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Abstract. We investigate a model for collective behaviour with intrinsic inter-

actions on smooth Riemannian manifolds. For regular interaction potentials,
we establish the local well-posedness of measure-valued solutions defined via

optimal mass transport. We also extend our result to the global well-posedness

of solutions for manifolds with nonpositive bounded sectional curvature. The
core concept underlying the proofs is that of Lipschitz continuous vector fields

in the sense of parallel transport.

1. Introduction. This paper is concerned with the following integro-differential
equation for the evolution of a population density ρ on a Riemannian manifold M :

∂tρ−∇M · (ρ∇MK ∗ ρ) = 0, (1.1)

where K : M × M → R is an interaction (also known as aggregation) potential
which models social interactions such as attraction and repulsion, and ∇M · and ∇M
represent the manifold divergence and gradient, respectively. In (1.1) the symbol ∗
denotes a measure convolution: for a time-dependent measure ρt on M and x ∈M
we set

K ∗ ρt(x) =

∫
M

K(x, y) dρt(y).

We restrict our solutions ρ to be probability measures on M at all times:
∫
M

dρt = 1
for all t.

Model (1.1) has numerous applications in swarming and self-organized behaviour
in biology [34], material science [10], robotics [22,28], and social sciences [35]. In such
applications, equation (1.1) can model interactions between biological organisms
such as insects, birds or cells, as well as interactions between robots or even opinions.
Concerning the theory, the mathematical analysis of solutions to model (1.1) has
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focused almost exclusively on the model set up on Euclidean space Rn; we refer in
this case to [5–8] for the well-posedness of the initial-value problem and to [4, 15,
18,19,32] for the long-time behaviour of solutions.

The goal of the paper is to establish the well-posedness of measure-valued so-
lutions to model (1.1) set up on general Riemannian manifolds. There are only
very few works on this subject, and all require that the manifold is embedded in
a larger Euclidean space. For instance, in [9, 36, 38], the authors investigate the
well-posedness of the aggregation model (1.1) when the interactions are extrinsic,
in the sense that the interaction potential depends on the embedding Euclidean
distance between points. Another class of models considers intrinsic interactions,
where the interaction potential depends on the geodesic distance on M between
points. Recent works in this direction investigate the well-posedness of model (1.1)
with intrinsic interactions on the sphere [20] and on the special orthogonal group
SO(3) [17]. In both [17,20], however, certain calculations make use of the ambient
vector spaces of the manifolds, i.e., in Rn and R3×3, respectively.

This paper presents a fully intrinsic approach to the well-posedness of solutions
to (1.1) on Riemannian manifolds, which does not require any extrinsic calculations
in an ambient vector space. To this aim we use the concept of Lipschitz continuity
of vector fields via parallel transport. While this is a concept widely used in the
literature on optimization on manifolds [12,16], it is much less common in the analy-
sis of differential equations on manifolds. Lipschitz continuity by parallel transport
enables us to compare tangent vectors in an intrinsic manner. This approach funda-
mentally distinguishes itself from that in [17,20], where tangent vectors at different
points on the manifold are compared in the norm of an ambient vector space.

As a further motivation for this paper we also mention various studies on the
long-time behaviour of solutions to (1.1) on manifolds. An interesting collection
of equilibria on the sphere and the hyperbolic plane for model (1.1) with intrinsic
interactions can be found in [21]. These equilibria show a very rich pattern formation
behaviour (e.g., disks, annuli, rings), similar to what has been observed in Rn
[30,37]. In addition, emergent behaviour has been studied extensively in the related
Lohe-type models with extrinsic interactions on the unit sphere, matrix manifolds
and tensor spaces in [23–25]. In these works the focus is to investigate the formation
of consensus solutions, where the equilibria consist of an aggregation at a single
point, rather than the well-posedness of (1.1) in the intrinsic setting.

The paper is structured as follows. We first review in Section 2 the concept of
parallel transport on a Riemannian manifold and that of Lipschitz continuity by
parallel transport, and present useful relations in terms of Hessians and flow maps.
In Section 3 we give the rigorous notion of solution to equation (1.1) which will be
used in the well-posedness theory, as well as introduce the 1-Wasserstein probability
space, which determines the regularity of the solutions we seek. Then, in Section 4
we present our proof of local and global well-posedness for equation (1.1), starting
with the fundamental lemmas underlying the proof. In this section, our results
on the global well-posedness are restricted to manifolds with nonpositive bounded
sectional curvature. Finally, in Section 5 we state two additional results which
can be obtained by simply adapting results already proven for the sphere in [20].
Appendices A and B give, respectively, basic notions of differential geometry useful
to our purposes, and the proofs to preliminary results stated in the main body of
the paper.
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Everywhere in this paper, M denotes a manifold satisfying the assumption that
follows. We shall only refer to it in some of the main statements; anywhere else, it
will be implicitly assumed.
(M) M is a complete, smooth Riemannian manifold of finite dimension n, with
positive injectivity radius. We denote its intrinsic distance by d and its sectional
curvature by K.

2. Preliminaries on parallel transport and Lipschitz continuity. In Appen-
dix A we review some basic concepts and terminology from differential geometry
that are relevant to the present work, and also introduce some notation. We invite
the reader to look there whenever unfamiliar with some of the concepts or notation
used in the main body of the paper. In particular, in Appendix A we briefly dis-
cuss the logarithm map, normal and totally normal neighbourhoods, the injectivity
radius, geodesics, convex sets, normal charts and the push-forward, as well as recall
some of their properties important to our analysis; we also give a useful relationship
between the Euclidean norm and the intrinsic distance on M .

Anywhere in the paper, for x ∈ M we write 〈·, ·〉x and ‖·‖x the tangent inner
product and norm, respectively, on TxM , the tangent space of M at x. The tangent
bundle of M is denoted by TM .

In this section, we present some background on Lipschitz continuity by parallel
transport and its link to Hessians, as well as give the Cauchy–Lipschitz theorem for
flow maps on manifolds.

2.1. Lipschitz continuity via parallel transport. Given a curve γ : [0, 1]→M
and v ∈ Tγ(0)M , the parallel transport of v along γ is given by the unique solution
X : [0, 1]→ TM with X(t) ∈ Tγ(t)M for all t ∈ [0, 1] to the ODE{

∇γ′(t)X(t) = 0,

X(0) = v,

where ∇γ′X denotes the covariant derivative of X along γ and ∇ is the Levi-Civita
connection on M . We denote this solution by Πγ,tv for all t ∈ [0, 1]. Given t ∈ [0, 1],
the map v 7→ Πγ,tv is a linear isometry from Tγ(0)M to Tγ(t)M , i.e.,

〈Πγ,tv,Πγ,tw〉γ(t) = 〈v, w〉γ(0) , for all v, w ∈ Tγ(0)M.

The situation of interest in this paper is when γ : [0, 1] → M is the unique
minimizing geodesic connecting a point x to a point y. In this case we write Πxy

for Πγ,1. It holds that Π−1
xy = Πyx, which means that taking the parallel transport

of a vector v ∈ TxM to TyM and then back to TxM returns the same vector v.
A vector field on a set U ⊂M is a function X : U → TM such that X(x) ∈ TxM

for all x ∈ U . Using parallel transport, we can give the following definition of Lips-
chitz continuous vector fields. We use in our setup a totally normal neighbourhood
of M , as any two points in such a set can be connected by a unique minimizing
geodesic (though not necessarily lying entirely in it).

Definition 2.1 (Lipschitz continuity via parallel transport). Suppose that U is a
totally normal neighbourhood of M and let X be a vector field on U . We say that X
is locally Lipschitz continuous if for all compact sets Q ⊂ U there exists a constant
LQ > 0 such that

‖X(x)−ΠyxX(y)‖x 6 LQ d(x, y), for all x, y ∈ Q; (2.1)
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we write ‖X‖Lip(Q) for the smallest such constant. We say that X is (globally)

Lipschitz continuous if there exists L > 0 such that (2.1) holds for all x, y ∈ U by
replacing LQ with L; we write ‖X‖Lip(U) for the smallest such L.

We note that a locally Lipschitz continuous vector field X on a totally normal
neighbourhood U is also locally bounded in the sense that for all Q ⊂ U compact
there exists a constant CQ > 0 such that ‖X(x)‖x 6 CQ for all x ∈ Q; we denote
by ‖X‖L∞(Q) the smallest such constant.

We also note that this definition of Lipschitz continuity is chart-free. The notion
of Lipschitz continuity on charts is the standard concept used to show the well-
posedness of flow maps via the Cauchy–Lipschitz theorem in the theory of dynamical
systems on manifolds [20, 27]. For completeness, we recall the definition here: a
vector field X on an open subset U of M is locally Lipschitz continuous on charts
if for every chart (V, ϕ) of M and compact set Q ⊂ U ∩ V , there exists a constant
Lϕ,Q > 0 such that

‖ϕ∗X(x)− ϕ∗X(y)‖Rn 6 Lϕ,Q ‖ϕ(x)− ϕ(y)‖Rn , for all x, y ∈ Q. (2.2)

The link between local Lipschitz continuity in the sense of Definition 2.1 and that
on charts is given in the following lemma, which, in short, states that Lipschitz
continuity in the sense of parallel transport implies Lipschitz continuity on normal
charts.

Lemma 2.2. Let x ∈M and set δ 6 rconv(x). Suppose that X is a vector field on
the geodesic ball Bδ(x) which is locally Lipschitz continuous. Let moreover (V, ϕ) be
a normal chart generated by x. Then, for any Q ⊂ Bδ(x) ∩ V compact there exists
Lϕ,Q > 0 such that (2.2) holds; furthermore, the constant Lϕ,Q depends linearly on
‖X‖L∞(Q) and ‖X‖Lip(Q).

Proof. See Appendix B.1.

