averaged drag model for turbulent dispersion in eulerian multi-phase flows, '5th International Conference on Multiphase Flow, 2004.

A. Favre, Equations des gaz turbulents compressibles. i. Formes générales, Journal de Mécanique, vol.4, pp.361-390, 1965.

T. O'brien, A Favre-averaged turbulence model for gas-particle flows, '2012 AIChE Annual Meeting, 2012.

T. O'brien, A multiphase turbulence theory for gas-solids flows using Favreaveraging, '2014 NETL Workshop on Multiphase Flow Science, 2014.