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Abstract. In this paper, we propose a procedure for quantifying and reducing uncertainties impacting numerical simulations

involved in the estimation of the fatigue of a wind turbine structure. The present study generalizes a previous work carried out

by the authors proposing to quantify and to reduce uncertainties affecting the properties of a wind turbine model by combining

a global sensitivity analysis and a recursive Bayesian filtering approach. We extend the procedure to include the uncertainties

involved in the modeling of a synthetic wind field. Unlike the model properties having a static or slow time-variant behavior, the5

parameters related to the external sollicitation have a non-explicit dynamic behavior which must be taken into account during

the recursive inference. A non-parametric data-driven approach to approximate the non-explicit dynamic of the inflow related

parameters is used. More precisely, we focus on data assimilation methods combining a nearest neighbor or analog sampler

with a stochastic filtering method such as the ensemble Kalman filter. This so-called data-driven data assimilation approach

is evaluated on an industrial case of a wind turbine in operation using in situ measurements from an operating structure. The10

measured data are used by the method to recursively reduce the uncertainties that affect the parameters related to both model

properties and wind field.

1 Introduction

A major challenge in wind energy industry is to propose robust designs withstanding unknown environmental conditions.

Design standards (IEC, 2019) are mainly based on dynamic load simulations describing the structural behavior of the wind15

turbine under different wind and operational conditions weighted by their probability of occurrence. Most of the time the

number of wind scenarios considered during the conception phase is moderate and far from exploring the set of environmental

conditions. Moreover, the dynamic response of the structure and its lifetime can be affected by some uncertainties or evolution

in the wind turbine properties. Consequently, the prediction of the operating wind turbine lifetime by taking into account all

the inherent uncertainty is crucial. In that context, the quantification and reduction of uncertainties involved in the aero-servo-20

elastic numerical models play an important role to determine the effective fatigue loads of the turbine.

The approach introduced in this paper generalizes the one in (Hirvoas et al.) by taking into account the uncertainties af-

fecting the parameters related to the wind inflow. It relies on a complete framework including a global sensitivity analysis, an
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identifiability analysis, and a recursive Bayesian inference approach. First, a surrogate based global sensitivity analysis through

the estimation of Sobol’ indices allows to determine the most relevant input parameters in the variability of the fatigue loads of25

a wind turbine. After assessing the identifiability properties of these influential parameters, a second objective is to reduce their

uncertainty by using an ensemble Kalman filter. Data assimilation allows to gather all the information obtained from real time

measurements of the physical system and from the numerical model. The procedure is closely related to the industrial concept

of digital twin which consists in combining measurements from the wind turbine with a numerical model to build a digital

equivalent of the real-world structure. However, unlike the model properties having a static or slow time-variant behavior, the30

parameters related to the external conditions have a dynamic that has to be learnt from data.

For design certification, offshore wind turbines in pilot farms are more and more monitored thanks to a large amount of

sensors. In that context, the measured data can be efficiently used in order to learn the non-explicit dynamic behavior of

the wind parameters needed for numerical simulation. In the present work, we focus on non-parametric learning strategies.

In the literature, several non-parametric methods have been developed such as regression machine learning (Brunton et al.,35

2016), echo state networks (Pathak et al., 2018) or more recently residual neural networks (Bocquet et al., 2020). Our study

investigates an analog forecasting method relying on the principle of the nearest neighbors (Lorenz, 1969). The aforementioned

non-parametric procedure has been firstly coupled with data assimilation filtering schemes in (Tandeo et al., 2015) and further

detailed by Lguensat et al. (2017). In the present work, we propose an algorithm, developed in (Hirvoas et al.), interfacing

Python library AnDA1 combining analog forecasting with ensemble data assimilation. The algorithm we propose takes profit40

of the parallelization capabilities of high performance computing architectures which allows for example to evaluate the real-

time damage of an operating wind turbine using a digital twin.

The outline of this paper is as follows. Firstly, Section 2 describes the different uncertainties involved in the framework of this

study. In Section 3, the theoretical framework of data-driven data assimilation with a specific focus on the ensemble Kalman

filtering scheme coupled with the analog forecasting strategy is detailed. Finally, results of an application of this complete45

procedure of uncertainty quantification and reduction to a reference wind turbine are presented in Section 4.