2.2. Hessians. Given a vector field X on an open subset U of M , a point x ∈ U
and a nonzero tangent vector v ∈ TxM , the derivative of X at x in direction v is
given, whenever the limit below exists, by

∇vX(x) =
d

dt

∣∣∣
t=0

Π−1
xγ(t)X(γ(t)) = lim

t→0

Π−1
xγ(t)X(γ(t))−X(x)

t
, (2.3)

where γ denotes the geodesic starting at x with velocity v defined at any t small
enough for expx(tv) to exist. When indeed the limit above exists, we have∇vX(x) ∈
TxM and we say that X is differentiable at x in direction v. If X is differentiable
at x in every direction, the map ∇X(x) : TxM → TxM is linear and is called the
derivative of X at x. If X is differentiable at all points in U in every direction,
then we simply say that X is differentiable and the map U 3 x 7→ ∇X(x) is simply
referred to as the derivative of X.

For a differentiable function f : U → R such that the vector field ∇f is differen-
tiable at x in direction v, we write Hessv f(x) for the Hessian of f at x in direction
v, defined by

Hessv f(x) = ∇v(∇f)(x).

If ∇f is differentiable at x in every direction, the map Hess f(x) : TxM → TxM is
linear and is referred to as the Hessian operator of f at x. If furthermore ∇f is
differentiable at all points in U in every direction, then we simply say that f has a
Hessian and the map U 3 x 7→ Hess f(x) is called the Hessian of f . Similar to the
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Euclidean case, the lemma below links bounded Hessians to Lipschitz continuity in
the parallel transport sense [16]:

Lemma 2.3. Let U ⊂M be a totally normal neighbourhood and let f : U → R have
a Hessian. If the gradient of f is locally Lipschitz continuous, then its Hessian is
locally bounded, i.e., for all Q ⊂ U compact there is CQ > 0 such that

‖Hessv f(x)‖x 6 CQ ‖v‖x , for all x ∈ Q and v ∈ TxM.

If furthermore U is geodesically convex, then the converse is also true.

Proof. See Appendix B.2.

We directly have the following global version of Lemma 2.3:

Lemma 2.4. Let U ⊂M be a totally normal neighbourhood and let f : U → R have
a Hessian. If the gradient of f is Lipschitz continuous, then its Hessian is bounded,
i.e., there is C > 0 such that

‖Hessv f(x)‖x 6 C ‖v‖x , for all x ∈ U and v ∈ TxM.

If furthermore U is geodesically convex, then the converse is also true.

In the optimization literature, the property of a function f defined on a totally
normal neighbourhood U ⊂M to have a Lipschitz continuous gradient, is sometimes
referred to as L-smoothness [1,2,26]. Lemma 2.4 therefore says that L-smoothness
and Hessian boundedness are equivalent on geodesically convex subsets of M (as
they are in Euclidean spaces).

2.3. Flow maps and the Cauchy–Lipschitz theorem. A time-dependent vector
field on a subset U × [0, T ) of M × [0,∞) is a function X : U × [0, T )→ TM such
that X(·, t) is a vector field on U for all t ∈ [0, T ); we will also use Xt to denote
X(·, t). Given such a time-dependent vector field X and Σ ⊂ U measurable, a flow
map generated by (X,Σ) is a function ΨX : Σ × [0, τ) → U , for some τ 6 T , that
for all x ∈ Σ and t ∈ [0, τ) satisfies

d

dt
Ψt
X(x) = Xt(Ψ

t
X(x)),

Ψ0
X(x) = x,

(2.4)

where we used the abbreviation Ψt
X for ΨX(·, t). A flow map is said to be maximal

if its time domain cannot be extended while (2.4) holds; it is said to be global if
τ = T =∞ and local otherwise.

The following theorem gives the local well-posedness of flow maps generated by
Lipschitz vector fields in the sense of Definition 2.1.

Theorem 2.5 (Local Cauchy–Lipschitz Theorem). Suppose that U is a totally
normal neighbourhood of M . Let T ∈ (0,∞] and let X be a time-dependent vector
field on U × [0, T ). Suppose that the vector fields in {Xt}t∈[0,T ) are locally Lipschitz
continuous and satisfy, for any compact sets Q ⊂ U and S ⊂ [0, T ),∫

S

(
‖Xt‖L∞(Q) + ‖Xt‖Lip(Q)

)
dt <∞. (2.5)

Then, for every compact subset Σ of U , there exists a unique maximal flow map
generated by (X,Σ).
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Proof. The proof follows very closely that given in [20] of the more classical version
of the theorem for Lipschitz continuous vector fields on charts, with the additional
use of Lemma 2.2. For the details, see Appendix B.3.

Theorem 2.5 gives local well-posedness for flow maps. As given by the theorem
below, we have global well-posedness whenever M is convex and the vector fields in
question are globally Lipschitz on M × [0,∞).

Theorem 2.6 (Global Cauchy–Lipschitz Theorem on Convex Manifold). Assume
M is geodesically convex and let X be a time-dependent vector field on M × [0,∞).
Suppose that the vector fields in {Xt}t∈[0,∞) are Lipschitz continuous and for any
compact set Q ⊂M there holds

sup
t∈[0,∞)

(
‖Xt‖L∞(Q) + ‖Xt‖Lip(M)

)
<∞.

Then, for every compact subset Σ of M , there exists a unique global flow map
generated by (X,Σ).

Proof. The proof follows from the Escape Lemma if M is compact and from a
classical extension argument if M is unbounded. We refer the reader to Appendix
B.4 for the details.

3. Preliminaries on the interaction equation. For simplicity, as we have al-
ready implicitly done in the previous section, we will drop the subindices M on
the differential operators in equation (1.1). We present in this section the notion
of measure-valued solutions for (1.1) and the 1-Wasserstein probability space. We
only give the minimal tools we will need for our purpose; for a thorough theory of
probability spaces and continuity equations in Euclidean space, we refer the reader
to [3].

3.1. Notion of solution for the interaction equation. For U ⊂ M open, de-
note by P(U) the set of Borel probability measures on the metric space (U, d) and
by C([0, T );P(U)) the set of continuous curves from [0, T ) into P(U) endowed with
the narrow topology (i.e., the topology dual to the space of continuous bounded
functions on U ; see [3]).

If Ψ: Σ → U for some measurable Σ ⊂ U , we denote by Ψ#ρ the push-forward
in the mass transport sense of ρ through Ψ. Equivalently, Ψ#ρ is the probability
measure such that for every measurable function ζ : U → [−∞,∞] with ζ ◦ Ψ
integrable with respect to ρ, we have∫

U

ζ(x) d(Ψ#ρ)(x) =

∫
Σ

ζ(Ψ(x)) dρ(x).

For T ∈ (0,∞] and a curve (ρt)t∈[0,T ) ⊂ P(U), we denote by v[ρ] : U × [0, T )→
TM the velocity vector field associated to (1.1), that is,

v[ρ](x, t) = −∇K ∗ ρt(x), for all (x, t) ∈ U × [0, T ), (3.1)

where for convenience we used ρt in place of ρ(t), as we shall often do in the sequel.
Whether v[ρ] is well-defined or not depends on U ; indeed, we shall see that for ∇K
to make sense in the convolution with ρt, the set U should be such that logx y exists
for all x, y ∈ U .

We define solutions to (1.1) in a geometric way, as the push-forward of the initial
data through the corresponding flow map [3, Chapter 8.1]. Specifically, we adopt
the following definition as solution to equation (1.1):
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Definition 3.1 (Solution). Given U ⊂M open, we say that (ρt)t∈[0,T ) ⊂ P(U) is a
weak solution to (1.1) if (v[ρ], supp(ρ0)) generates a unique flow map Ψv[ρ] defined
on supp(ρ0)× [0, T ), and ρt satisfies the implicit relation

ρt = Ψt
v[ρ]#ρ0, for all t ∈ [0, T ).

It can be shown that solutions in the sense of Definition 3.1 are also weak solutions
in the sense of distributions to equation (1.1); see [3, Lemma 8.1.6].

3.2. Wasserstein distance. We will use the intrinsic 1-Wasserstein distance to
compare solutions to (1.1). Let U ⊂ M be open. For ρ, σ ∈ P(U), this distance is
defined as:

W1(ρ, σ) = inf
π∈Π(ρ,σ)

∫
U×U

d(x, y) dπ(x, y),

where Π(ρ, σ) ⊂ P(U × U) is the set of transport plans between ρ and σ, i.e., the
set of elements in P(U × U) with first and second marginals ρ and σ, respectively.

Denote by P1(U) the set of probability measures on U with finite first moment
and by P∞(U) ⊂ P1(U) the set of probability measures on U with compact sup-
port. Both spaces (P1(U),W1) and (P∞(U),W1)) are well-defined metric spaces.
In addition, we metrize the space C([0, T );P1(U)) (and thus C([0, T );P∞(U))) with
the distance W 1 defined by

W 1(ρ, σ) = sup
t∈[0,T )

W1(ρt, σt), for all ρ, σ ∈ C([0, T );P1(U)).

Of course, when U is bounded we have P(U) = P1(U) = P∞(U).
The lemma below, used later in the paper, contains various Lipschitz properties

involving the distance W1.

Lemma 3.2. Let U ⊂M be open.

(i) Let Σ ⊂ U . Let furthermore ρ ∈ P1(U) with supp(ρ) ⊂ Σ and Ψ1,Ψ2 : Σ→ U
be measurable functions. Then,

W1(Ψ1#ρ,Ψ2#ρ) 6 sup
x∈supp(ρ)

d(Ψ1(x),Ψ2(x)).

(ii) Let T ∈ (0,∞] and let X be a time-dependent vector field on U × [0, T ). Let
ρ ∈ P1(U) and suppose that (X, supp(ρ)) generates a flow map ΨX defined on
supp(ρ)× [0, τ) for some τ 6 T . Suppose furthermore that X is bounded, i.e.,
there exists C > 0 such that ‖X(x, t)‖x∈U < C for all x ∈ U and t ∈ [0, T ).
Then,

W1(Ψt
X#ρ,Ψs

X#ρ) 6 C|t− s|, for all t, s ∈ [0, τ).

Proof. We refer to [20, Lemma 2.3] for the proof of this result.

4. Well-posedness of the interaction equation. We study the well-posedness
of solutions to (1.1) with an interaction potential K that satisfies:

(K) K : M ×M → R has the form

K(x, y) = g(d(x, y)2), for all x, y ∈M, (4.1)

where g : [0,∞)→ R is differentiable.
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Because the interaction equation (1.1) involves the gradient of K, we are inter-
ested in the Lipschitz continuity of the gradient of the squared distance function
d. For all x, y ∈ M define dy(x) = d(x, y); if x and y have a unique minimizing
geodesic linking them, it holds that

logx y = − 1
2∇d

2
y(x). (4.2)

Similarly, for all x, y ∈M write Ky(x) = K(x, y), and again if there exists a unique
minimizing geodesic linking x and y the chain rule yields

∇Ky(x) = −2g′(d(x, y)2) logx y. (4.3)

In other words, equations (4.2) and (4.3) only hold for points y away from the cut
locus of x. In particular, they hold for points x, y ∈M with d(x, y) < inj(M).

Equation (1.1) can be interpreted as an aggregation model using (3.1) and (4.3).
Indeed, when a point mass at x interacts with a point mass at y, the mass at x is
driven by a force of magnitude proportional to |g′(d(x, y))2|d(x, y), to move either
towards y (provided g′(d(x, y)2) > 0) or away from y (provided g′(d(x, y)2) <
0). The velocity field at x computed by (3.1) accounts for all contributions from
interactions with point masses y ∈ U through the convolution.

4.1. Fundamental lemmas. We give here several fundamental lemmas which will
be at the core of our proof of the well-posedness of solutions to (1.1). Note first
that, given x, y ∈ M and U ⊂ M a normal neighbourhood of both x and y, there
holds

Πyx logy(x) = − logx(y). (4.4)

Equation (4.4) follows from the definition of Riemannian logarithm and the fact
that the parallel transport is an isometry [13]. Indeed, the vector logy(x) ∈ TyM
is tangent to the geodesic γ joining y and x, pointing in the direction of x, and
has length ‖ logy(x)‖y = d(x, y). By definition of a geodesic, taking the parallel
transport of logy(x) from y to x along γ results into a vector in TxM that is tangent
to γ at x, pointing away from y, and that has length d(x, y). This vector is − logx y,
and hence (4.4) holds.

We begin with a result on time-dependent vector fields.

Lemma 4.1 (Fundamental Lemma I). Let U be a totally normal neighbourhood of
M and let X,Y be two time-dependent vector fields on U . Let Σ ⊂ U be measurable
and suppose that ΨX and ΨY are flow maps defined on Σ × [0, τ), for some τ >
0, generated by (X,Σ) and (Y,Σ), respectively. Assume furthermore that X is
Lipschitz continuous with respect to its first variable, uniformly with respect to its
second variable, i.e., there exists L > 0 such that

‖Xt(x)−ΠyxXt(y)‖x 6 Ld(x, y), for all (x, y, t) ∈ U × U × [0, T ).

Then, for all x ∈ Σ, there holds

d(Ψt
X(x),Ψt

Y (x)) 6
eLt − 1

L
‖X − Y ‖L∞(U×[0,τ)), for all t ∈ [0, τ).

Proof. Let x ∈ Σ and, for a better readability of the following calculations, write
p = Ψt

X(x) and q = Ψt
Y (x); note that p, q ∈ U . We can assume p 6= q or the result

is trivial.
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Since U is totally normal, the function t 7→ d2(p, q) = d2(ΦtX(x),ΦtY (x)) is
differentiable and, for all t ∈ [0, τ), we have

1

2

d

dt
d2(p, q) =

1

2

〈
∇d2

q(p), Xt(p)
〉
p

+
1

2

〈
∇d2

p(q), Yt(q)
〉
q

= −
〈
logp(q), Xt(p)

〉
p
−
〈
logq(p), Yt(q)

〉
q

= −
〈
logp(q), Xt(p)

〉
p
−
〈
Πqp logq(p),ΠqpYt(q)

〉
p

=: I + II ,

(4.5)

where for the third equality we used that the parallel transport is an isometry.
We add and subtract the quantities

A :=
〈
Πqp logq(p), Xt(p)

〉
p

and B :=
〈
Πqp logq(p),ΠqpXt(q)

〉
p

to the right-hand side of (4.5), which now reads

I −A+A−B +B + II .

The term II +B estimates as

II +B =
〈
Πqp logq(p),ΠqpXt(q)−ΠqpYt(q)

〉
p

6
∥∥Πqp logq(p)

∥∥
p
‖Πqp(Xt − Yt)(q)‖p

=
∥∥logq(p)

∥∥
q
‖Xt(q)− Yt(q)‖q

6 d(p, q) ‖X − Y ‖L∞(U×[0,τ)) ,

where we used again that Πqp is an isometry and that
∥∥logq(p)

∥∥
q

= d(p, q). Also

estimate

A−B =
〈
Πqp logq(p), Xt(p)−ΠqpXt(q)

〉
p

6
∥∥Πqp logq(p)

∥∥
p
‖Xt(p)−ΠqpXt(q)‖p

6
∥∥logq(p)

∥∥
q
Ld(p, q)

= Ld(p, q)2,

where we used the Lipschitz continuity of X, the isometric property of Πqp and that∥∥logq(p)
∥∥
q

= d(p, q). Finally, by (4.4), we yield

I −A = −
〈
logp(q) + Πqp logq(p), Xt(p)

〉
p

= 0.

Using these estimates in (4.5), we find

1

2

d

dt
d2(p, q) 6 Ld2(p, q) + ‖X − Y ‖L∞(U×[0,τ)) d(p, q),

and after cancelling a d(p, q), we get:

d

dt
d(p, q) 6 Ld(p, q) + ‖X − Y ‖L∞(U×[0,τ)) .

Gronwall’s lemma now gives the desired result.

We now focus on what restrictions we should further impose on a neighbourhood
U for the well-posedness to hold on U . Given a point z ∈ M , [29, Theorem 6.6.1]
gives a bound on the Hessian of d2

z provided the sectional curvature K of M is
locally bounded. Specifically, let r < inj(M) so that the exponential map expz is a
diffeomorphism on Br(0) ⊂ TzM . Denote by Br(z) := expz(Br(0)) the geodesic ball
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centred at z with radius r, and suppose that there exist reals λ 6 0 and 0 6 µ 6 π2

4r2

such that

λ 6 K 6 µ, on Br(z). (4.6)

Then, by [29, Theorem 6.6.1] it holds that

2
√
µd(x, z) cot(

√
µd(x, z))‖v‖2x 6

〈
Hessv d

2
z(x), v

〉
x
6

2
√
−λ d(x, z) coth(

√
−λ d(x, z))‖v‖2x,

(4.7)

for all x ∈ Br(z) and v ∈ TxM . Note that if M is simply connected, in addition to
satisfying (M), then inj(M) = ∞ whenever K 6 0 everywhere (cf. [29, Corollary
6.9.1], a consequence of the Cartan–Hadamard theorem).

Let us further introduce some notation used throughout the rest of the paper:

Notation. Because M is locally compact (since finite-dimensional) and K is con-
tinuous, K is also locally bounded (cf. [33, Remark 2.2]). For any p ∈M and r > 0,
we write λr(p) 6 0 and µr(p) > 0 any lower and upper bounds for K on the set
{x ∈M | d(p, x) < r} (which, by the terminology set up in Appendix A, is denoted
by Br(p) if r 6 rinj(p)).

Lemma 4.2 (Fundamental Lemma II). Let U ⊂ Br/2(p) be open for some p ∈ M
and r < inj(M), and denote λ = λ2r(p) and µ = µ2r(p). Suppose moreover that U
satisfies

∆ := diam(U) <
π

2
√
µ
, if µ > 0. (4.8)

Then, for all z ∈ U , the Hessian Hess d2
z is bounded on U by

L := 2
√
−λ∆ coth(

√
−λ∆).

If moreover U is geodesically convex, we have

‖ logx z −Πyx logy z‖x 6 L
2 d(x, y), for all x, y, z ∈ U. (4.9)

Proof. The proof is direct from (4.7); see Appendix B.5 for the details.

Remark 1. When λr(p) = µr(p) = 0 for all p ∈ M and r > 0, we recover the
trivial result that L = 2 in Lemma 4.2 (and, in particular, L is independent of the
diameter of the subset U), and (4.9) holds for all x, y, z ∈M .

Lemma 4.2 states that, for all z, the map x 7→ logx z is Lipschitz continuous
in the sense of parallel transport. On the other hand, the following lemma shows
that, for all x, the map z 7→ logx z is Lipschitz continuous in the classical Euclidean
sense.

Lemma 4.3 (Fundamental Lemma III). Let U ⊂ Br(p) be a totally normal neigh-
bourhood for some p ∈ M and r < inj(M), and write µ = µr(p). We distinguish
two cases:

(i) µ = 0. Then,

‖ logx y − logx z‖x 6 d(y, z), for all x, y, z ∈ U. (4.10)

(ii) µ > 0. Take any 0 < ε < π and further assume diam(U) 6 π−ε√
µ . Then,

‖ logx z − logx y‖x 6
π − ε

sin(π − ε)
d(y, z), for all x, y, z ∈ U. (4.11)

Proof. This follows from [29, Corollary 6.6.1]; see the details in Appendix B.6.
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Remark 2. When inj(M) = ∞ and µr(p) = 0 for all p ∈ M and r > 0, i.e., M is
globally nonpositively curved, (4.10) holds for all x, y, z ∈M .

Remark 3. If M is globally nonpositively curved, then the restriction on U in
Lemma 4.2 in order to get a bounded Hessian simplifies into open and bounded.
In Lemma 4.3 the restriction on U simplifies into totally normal neighborhood and
bounded.

4.2. Local well-posedness. Let us now turn to the local well-posedness of solu-
tions to Equation (1.1). We consider an additional assumption:
(Kloc) K : M ×M → R satisfies (K) with g′ locally Lipschitz continuous.
For ∆ > 0, we write Cg′(∆) and Lg′(∆) for the L∞ norm and the Lipschitz constant
of g′ on [0,∆2].