2 Context

2.1 Uncertainty in wind turbine modeling

Before their exploitation, wind turbine rotors are designed thanks to a site classification strategy. It relies on design standard

classes characterized by the reference turbulence intensity Iref defined as the mean turbulence intensity expected at 15 m/s50

mean wind speed and the reference wind uref defined as the extreme 10-minute average wind speed with a recurrence period

of 50 years. In the IEC-61400-1 standard (IEC, 2019), two safety classes are considered. The first one, named as normal safety

class, allows to cover most applications by giving specific values for Iref and uref . In Table 1, the corresponding values for the

nine categories of the normal safety are given. The proposed parameter values are supposed to represent many different sites

1see https://github.com/ptandeo/AnDA
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and consequently do not give a precise representation of a specific site. The second category is mentioned as a special safety55

class S which allows to consider site-specific values for the wind speed and turbulence terms.

Table 1. Safety class design classification of the wind turbines: the normal safety class containing nine categories from I-A to III-C and the

special safety class S (IEC, 2019)

Class I II III S

uref [m/s] 50 42.5 37.5

Site-specific

values

A Iref [-] 0.16

B Iref [-] 0.14

C Iref [-] 0.12

For both classes, the design relies on numerical aero-servo-elastic simulations under different environmental and operational

conditions, weighted by the probability of occurrence. They allow to estimate the ultimate and fatigue loads in order to testify

the structural integrity. Nevertheless, operating wind turbines experience real wind and operational conditions that are different

from the ones mentioned in the design standard classes. Consequently, there is a need for an estimation of the remaining fatigue60

life of the components based on the real wind solicitation seen by the structure. Moreover, the wind turbine itself can present

some uncertainties or evolution in its mechanical properties (defaults appearance, degradation with time) that will affect the

dynamic response of the structure and its lifetime.

As a consequence, these aero-servo-elastic numerical models involve many uncertain and potentially variable over time

parameters. The ubiquitous uncertainty may be found in the parameters of the wind turbine numerical model as well as in the65

external conditions. To ensure the tracking of fatigue and defaults of an operating wind turbine structure, it is important to

quantify the impact of these uncertainties on predictions and then to reduce them based on the combination of measurements

and model predictions. For that purpose, the field of uncertainty quantification is well-adapted.

In that context, we propose to determine the sources of uncertainties affecting the wind field parameters and the wind

turbine numerical model properties. First, the uncertainty of wind field parameters has to be determined. In our context, these70

parameters are used to characterize a synthetic three-dimensional turbulent wind field based on the Kaimal spectrum having a

one-sided power spectral density defined as:

Sk(f) =
4σ2

k
Lk

u

(1 + 6f Lk

u )
5
3

,

where f is the frequency, the subscript k represents the turbulent longitudinal, crosswise or vertical components (respectively

denoted by u, v, and w), Lk is the Kaimal length scale, u is the longitudinal mean wind speed at hub height, and σk is the75

standard deviation of the wind velocity.

The wind inflow over the swept area is generated based on a grid of points thanks to an exponential spatial coherence method

(Jonkman, 2009). The related coherence function for the longitudinal wind component of two distinct points i and j separated
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by a distance ∆r on a plan perpendicular to the wind direction is defined as:

cohi,j(f) = exp

−a(∆r

zm

)γ√(
f∆r

um

)2

+

(
b′∆r

Lu

)2
 , (1)80

where zm and um are respectively the mean height of the two points and the mean of the wind speeds of the two points, a and

b′ are respectively the input coherence decrement and offset parameter, and γ is the coherence exponent.

Eight input parameters related to the wind field have been identified to be tainted by uncertainties, see Table 2. We have

considered the mean and the standard deviation of the wind speed at hub height, the vertical wind shear exponent, the mean

wind inflow direction relative to the wind turbine in terms of vertical or horizontal inflow angles, and the longitudinal turbulence85

length scale parameter. Moreover, we have supposed as unknown the input coherence decrement and offset parameter.