Lemma 4.4. Assume the manifold M and potential K satisfy (M) and (Kloc),
and take U ⊂ Br/2(p) open and geodesically convex for some p ∈ M and r <
inj(M) such that (4.8) holds (cf. also Notation 4.1). Let T ∈ (0,∞] and ρ ∈
C([0, T );P(U)). Then the time-dependent vector field v[ρ] given by (3.1) is bounded
and Lipschitz continuous with respect to its first variable, uniformly with respect to
its second variable.

Proof. Write ∆ for diam(U). We have, for all x, y ∈ U ,

‖∇Ky(x)‖x =
∥∥g′(d(x, y)2)∇d2

y(x)
∥∥
x
6 2Cg′(∆)∆,

where we used the local bound on g′ and that
∥∥∇d2

y(x)
∥∥
x

= 2d(x, y) 6 2∆. Imme-

diately, for all t ∈ [0, T ), it follows

‖v[ρ](x, t)‖x 6
∫
U

‖∇Ky(x)‖x dρt(y) 6 2Cg′(∆)∆, (4.12)

which shows that v[ρ] is bounded.
Also, for all x, y, z ∈ U , we get

‖∇Kz(x)−Πyx∇Kz(y))‖x
=
∥∥g′(d(x, z)2)∇d2

z(x)− g′(d(y, z)2)Πyx∇d2
z(y)

∥∥
x

6|g′(d(x, z)2)|
∥∥∇d2

z(x)−Πyx∇d2
z(y)

∥∥
x

+
∥∥∇d2

z(y)
∥∥
y
|g′(d(x, z)2)− g′(d(y, z)2)|

6Cg′(∆)Ld(x, y) + 2d(y, z)Lg′(∆)|d(x, z)2 − d(y, z)2|,

where we used the Lipschitz continuity of the vector field ∇d2
z (equivalently of the

logarithm map) given by (4.9) and the local bound and Lipschitz continuity of g′.
Now use d(y, z) 6 ∆ and

|d(x, z)2 − d(y, z)2| = |d(x, z)− d(y, z)||d(x, z) + d(y, z)| 6 2∆d(x, y),

to get
‖∇Kz(x)−Πyx∇Kz(y))‖x 6 L̄ d(x, y) for all x, y, z ∈ U,

where
L̄ = Cg′(∆)L+ 4∆2Lg′(∆). (4.13)

Then, for all t ∈ [0, T ) and x, y ∈ U , we get

‖v[ρ](x, t)−Πyxv[ρ](y, t)‖x 6
∫
U

‖∇Kz(x)−Πyx∇Kz(y))‖x dρt(z)

6 L̄ d(x, y), (4.14)
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which shows that v[ρ] is Lipschitz continuous with respect to its first variable (s-
pace), uniformly with respect to its second (time).

Remark 4. The L∞ bound and the Lipschitz constant of v[ρ] in (4.12) and (4.14)
do not depend on the curve ρ. This is important for the proof of Theorem 4.6.

Lemma 4.5. Let M and K satisfy (M) and (Kloc) and U ⊂ Br(p) be a totally
normal neighborhood for some p ∈ M and r < inj(M), and write µ = µr(p) (recall
Notation 4.1). If µ > 0 assume that ∆ := diam(U) satisfies ∆ 6 π−ε√

µ for some

0 < ε < π. Let ρ, σ ∈ C([0, T );P(U)). Then, there exists Λ > 0 so that

‖v[ρ]− v[σ]‖L∞(U×[0,T )) 6 ΛW 1(ρ, σ).

Proof. By Lemma 4.3, we have

‖ logx z − logx y‖x 6 `d(y, z) for all x, y, z ∈ U,
where ` = π−ε

sin(π−ε) if µ > 0 and ` = 1 if µ = 0. Hence, using (4.2) we find

‖∇d2
y(x)−∇d2

z(x)‖x 6 2`d(y, z), for all x, y, z ∈ U.
Since (Kloc) holds, for all x, y ∈ U compute

‖∇Ky(x)−∇Kz(x)‖x
=‖g′(d(x, y)2)∇d2

y(x)− g′(d(x, z)2)∇d2
z(x)‖x

6|g′(d(x, z)2)|‖∇d2
y(x)−∇d2

z(x)‖x + ‖∇d2
y(x)‖x|g′(d(x, y)2)− g′(d(x, z)2)|,

where we added and subtracted g′(d(x, z)2)∇d2
y(x) on the first line and used the

triangle inequality. Then, using the bound and Lipschitz constant of g′, the fact
that ‖∇d2

y(x)‖x = 2d(x, y) and again the triangle inequality, we find

‖∇Ky(x)−∇Kz(x)‖x
62Cg′(∆)` d(y, z) + 2Lg′(∆)|d(x, y) + d(x, z)||d(x, y)− d(x, z)|d(x, y)

6(2Cg′(∆)`+ 4Lg′(∆)∆2)d(y, z). (4.15)

Now, for (x, t) ∈ U × [0, T ), take πt ∈ Π(ρt, σt) to be an optimal transport plan
between ρt and σt, and estimate

‖v[ρ](x, t)− v[σ](x, t)‖x =

∥∥∥∥∫
U

∇Ky(x) dρt(y)−
∫
U

∇Kz(x) dσt(z)

∥∥∥∥
x

=

∥∥∥∥∫
U×U

∇Ky(x) dπt(y, z)−
∫
U×U

∇Kz(x) dπt(y, z)

∥∥∥∥
x

6
∫
U×U

‖∇Ky(x)−∇Kz(x)‖x dπt(y, z).

Then, using (4.15) we find

‖v[ρ](x, t)− v[σ](x, t)‖x 6 Λ

∫
U×U

d(y, z) dπt(y, z) = ΛW1(ρt, σt)

6 ΛW 1(ρ, σ), (4.16)

where
Λ = 2Cg′(∆)`+ 4Lg′(∆)∆2. (4.17)

Taking the supremum in (x, t) ∈ U × [0, T ) on the left-hand side of (4.16) gives the
result.
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Remark 5. The assumptions on U in Lemma 4.5 are weaker than in Lemma 4.4.

Theorem 4.6 (Local Well-Posedness). Assume the manifold M and interaction
potential K satisfy (M) and (Kloc), and take U ⊂ Br/2(p) open and geodesically
convex for some p ∈ M and r < inj(M) so that (4.8) holds (cf. Notation 4.1). Let
ρ0 ∈ P(U). Then, there exist T > 0 and a unique weak solution in C([0, T );P(U))
starting from ρ0 to the aggregation equation (1.1).

Proof. By Lemma 4.4 the velocity field v[σ] (for any fixed continuous curve σ
in P(U)) satisfies the assumptions of Theorem 2.5, so that we can infer that
(v[σ], supp(ρ0)) generates a unique maximal flow Ψv[σ] defined on supp(ρ0)× [0, τ)
for some τ ∈ (0,∞]. In addition, since the L∞ bound and the Lipschitz constant
in (4.12) and (4.14) do not depend on the underlying curve (see Remark 4), the
maximal time of existence τ of Ψv[σ] does not depend on σ by the Cauchy–Lipschitz
theorem (cf. Theorem 2.5).

We can then define the map Γ by

Γ(σ)(t) = Ψt
v[σ]#ρ0, for all σ ∈ C([0, τ);P(U)) and t ∈ [0, τ).

We will prove that Γ defines a map from C([0, τ);P(U)) into itself and that it has
a unique fixed point. This fixed point is the weak solution of (1.1) starting at ρ0.

Note first that Γ does indeed mapC([0, τ);P(U)) into itself. For σ∈C([0, τ);P(U))
fixed, by definition of a flow map generated by (v[σ], supp(ρ0)), we infer that
Ψt
v[σ](x) ∈ U for all x ∈ supp(ρ0) and t ∈ [0, τ). Consequently, Γ(σ)(t) is sup-

ported in U and moreover, it is a probability measure by conservation of mass
through the push-forward, so that Γ(σ)(t) ∈ P(U), for all t ∈ [0, τ). Furthermore,
the map t 7→ Γ(σ)(t) is continuous due to the combination of Lemma 3.2(ii) with
Lemma 4.4. We conclude that Γ: (C([0, τ);P(U)),W 1)→ (C([0, τ);P(U)),W 1).

To show that Γ is a contraction we will have to restrict the final time to some
T 6 τ to be determined. Let ρ, σ ∈ C([0, τ);P(U)). Then, for all t ∈ [0, τ), we have

W1(Ψt
v[ρ]#ρ0,Ψ

t
v[σ]#ρ0) 6 sup

x∈supp(ρ0)

d(Ψt
v[ρ](x),Ψt

v[σ](x))

6 C(t)‖v[ρ]− v[σ]‖L∞(U×[0,τ))

6 C(t)ΛW 1(ρ, σ), (4.18)

where for the first inequality we used Lemma 3.2(i), for the second inequality we
used Lemmas 4.4 and 4.1, with

C(t) =
eL̄t − 1

L̄
,

and for the last inequality we used Lemma 4.5; the Lipschitz constants L̄ and
Λ depend on diam(U) and are defined in (4.13) and (4.17). Since t 7→ C(t) is
increasing, with limt→0 C(t) = 0 and Λ is independent of time, we can choose
T 6 τ (only depending on L̄ and Λ) small enough so that

C(t)Λ < C(T )Λ < C̄, for all t ∈ [0, T ),

for some constant C̄ < 1. Restricting T accordingly, by taking the supremum over
[0, T ) in (4.18) we find

W 1(Γ(ρ),Γ(σ)) 6 C̄W 1(ρ, σ),
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with C̄ < 1. This shows that the restriction of Γ to (C([0, T );P(U)),W 1) is a
contraction.

We have thus shown that Γ: (C([0, T );P(U)),W 1)→ (C([0, T );P(U)),W 1) has
a unique fixed point, that is, there exists a unique ρ ∈ C([0, T );P(U)) such that

ρt = Ψt
v[ρ]#ρ0 for all t ∈ [0, T );

this fixed point ρ is the desired solution.

Remark 6. In Theorem 4.6, one could choose U = Br/2(p) as long as this geodesic
ball is convex and r < inj(M), that is, as long as r < min(inj(M), 2 conv(M)) =
2 conv(M) (where the equality comes from the fact that 2conv(M) 6 inj(M) [11,
Proposition IX.6.1]).