In an operational context, some information on the mean and standard deviation of the wind speed at hub height can be

obtained from 10-minute data measured from a nacelle mounted anemometer. Nevertheless, these measurements are known

to be very perturbed and never fully describe the parameters of interest due mainly to the wake effect of the rotor and the

non-perfect transfer function used to retrieve them. In this work, we assume that the 10-minute mean and standard deviation90

free wind speed can be obtained from the 10-minute data obtained from the anemometer modulo an additive error term. So that

the mean free wind speed at hub height can be obtained from the anemometer as:

u= uscada + ∆u,

where uscada is the 10-minute mean wind speed obtained from the anemometer mounted on the wind turbine nacelle and ∆u

is an additive error assumed to follow the distribution defined in Table 2.95

In a similar manner, the free wind speed standard deviation can be obtained from the measurement obtained by the anemome-

ter mounted on the nacelle of the wind turbine as:

σu = σscada + ∆σu ,

where σscada is the 10-minute standard deviation wind speed obtained from the nacelle anemometer of the wind turbine nacelle

and ∆σu is an additive error assumed to follow the distribution defined in Table 2.100

Unless having high frequency SCADA data, no information can be obtained on the other parameters. An investigation of the

distribution of the uncertainty affecting these remaining wind inflow parameters has to be properly made. The vertical wind

shear is modeled with the following power law that uses a shear coefficient α:

u(z) = u

(
z

zhub

)α
,

where u is the prescribed hub-height mean wind velocity, z is the vertical distance from the ground surface, zhub is the hub105

height, and α is the vertical wind shear coefficient. We adapt the Gaussian distribution proposed by Dimitrov et al. (2015) for

the 10-minute vertical wind shear exponent, such as:

µα = 0.088(ln(uscada)− 1)

σα = 1/uscada · (2)

4



Table 2 summarizes the wind-inflow parameters that we consider unknown and their respective uncertainty modeling. In partic-

ular, we defined the probability distributions of the parameters used in the exponential coherence model defined in Equation (1).110

Table 2. Wind field parameters - uncertainties affecting the inputs of the wind turbine model. U : uniform distribution and G: Gaussian

distribution.

Input Variable Unit Distribution Parameters REF

Error of hub mean wind speed

SCADA vs undisturbed inflow
∆u [m/s] U Min: − 0.1 ·uscada Max: 0.1 ·uscada IFPEN

Error of hub standard deviation

SCADA vs undisturbed inflow
∆σu [m/s] U Min: − 0.2 ·σscada Max: 0.2 ·σscada IFPEN

Vertical wind

inflow angle
φv [◦] U Min: 0 Max: 10 IFPEN

Horizontal wind

inflow angle
φh [◦] U Min: − 15 Max: 15 IFPEN

Longitudinal turbulence

length scale
Λu [m] U Min: 20 Max: 170

(Dimitrov et al., 2017)

(Solari and Piccardo, 2001)

Decrement parameter of

coherence model
a [-] U Min: 1.5 Max: 26 (Robertson et al., 2019a)

Offset parameter of

coherence model
b′ [-] U Min: 0 Max: 0.17

(Robertson et al., 2019a)

(Saranyasoontorn et al., 2004)

Vertical wind

shear exponent
α [-] G µ= µα σ = σα, see Equation (2) (Dimitrov et al., 2015)

Moreover, as suggested in (Hirvoas et al.), a total of twelve parameters can be considered as uncertain in the aero-servo-

elastic wind turbine numerical model properties. All these input parameters are assumed to be independent of one another with

Gaussian or truncated Gaussian distributions obtained from expert knowledge or literature. Considering the support structural

properties of the turbine model, we have selected six parameters: as nacelle mass and center of mass, tower Rayleigh damping,

inertial nacelle and drive-train torsion stiffness. Lastly, the geometry of the tower, resulting from fabrication tolerances, has115

been also included in these uncertainties by uniformly scaling the distributed tower thickness. The probability distribution of

this last mentioned parameter is determined by changing the first fore-aft tower frequency mode by±10% of its nominal value.