4.3. Global well-posedness when M is nonpositively curved. We establish
here the global well-posedness for (1.1) when M is nonpositively curved. Recall
that in this case, if M is simply connected, then inj(M) =∞ and M is unbounded;
in fact, we have that the exponential map is a diffeomorphism from TxM to M for
all x ∈ M (see [29, Corollary 6.9.1]), so that, in particular, the velocity field (3.1)
is well-defined for all ρ ∈ C([0,∞);P∞(M)) and M is geodesically convex.

We shall focus on the case when M is nonpositively curved with bounded curva-
ture. We thus consider the following hypothesis, for some λ 6 0:
(M)λ M satisfies (M), is simply connected, and its curvature K is such that λ 6
K 6 0 everywhere.
We wish to adapt Lemmas 4.4 and 4.5 globally when M satisfies (M)λ for some
λ 6 0. To this end, consider the following hypothesis on K, for some λ 6 0:
(Kglob)λ K : M×M → R satisfies (K) with g so that, for some constant Ag′ > 0,∣∣g′(r2)r − g′(s2)s

∣∣ 6 Ag′ |r − s| , for all r, s > 0. (4.19)

When λ < 0, it further holds that∣∣g′(r2)
∣∣ r 6 Ag′ , for all r > 0.

The first bound in (Kglob)λ means that the function r 7→ g′(r2)r is globally
Lipschitz continuous; it implies in particular that g′ is globally bounded by Ag′ .
The second bound in (Kglob)λ, in case λ < 0, means that r 7→ g′(r2)r is globally
bounded; it also says that g′(r) must decrease at least as fast as 1/

√
r as r →∞.

The Lipschitz condition in (Kglob)λ is consistent with the classical Cauchy–
Lipschitz theory in Euclidean space. Indeed, in this case this Lipschitz condition
is enough to get the global Lipschitz continuity of the velocity field (and the local
boundedness that follows from it) in order to obtain global well-posedness of the
flow maps (cf. Theorem 2.6). When the space is negatively curved, the Lipschitz
condition in (Kglob)λ is not sufficient anymore to get the global Lipschitz continu-
ity of the velocity field. This stems from (4.9), where the Lipschitz constant depends
on the distance between the points considered (as opposed to the flat case discussed
in Remark 1)—the global upper bound condition in (Kglob)λ helps counterbalance
this effect. All this can be seen in details in the proof of Lemma 4.7 below.

Remark 7. One can check that the Lipschitz condition in (Kglob)λ implies∣∣g′(r2)− g′(s2)
∣∣ s 6 2Ag′ |r − s| , for all r, s > 0.

Lemma 4.7. Assume that there exists λ 6 0 such that M satisfies (M)λ and K
satisfies (Kglob)λ. Let ρ ∈ C([0,∞);P∞(M)). Then the time-dependent vector



WELL-POSEDNESS OF INTERACTION MODEL ON RIEMANNIAN MANIFOLDS 3573

field v[ρ] given by (3.1) is locally bounded and globally Lipschitz continuous with
respect to its first variable, uniformly with respect to its second variable.

Proof. We follow closely the proof of Lemma 4.4. Let U ⊂ M be bounded, open
and convex with ∆ = diam(U). We have, for all x, y ∈ U ,

‖∇Ky(x)‖x =
∥∥g′(d(x, y)2)∇d2

y(x)
∥∥
x
6 2Ag′∆,

which yields the local boundedness of v[ρ](·, t), uniformly with respect to t ∈ [0,∞).
(Note that in case λ < 0, this bound on v[ρ](·, t) is actually global thanks to the
second condition in (Kglob)λ.)

For all x, y, z ∈ U , we get

‖∇Kz(x)−Πyx∇Kz(y))‖x
=
∥∥g′(d(x, z)2)∇d2

z(x)− g′(d(y, z)2)Πyx∇d2
z(y)

∥∥
x

6|g′(d(x, z)2)|
∥∥∇d2

z(x)−Πyx∇d2
z(y)

∥∥
x

+
∥∥∇d2

z(y)
∥∥
y
|g′(d(x, z)2)− g′(d(y, z)2)|

6|g′(∆2)|L(∆) d(x, y) + 4Ag′ |d(x, z)− d(y, z)|

6(|g′(∆2)|L(∆) + 4Ag′) d(x, y),

where for the first inequality we added and subtracted g′(d(x, z)2)Πyx∇d2
z(y) and

used the triangle inequality; we then used the Lipschitz continuity of the vector field
∇d2

z given by (4.9) with L(∆) := 2
√
−λ∆ coth(

√
−λ∆), the fact that

∥∥∇d2
z(y)

∥∥
y

=

2d(y, z) and Remark 7 for the second inequality, and the reverse triangle inequality
on d for the third inequality. We notice that if λ = 0, then L(∆) = 2 and so
|g′(∆2)|L(∆) 6 2Ag′ . If λ < 0, we have

g′(∆2)L(∆) = 2g′(∆2)
√
−λ∆ coth(

√
−λ∆)

6

{
2g′(∆2) coth(1) if ∆ 6 1√

−λ

2g′(∆2)
√
−λ∆ coth(1) if ∆ > 1√

−λ

6

{
2Ag′ coth(1) if ∆ 6 1√

−λ

2Ag′
√
−λ coth(1) if ∆ > 1√

−λ

6 2Ag′ coth(1) max(1,
√
−λ),

where for the first inequality we used that r coth(r) and coth(r) are bounded by
coth(1), respectively for r 6 1 and for r > 1, and for the second inequality we used
the second bound condition in (Kglob)λ. Thus, because coth(1) max(1,

√
−λ) > 1,

in either case λ = 0 or λ < 0 we get

g′(∆2)L(∆) 6 2Ag′ coth(1) max(1,
√
−λ).

Since the right-hand side above is independent of U , and U is any bounded, open,
convex subset of M , we deduce that for all x, y, z ∈M we have

‖∇Kz(x)−Πyx∇Kz(y))‖x 6 2Ag′(coth(1) max(1,
√
−λ) + 2) d(x, y),

We then conclude with Lipschitz constant L̄ = 2Ag′(coth(1) max(1,
√
−λ) + 2).

Lemma 4.8. Suppose that M satisfies (M)λ for some λ 6 0 and K satisfies the
Lipschitz condition (4.19). Let furthermore ρ, σ ∈ C([0,∞);P∞(M)). Then, there
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exists Λ > 0 so that

‖v[ρ]− v[σ]‖L∞(M×[0,∞)) 6 ΛW 1(ρ, σ).

Proof. We follow closely the proof of Lemma 4.5. By Lemma 4.3 and Remark 2,
recall that

‖∇d2
y(x)−∇d2

z(x)‖x 6 2d(y, z), for all x, y, z ∈M. (4.20)

For all x, y, z ∈M compute

‖∇Ky(x)−∇Kz(x)‖x
=‖g′(d(x, y)2)∇d2

y(x)− g′(d(x, z)2)∇d2
z(x)‖x

6|g′(d(x, z)2)|‖∇d2
y(x)−∇d2

z(x)‖x + ‖∇d2
y(x)‖x|g′(d(x, y)2)− g′(d(x, z)2)|

62Ag′ d(y, z) + 4Ag′ |d(x, y)− d(x, z)|

66Ag′ d(y, z),

where for the first inequality we added and subtracted g′(d(x, y)2)∇d2
z(x) and used

triangle inequality; we then used (4.20), the fact that
∥∥∇d2

y(x)
∥∥ = 2d(x, y) and

Remark 7 for the second inequality, and the reverse triangle inequality on d for the
third inequality. Following the proof of Lemma 4.5, we conclude with Λ = 6Ag′ .

In addition to global well-posedness, the following theorem shows that the sup-
port of the global solution is contained in an increasing geodesic ball centred around
the initial data.

Theorem 4.9 (Global Well-Posedness on Nonpositively Curved Manifold). Assume
that there exists λ 6 0 such that M satisfies (M)λ and K satisfies (Kglob)λ. Let
ρ0 ∈ P∞(M). Then, there exists a unique weak solution in C([0,∞);P∞(M)) start-
ing from ρ0 to the aggregation equation (1.1). Moreover, there exist a nondecreasing
function R : [0,∞)→ R and a point p ∈ supp(ρ0) such that

supp(ρt) ⊂ BR(t)(p), for all t > 0.

Proof. By Lemma 4.7, since M is convex, the velocity field v[σ] (for any fixed
continuous curve σ in P∞(M)) satisfies the assumptions of the global Cauchy-
Lipschitz theorem (cf. Theorem 2.6), so that we can infer that (v[σ], supp(ρ0))
generates a unique global flow defined on supp(ρ0)× [0,∞).

Following the same steps as in the proof of Theorem 4.6, using Lemmas 4.7
and 4.8 in place of Lemmas 4.4 and 4.5, respectively, yields the well-posedness by
observing that the constants L̄ and Λ are now independent of supp(ρ0) and its
diameter, which allows us to apply an iterative argument indefinitely and obtain
a unique solution in C([0,∞);P∞(M)). The boundedness of the support of the
solution and the existence of a nondecreasing ball containing it follows from the
iterative construction of the global flow map in the proof of Theorem 2.6.

5. Additional results. We give here two additional results which can be derived
by following very closely the global well-posedness and stability theory established
for the model on the sphere in [20]. For this reason, we do not give the proofs here
and refer the reader to [20, Proposition 4.1] (global well-posedness for attractive
potentials) and [20, Theorem 3.8] (stability of solutions) should they wish to see
details.
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Following [20], we give the following definition of purely attractive potential:
given x ∈M , we say that K is purely attractive at x if for all normal neighbourhood
U of x and y ∈ U we have

〈∇Ky(x), logx y〉x 6 0.

Consider now the hypothesis below on K:
(Katt) K : M ×M → R satisfies (Kloc) with g such that

g′(r2) > 0 for all r < inj(M).

By (4.1), the nonnegativity condition in (Katt) means that K is purely attractive.

Theorem 5.1 (Global Well-Posedness for Attractive Potential). Let M and K
satisfy (M) and (Katt), and let U ⊂ Br/2(p) for some p ∈ M and r < inj(M) be
open and geodesically convex and such that (4.8) holds. Let moreover ρ0 ∈ P(U)
and R > 0 be such that supp(ρ0) ⊂ BR(p) ⊂ U . Then, there exists a unique weak
solution ρ in C([0,∞);P(U)) starting from ρ0 to the aggregation equation (1.1);

furthermore, supp(ρt) ⊂ BR(p) for all t > 0.

Theorem 5.2 (Stability). Let ρ0, σ0 ∈ P∞(M). Let furthermore ρ and σ be weak
solutions to (1.1) defined on some time interval [0, T ) starting from ρ0 and σ0,
respectively, as derived in Theorems 4.6, 4.9 or 5.1. Then,

W1(ρt, σt) 6 e(L̄+Λ)tW1(ρ0, σ0) for all t ∈ [0, T ),

where L̄ and Λ are the constants given in the proofs of Lemmas 4.4 and 4.5 in the
local, compact and purely attractive cases and of Lemmas 4.7 and 4.8 in the global,
unbounded case.

We note that when M and K verify (M)λ and (Kglob)λ for some λ 6 0, the
above theorem illustrates the fact that the larger (in magnitude) the lower bound
λ on K is, the faster solutions may spread apart in time.

Appendix A. Basic concepts and terminology from differential geometry.
All the concepts discussed here are standard and can be found in any graduate
differential geometry book. We refer the reader for example to [11,13,31].
Logarithm map and normal neighbourhoods. Given x ∈ M , there exists
G ⊂ TxM open with 0 ∈ G such that the exponential map expx : G→ U := expx(G)
restricted to G is a diffeomorphism. The inverse of expx is the logarithm map at x
(on U), denoted by logx : U → G. We have that x ∈ U and U is an open subset of
M . We call any such U a normal neighbourhood of x—conversely, any x ∈ U has a
normal neighbourhood. A subset of M is said to be a totally normal neighbourhood
if it is a normal neighbourhood of each of its points.

If r > 0 is such that expx defines a diffeomorphism on the open ballBr(0) ⊂ TxM ,
then Br(x) := expx(Br(0)) is open and is called the open geodesic ball centred at x of
radius r; by the previous paragraph, Br(x) is by definition a normal neighbourhood
of x. Also, it coincides with the metric ball centred at x with radius r, that is, with
the set {y ∈ M | d(x, y) < r}. The largest such radius r is called the injectivity
radius at x and is denoted rinj(x). The infimum over all y ∈M of rinj(y) is referred
to as the injectivity radius of M , which we denote by inj(M).
Geodesics and convexity. By definition of the exponential map, any point y in
a normal neighbourhood of another point x can be connected to x via a unique
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minimizing geodesic γxy : [0, 1]→M , which satisfies, for all t ∈ [0, 1],

γxy(t) = expx(t logx y).

This formula indicates that expx transforms the straight line t 7→ t logx(y) in TxM
into the geodesic connecting x and y.

A (geodesically) convex subset of M is a subset in which each pair of points
can be connected by a unique minimizing geodesic which lies entirely within it—
when open, it is thus a particular case of a totally normal neighbourhood that
minimizing geodesics cannot exit. We say that M is (geodesically) convex if it is
a geodesically convex subset of itself. Note that a geodesic ball is not necessarily
convex. Nevertheless, given any x ∈M , it is a fact that x has a convex geodesic ball
as a neighbourhood; we refer to the radius of the largest such ball as the convexity
radius at x, denoted rconv(x). The infimum over all y ∈M of rconv(y) is referred to
as the convexity radius of M , which we denote by conv(M).
Normal charts. Let x ∈M and U be a normal neighbourhood of x. We can con-
struct a chart in a canonical way. Indeed, let {E1(x), . . . , En(x)} be an orthonormal
basis of TxM and define E : TxM → Rn by

E(v) = (v1, . . . , vn), for all v = v1E1(x) + · · ·+ vnEn(x) ∈ TxM, (A.1)

i.e., E(v) gives the vector in Rn whose coordinates are the coordinates of v in
{E1(x), . . . , En(x)}. Then, define the map ϕ : U → Rn by

ϕ(y) = E ◦ logx(y) for all y ∈ U ;

note that ϕ(x) = 0. The pair (U,ϕ) induces a local chart of M containing x. Any
chart thus constructed is referred to as a normal chart (generated by x).
Push-forward and coordinates. Given a differentiable function f : M → Rn, a
point x ∈ M and v ∈ TxM , we call f∗v := df(x)(v) ∈ Rn the push-forward of v
through f . Given any chart (V, ϕ) of M containing some x, y ∈M , we write{

∂

∂ϕ1
(y), . . . ,

∂

∂ϕn
(y)

}
for the basis of TyM defined by

∂

∂ϕi
(y) = dϕ−1(ϕ(y))(ei), that is, ei = dϕ(y)

(
∂

∂ϕi
(y)

)
= ϕ∗

∂

∂ϕi
(y),

where, for all i ∈ {1, . . . , n}, ei is the ith vector of the canonical basis of Rn. For
all v ∈ TyM there exist v1, . . . , vn ∈ R such that

v = v1
∂

∂ϕ1
(y) + · · ·+ vn

∂

∂ϕn
(y).

Then, by linearity,

ϕ∗v = dϕ(y)(v) = v1dϕ(y)

(
∂

∂ϕ1
(y)

)
+ · · ·+ vndϕ(y)

(
∂

∂ϕn
(y)

)
= v1e1 + · · ·+ vnen = (v1, . . . , vn).

Hence ϕ∗v gives the vector in Rn whose coordinates are those of v in the basis{
∂/∂ϕ1(y), . . . , ∂/∂ϕn(y)

}
.

Euclidean norm and intrinsic distance. We give now useful relations between
norms in Rn and intrinsic distances on M . Let (V, ϕ) be a chart of M and let Q ⊂ V
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be compact. Then there exist cϕ,Q, Cϕ,Q > 0 so that

cϕ,Q ‖ϕ∗v‖Rn 6 ‖v‖x 6 Cϕ,Q ‖ϕ∗v‖Rn , for all x ∈ Q and v ∈ TxM. (A.2)

If furthermore ϕ(U) ⊂ Rn is convex, then there exists Lϕ,Q > 0 so that

d(x, y) 6 Lϕ,Q ‖ϕ(x)− ϕ(y)‖Rn , for all x, y ∈ Q. (A.3)

We now prove these relations. Let us first show (A.2). Define

Tϕ = {(x, v) ∈ Q× TM | v ∈ TxM, ‖ϕ∗v‖Rn = 1},

which is compact as well. Then, because (x, v) 7→ ‖v‖x is continuous on Tϕ and we
have ‖v‖x > 0 for all (x, v) ∈ Tϕ, there exist cϕ,Q, Cϕ,Q > 0 such that

cϕ,Q 6 ‖v‖x 6 Cϕ,Q, for all (x, v) ∈ Tϕ.

Fix now (x, v) ∈ Q × TM with v ∈ TxM and ‖ϕ∗v‖Rn 6= 0. Using the inequality
above we get

‖v‖x = ‖ϕ∗v‖Rn
∥∥∥∥ v

‖ϕ∗v‖Rn

∥∥∥∥
x

6 Cϕ,Q ‖ϕ∗v‖Rn , (A.4)

and similarly for the side with cϕ,Q. Also, trivially, if ‖ϕ∗v‖Rn = 0, then the same
inequalities hold, proving (A.2).

Let us now turn to (A.3). Define

Rϕ,Q = {ξ ∈ Rn | ∃ (x, y, t) ∈ Q×Q× [0, 1], ξ = (1− t)ϕ(x) + tϕ(y)},

which we note is compact. Let x, y ∈ Q and define γ by

γ(t) = ϕ−1((1− t)ϕ(x) + tϕ(y)), for all t ∈ [0, 1],

so that in particular, the composition ϕ ◦ γ is the (Euclidean) geodesic from ϕ(x)
to ϕ(y). Since ϕ(V ) is convex we deduce that Rϕ,Q ⊂ ϕ(V ) and so γ([0, 1]) ⊂
ϕ−1(Rϕ,Q) ⊂ U . Since ϕ−1(Rϕ,Q) is furthermore compact, using (A.4) and setting
Lϕ,Q = Cϕ,ϕ−1(Rϕ,Q) yields

d(x, y) 6
∫ 1

0

‖γ′(t)‖γ(t) dt 6 Lϕ,Q

∫ 1

0

‖ϕ∗γ′(t)‖Rn dt

= Lϕ,Q

∫ 1

0

‖(ϕ ◦ γ)′(t)‖Rn dt = Lϕ,Q ‖ϕ(x)− ϕ(y)‖Rn .

Appendix B. Proofs of preliminary results.

B.1. Proof of Lemma 2.2. Let us first show the following lemma, which is also
going to be useful in Appendix B.2.

Lemma B.1. Let U ⊂ M be open and geodesically convex, and let further X be a
differentiable vector field on U . Then,

‖X(x)−ΠyxX(y)‖2x 6
∫ 1

0

∥∥∇γ′(t)X(γ(t))
∥∥2

γ(t)
dt, for all x, y ∈ U,

where γ : [0, 1] → M is the minimizing geodesic joining x to y. (Refer to (2.3) for
the definition of the above integrand.)
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Proof. Take two points x, y ∈ U and the unique minimizing geodesic γ : [0, 1]→M
joining the two points; in particular, γ([0, 1]) ⊂ U for all t ∈ [0, 1]. Consider an
orthonormal parallel frame t 7→ {e1(t), e2(t), . . . , en(t)} along γ. From

X(γ(t)) =

n∑
i=1

〈X(γ(t)), ei(t)〉γ(t)ei(t), for all t ∈ [0, 1],

using that the parallel transport is a linear operator, we get:

ΠyxX(γ(1)) =

n∑
i=1

〈X(γ(1)), ei(1)〉γ(1)Πyxei(1) =

n∑
i=1

〈X(γ(1)), ei(1)〉γ(1)ei(0).

Consequently,

‖X(x)−ΠyxX(y)‖2x =

n∑
i=1

(
〈X(γ(1)), ei(1)〉γ(1) − 〈X(γ(0)), ei(0)〉γ(0)

)2
. (B.1)

Using the compatibility of the connection with the metric [13,14] we obtain

d

dt
〈X(γ(t)), ei(t)〉γ(t) = 〈∇γ′(t)X(γ(t)), ei(t)〉γ(t) + 〈X(γ(t)),∇γ′(t)ei(t)〉γ(t)

= 〈∇γ′(t)X(γ(t)), ei(t)〉γ(t),

where for the second equality we used ∇γ′(t)ei(t) = 0, for all t ∈ [0, 1]. By integrat-
ing the equation above from 0 to 1 and using it in (B.1) we find

‖X(x)−ΠyxX(y)‖2x =

n∑
i=1

(∫ 1

0

〈∇γ′(t)X(γ(t)), ei(t)〉γ(t) dt

)2

6
∫ 1

0

n∑
i=1

〈∇γ′(t)X(γ(t)), ei(t)〉2γ(t) dt

=

∫ 1

0

‖∇γ′(t)X(γ(t))‖2γ(t) dt,

where for the second line we used Jensen’s inequality, and for the third we used the
fact that {ei(t)}ni=1 is an orthonormal basis of Tγ(t)M .

Let us now turn to the proof of Lemma 2.2. Take Q ⊂ Bδ(x) ∩ V compact
and let y, z ∈ Q. We write Gϕ(y) for the metric tensor associated with 〈·, ·〉y in

the basis {∂/∂ϕ1(y), . . . , ∂/∂ϕn(y)}. For all i, j ∈ {1, . . . , n} we denote by pi(y, z)
and fij(y, z) the ith coordinates in this basis of X(y) − ΠzyX(z) and ∂/∂ϕj(y) −
Πzy∂/∂ϕ

j(z), respectively.
For all i ∈ {1, . . . , n} we have

|pi(y, z)| =

∣∣∣∣∣
〈
X(y)−ΠzyX(z), Gϕ(y)−1 ∂

∂ϕi
(y)

〉
y

∣∣∣∣∣
6 ‖X(y)−ΠzyX(z)‖y

∥∥∥∥Gϕ(y)−1 ∂

∂ϕi
(y)

∥∥∥∥
y

6 Pϕ ‖X‖Lip(Q) d(y, z),

where Pϕ = supi∈{1,...,n}
∥∥G−1

ϕ (·)∂/∂ϕi(·)
∥∥
L∞(Q)

, which is finite since ∂/∂ϕi for

all i ∈ {1, . . . , n} and Gϕ are continuous over the compact set Q; note that Pϕ is
independent of y and z.
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Similarly, for all i, j ∈ {1, . . . , n}, we have

|fij(y, z)| 6 PϕFϕd(y, z),

where Fϕ = supi∈{1,...,n}
∥∥∂/∂ϕi∥∥

Lip(Q)
, which is finite since ∂/∂ϕi as a vector field

on Bδ(x) is Lipschitz continuous for all i ∈ {1, . . . , n}. Indeed, by Lemma B.1, for
all i ∈ {1, . . . , n} there holds∥∥∥∥ ∂

∂ϕi
(y)−Πzy

∂

∂ϕi
(z)

∥∥∥∥2

y

6
∫ 1

0

∥∥∥∥∇γ′(t) ∂

∂ϕi
(γ(t))

∥∥∥∥2

γ(t)

dt, for all y, z ∈ Bδ(x),

where γ : [0, 1]→M is the unique minimizing geodesic linking y to z. Decomposing
∇γ′(t) ∂

∂ϕi (γ(t)) using Christoffel symbols and using that the terms involved are

continuous, hence locally bounded, one can bound the integrand in the right-hand
side by L ‖γ′(t)‖γ(t), with L > 0 constant. Then, by rescaling γ to be constant-

speed (i.e., so that ‖γ′(t)‖γ(t) = d(y, z) for all t ∈ [0, 1]), we get the desired Lipschitz
continuity:∥∥∥∥ ∂

∂ϕi
(y)−Πzy

∂

∂ϕi
(z)

∥∥∥∥2

y

6 L

∫ 1

0

‖γ′(t)‖2γ(t) dt = Ld(y, z)2, for all y, z ∈ Bδ(x).

Now, write (x1(y), . . . , xn(y)) = ϕ∗X(y) ∈ Rn, so that

X(y) = x1(y)
∂

∂ϕ1
(y) + · · ·+ xn(y)

∂

∂ϕn
(y),

and analogously for z (cf. Appendix A). By linearity of the parallel transport from
z to y, we have

n∑
i=1

pi(y, z)
∂

∂ϕi
(y) = X(y)−ΠzyX(z) =

n∑
i=1

xi(y)
∂

∂ϕi
(y)−

n∑
i=1

xi(z)Πzy
∂

∂ϕi
(z)

=

n∑
i=1

(xi(y)− xi(z))
∂

∂ϕi
(y) +

n∑
i=1

xi(z)

(
∂

∂ϕi
(y)−Πzy

∂

∂ϕi
(z)

)

=

n∑
i=1

(xi(y)− xi(z))
∂

∂ϕi
(y) +

n∑
i=1

n∑
j=1

xj(z)fij(y, z)
∂

∂ϕi
(y),

which yields, for all i ∈ {1, . . . , n},

pi(y, z) = xi(y)− xi(z) +

n∑
j=1

xj(z)fij(y, z).

Thus, for all i ∈ {1, . . . , n},

|xi(y)− xi(z)| 6 |pi(y, z)|+
n∑
j=1

|xj(z)||fij(y, z)|

6 Pϕ(‖X‖Lip(Q) + nPϕFϕ ‖X‖L∞(Q))d(y, z).

To conclude the proof we use (A.3). Indeed, by definition of normal chart, we have
ϕ(Bδ(x)) = ϕ(expx(Bδ(0)) = E(logx(expx(Bδ(0)))) = E(Bδ(0)) ∼= Bδ(0), which is
a convex subset of Rn, where E is given in (A.1).
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B.2. Proof of Lemma 2.3. Assume first that ∇f is locally Lipschitz continuous.
Let Q ⊂ U be compact, take any x ∈ Q and v ∈ TxM and write γ for the constant-
speed geodesic with γ(0) = x and γ′(0) = v. In particular, d(γ(t), x) = t‖v‖x for

all t > 0 such that γ(t) is defined, and for τ > 0 small enough we have γ(t) ∈ Q̃ for

all t < τ for some Q̃ compact satisfying Q ⊂ Q̃ ⊂ U . By local Lipschitz continuity
of ∇f we thus have, for all t < τ ,

‖Π−1
xγ(t)∇f(γ(t))−∇f(x)‖x 6 LQ̃ d(γ(t), x) = LQ̃ t‖v‖x. (B.2)

By (2.3) and the definition of the Hessian, we have

Hessv f(x) = ∇v(∇f)(x) = lim
t→0

Π−1
xγ(t)∇f(γ(t))−∇f(x)

t
,

and using (B.2) we find

‖Hessv f(x)‖x 6 LQ̃ ‖v‖x.
The Hessian operator Hess f(x) is therefore bounded. By the arbitrariness of Q and
x ∈ Q, we conclude that Hess f is locally bounded.

To prove the converse, suppose that U is convex and that the Hessian of f is
locally bounded. Let Q ⊂ U be compact; because U is open and convex, there

exists a compact, geodesically convex set Q̃ with Q ⊂ Q̃ ⊂ U . Furthermore, take
two points x, y ∈ Q and the constant-speed geodesic γ : [0, 1]→M joining the two

points; in particular, ‖γ′(t)‖γ(t) = d(x, y) and γ([0, 1]) ⊂ Q̃ for all t ∈ [0, 1]. By
Lemma B.1 applied to the vector field ∇f we get

‖∇f(x)−Πyx∇f(y)‖2x 6
∫ 1

0

‖Hessγ′(t) f(γ(t))‖2γ(t) dt.

By the local boundedness of Hess f and the fact that γ is constant-speed we further
get

‖∇f(x)−Πyx∇f(y)‖2x 6 C2
Q̃
d(x, y)2,

for some CQ̃ > 0, which, by arbitrariness of Q and x, y ∈ Q, ends the proof.

B.3. Proof of Theorem 2.5. Take x ∈ U and let δ 6 rconv(x) be such that
Bδ(x) ⊂ U . Let (Bδ(x), ϕ) be a normal chart generated by x, and consider the
initial-value problem {

α′(t) = Ξ(α(t), t),

α(0) = ϕ(x),
(B.3)

where we define Ξ: ϕ(Bδ(x))× [0, T )→ Rn by

Ξ(ξ, t) = ϕ∗Xt(ϕ
−1(ξ)), for all (ξ, t) ∈ ϕ(Bδ(x))× [0, T ).

Take R ⊂ ϕ(Bδ(x)) = Bδ(0) and S ⊂ [0, T ) compact, so that in particular Q :=
ϕ−1(R) ⊂ Bδ(x) is compact. For all ξ, η ∈ R and t ∈ S, our Lipschitz-continuity
assumption on Xt yields

‖Ξ(ξ, t)− Ξ(η, t)‖Rn =
∥∥ϕ∗Xt(ϕ

−1(ξ))− ϕ∗Xt(ϕ
−1(η))

∥∥
Rn

6 (A ‖Xt‖L∞(Q) +B ‖Xt‖Lip(Q)) ‖ξ − η‖Rn ,

for some constants A,B > 0 coming from Lemma 2.2. Also, for all ξ ∈ R it holds
that

‖Ξ(ξ, t)‖Rn =
∥∥ϕ∗Xt(ϕ

−1(ξ))
∥∥
Rn 6 C ‖Xt‖L∞(Q) ,
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where C > 0 comes from (A.2). Therefore, by (2.5) we get that Ξ satisfies∫
S

(
‖Ξ(·, t)‖L∞(R) + ‖Ξ(·, t)‖Lip(R)

)
dt 6∫

S

(
(A+ C) ‖Xt‖L∞(Q) +B ‖Xt‖Lip(Q)

)
dt <∞.

By arbitrariness of the compact sets R ⊂ ϕ(Bδ(x)) and S ⊂ [0, T ) and by the
classical Cauchy–Lipschitz theorem on Rn (see for instance [3, Lemma 8.1.4]), this
yields the existence of a unique maximal solution αx to (B.3) defined on some time
interval [0, τx), with τx 6 T , and with values in ϕ(Bδ(x)). By defining ϕx = ϕ−1◦αx,
we see that αx satisfies (B.3) if and only if{

ϕ∗ϕ
′
x(t) = (ϕ ◦ ϕx)′(t) = ϕ∗Xt(ϕx(t)) for all t ∈ [0, τx),

ϕ(ϕx(0)) = ϕ(x).

By the bijectivity of ϕ, we get that ϕx is thus the unique maximal solution to the
characteristic equation starting at x.

Let now Σ be a compact subset of U . We are left with showing that τ :=
infx∈Σ(τx) > 0. By classical Euclidean Lipschitz theory, we deduce that for all
x ∈ U there exists δx > 0 such that τ̄x := infy∈Bδx (x) τy > 0. Since Σ is compact
we know it can be covered by a finite subfamily of {Bδx(x)}x∈Σ, which we index by
{x1, . . . , xn} for some n ∈ N. We thus get τ = mini∈{1,...,n} τ̄xi > 0. The map Ψ
defined by Ψ(x, t) = ϕx(t) for all x ∈ Σ and t ∈ [0, τ) is then the unique maximal
flow map generated by (X,Σ).

B.4. Proof of Theorem 2.6. We distinguish two cases: M is compact, and M is
unbounded.

The first case is direct by the Escape Lemma (cf. [31, Exercise 4.10] for instance),
which states that local solutions cannot be contained in any compact subset of M .
The local Cauchy–Lipschitz theorem (cf. Theorem 2.5) together with a contradic-
tion argument suffices then to end this case.

Suppose now that M is unbounded. First note that the bound assumption on
the Lipschitz constants of our vector fields implies that there exists C > 0 such that
for any U ⊂M we have

sup
t∈[0,∞)

‖Xt‖L∞(U) 6 C(1 + diam(U)). (B.4)

Let Σ ⊂M be compact and U be bounded and open and such that Σ ⊂ U . Since M

is convex we know U is a totally normal neighborhood. Denote by X̃ the restriction
of X to U × [0,∞). By the local Cauchy–Lipschitz theorem (cf. Theorem 2.5),

there exists a unique maximal flow map generated by (X̃,Σ) associated with some
maximal time of existence τ > 0. Recalling the proof of Theorem 2.5 and the
classical Cauchy–Lipschitz theorem in Euclidean setting, we know there exists a
constant α > 0 such that

τ > αmin

(
dist(Σ, ∂U)

supt∈[0,∞) ‖Xt‖L∞(U)

,
1

supt∈[0,∞) ‖Xt‖Lip(M)

)
,

where ∂U is the boundary of U . By (B.4) we then have

τ > αmin

(
dist(Σ, ∂U)

C(1 + diam(U))
,

1

supt∈[0,∞) ‖Xt‖Lip(M)

)
.
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Because M is unbounded, we see that we can always choose U a posteriori so

that dist(Σ,∂U)
1+diam(U) > 1. Overall, this makes our lower bound on the maximal time of

existence independent of Σ and U . Applying a simple iterative argument extends
our restricted local flow map to a unique global one, thus showing the desired result.

B.5. Proof of Lemma 4.2. The proof follows from (4.7). Fix z ∈ U , and note
first that

U ⊂ Br(z) ⊂ B2r(p).

Both inclusions follow from the triangle inequality, using that U ⊂ Br/2(p). Indeed,
for x ∈ U ⊂ Br/2(p), one has d(x, p) < r/2, and hence, d(x, z) 6 d(x, p) +d(p, z) <
r/2 + r/2 = r, showing the first inclusion. For the second inclusion, take y ∈ Br(z)
and estimate d(y, p) 6 d(y, z) + d(z, p) < r + r/2 < 2r.

In the set B2r(p), the sectional curvature is bounded below by λ and above by µ,
so that (4.6) holds on Br(z). Consequently, (4.7) holds for all x, z ∈ U ⊂ Br(z). By
the assumption (4.8) on the diameter of U , the left-hand side in (4.7) is nonnegative
(when µ > 0, use

√
µd(x, z) 6

√
µ∆ < π

2 ). On the other hand, for the right-hand
side of (4.7), use that the function s 7→ s coth(s) is nondecreasing, and so

√
−λ d(x, z) coth(

√
−λ d(x, z)) 6

√
−λ∆ coth(

√
−λ∆) =

L

2
, for all x, z ∈ U.

From these observations, (4.7) yields

0 6
〈
Hessv d

2
z(x), v

〉
x
6 L‖v‖2x, for all x, z ∈ U and v ∈ TxM. (B.5)

Since the Hessian operator is symmetric, for any x ∈ U one can choose an or-
thonormal basis of TxM consisting of eigenvectors of the Hessian of d2

z at x. By
decomposing into this basis and using (B.5) for the elements of the basis, one can
get, via the Cauchy–Schwartz inequality,

|
〈
Hessv d

2
z(x), w

〉
x
| 6 L‖v‖x‖w‖x, for all x, z ∈ U and v, w ∈ TxM.

Consequently, we can bound the operator (and hence, the Euclidean) norm of
Hessv d

2
z(x) to get

‖Hessv d
2
z(x)‖x 6 L‖v‖x, for all x, z ∈ U and v, w ∈ TxM.

Finally, if U is convex, then (4.9) follows directly from Lemma 2.4 and (4.2).

B.6. Proof of Lemma 4.3. For completeness, let us give the statement of [29,
Corollary 6.6.1], which lies at the core of the proof of Lemma 4.3. Given a differen-
tiable function f : M1 → M2 between two smooth Riemannian manifolds M1 and
M2, we write Dxf : TxM1 → Tf(x)M2 for the differential map of f at x.

Lemma B.2. Let p ∈ M and r < inj(M). Let there be a minimizing geodesic
connecting two distinct points x and y in Br(p), with velocity u at the point x.
Write µ = µr(p), and suppose that ‖u‖x 6 π√

µ in case µ > 0, and let w ∈ TxM be

so that 〈w, u〉x = 0. Then,

‖w‖x
sµ(‖u‖x)

‖u‖x
6 ‖Du expx(w)‖y , (B.6)

where sµ is defined, for all a > 0, by

sµ(a) =

{
sin(a

√
µ)√

µ if µ > 0,

a if µ = 0.
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Let us now prove Lemma 4.3. The case µ = 0 is stated in [29, Corollary 6.9.1]. We
give its proof here for completeness. Fix x, y ∈ U with x 6= y. Because U is a totally
normal neighborhood there exists only one minimizing geodesic linking x to y with
velocity logx y at the origin, and the exponential map expx is a diffeomorphism
from TxM to U . Then, we can let v ∈ TyM and apply Lemma B.2 with w =
Dy logx(v) and u = logx y. Note that since logx : M → TxM , we have Dy logx(v) ∈
Tlogx yTxM

∼= TxM . Also, up to a rotation, we can assume 〈logx y,Dy logx(v)〉x = 0.
By (B.6), we then get

‖w‖x 6 ‖Dlogx y expx(w)‖y = ‖Dlogx y expx(Dy logx(v))‖y = ‖v‖y,

where for the last equality we used expx ◦ logx is the identity map on U . We give
the obtained result as:

‖Dy logx(v)‖x 6 ‖v‖y, for all x, y ∈M, v ∈ TyM. (B.7)

Now fix x, y, z ∈ U , and denote by γ the constant-speed geodesic between y and z.
Then,

logx z − logx y =

∫ 1

0

d

dt
logx γ(t) dt =

∫ 1

0

Dγ(t) logx(γ′(t)) dt. (B.8)

By applying (B.7) in the integral above for y = γ(t) and v = γ′(t), we get from
(B.8):

‖ logx z − logx y‖x 6
∫ 1

0

‖Dγ(t) logx(γ′(t))‖
x

dt 6
∫ 1

0

‖γ′(t)‖γ(t) dt, (B.9)

which leads to (4.10) given that ‖γ′(t)‖ = d(y, z) for all t ∈ [0, 1].
Let us turn to the proof for the case µ > 0, which is again based on Lemma B.2.

Fix x, y ∈ U with x 6= y. Similar to the µ = 0 case, there exists only one minimizing
geodesic joining x and y with velocity logx y at x, and the exponential map expx
is a diffeomorphism from TxM to U . By the assumption on the diameter of U we
have d(x, y) 6 π−ε√

µ < π√
µ , and hence we can then let v ∈ TyM and apply (B.6) for

w = Dy logx(v) and u = logx y, to get

‖w‖x 6
√
µ‖ logx y‖x

sin(
√
µ‖ logx y‖x)

‖Dlogx y expx(w)‖
y

=

√
µ‖ logx y‖x

sin(
√
µ‖ logx y‖x)

‖v‖y,

and hence,

‖Dy logx(v)‖x 6
√
µ‖ logx y‖

sin(
√
µ‖ logx y‖)

‖v‖y.

Since the function τ 7→ τ
sin τ is nondecreasing on [0, π − ε], we get from above that

‖Dy logx(v)‖x 6
π − ε

sin(π − ε)
‖v‖y, for all x, y ∈ U, and v ∈ TyM. (B.10)

Now fix x, y, z ∈ U and take γ the constant-speed geodesic between y and z. Restart-
ing from (B.8), equation (B.10) yields (see also (B.9))

‖ logx z − logx y‖x 6
π − ε

sin(π − ε)

∫ 1

0

‖γ′(t)‖γ(t) dt.

The Lipschitz estimate (4.11) now follows from above, using that ‖γ′(t)‖ = d(y, z)
for all t ∈ [0, 1]. Note that the Lipschitz constant approaches ∞ as ε→ 0.
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