The uncertainties in blade structural properties have been represented using five parameters. The blade structural responses

have led to the definition of the uncertainty range. Indeed, the frequency of the edge-wise (EW) and flap-wise (FW) modes are

changed about 10% each from their reference value. These modifications of the frequency modes are done by uniformly scaling120

the associated stiffness and the distributed blade mass of all blades. Blade mass imbalance effects have been also included by

applying a different mass factor value to each blade. One blade’s mass property is modified to be a value that is higher than the

nominal value, and another one modified to a lower value. The third blade remains unchanged at the nominal value. Finally,

for the individual blade pitch error, a constant offset angle is applied to two of the blades, respectively above and below the
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nominal value. These different parameters are considered independent from each other. Table 3 gathers information about the125

probability distribution of each of these paremeters.

2.2 Methodology for uncertainty quantification

In the monitoring context of an operating wind turbine, one of the major challenges is to predict the remaining lifetime of the

structure. Hence, the current study focuses on a complete framework first quantifying and then reducing in a recursive fashion

the uncertainties affecting the damage loads obtained from an aero-servo-elastic simulation. Hereafter, we will focus on the130

estimation of the effective damage equivalent load (DEL) describing the fatigue behavior of the wind turbine at some specific

locations. The DEL is obtained by considering the internal loads and is defined as a virtual load amplitude that would create,

in reference regular cycles, the same damage as the considered irregular load history.

The aim of the work in this article is to generalize the complete methodology proposed in (Hirvoas et al.) for quantifying

and reducing the uncertainties affecting a wind turbine numerical model by handling wind turbine model properties in addition135

to wind inflow uncertainties, respectively denoted by x1 and x2 in Figure 1.

Uncertainties

Quantity of interest

• Maximum load

• Maximum deflection

• Mean electrical

production

• Damage equivalent load

Temporal output

Top
moments 
& forces 

tower

Bottom tower
moments

Blade
Moments

SCADA
data

Model parameters:

• Blade damping

• Tower thickness

• Drivetrain stiffness

Wind solicitation

• Mean speed

• Turbulence intensity

• Coherence model

Numerical modeling

Aero-servo-

elastic model

Parameters

Stochastic
turbulent wind
simulator

Figure 1. Wind turbine modeling framework, where x is the extended vector gathering both uncertainties from wind inflow parameters and

model properties.

The procedure relies on a global sensitivity analysis (GSA) based on Sobol’ index estimation and a recursive Bayesian

inference procedure to reduce the uncertainties. In order to alleviate the computational cost of index estimation during the

sensitivity analysis of the fatigue loads, the aero-servo-elastic time-consuming numerical model is approximated by a surrogate.

A major challenge in building such surrogate model relies on the fact that the turbulent wind inflow realization causes variations140

in the quantities of interest obtained from the model. Thus, to take into account the inherent variability on the turbine response

induced by different turbulent wind field realizations, the approach focuses on the use of heteroscedastic Gaussian process

regression models. Then, a recursive reduction of the influent parameter uncertainties based on an ensemble Kalman filter is

proposed. This data assimilation filtering method is computationally efficient with high-performance computing tools which is a

major advantage for online calibration of time-consuming codes, such as aero-servo-elastic wind turbine models. Nevertheless,145

a challenge in this kind of inverse problem is to determine whether the measurements are sufficient to unambiguously determine
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the parameters that generated the observations, i.e., identifiability properties. In that context, GSA is also proposed to detect

non identifiable parameters considering the current measurements.

Table 3. Model parameters - uncertainties affecting the inputs of the wind turbine model. U : uniform distribution, G: Gaussian distribution,

and T G: Truncated Gaussian distribution.

Input Variable Unit Distribution Parameters REF

Nacelle mass Nmass [kg] G µ= 6.90e+ 04 σ = 2.30e+ 03 (Witcher, 2017)

Nacelle center

of mass
NCMx [m] G µ= 1.00 σ = 3.35e− 02 (Robertson et al., 2019b)

Tower thickness e [%] G µ= 0 7.00
IFPEN

±10% 1 FA

Tower rayleigh

damping
βTR [-] T G µ= 2.55 σ = 0.82 (Koukoura, 2014)

Inertial nacelle Izz [kg ·m2] G µ= 7.00e+ 05 σ = 2.33e+ 04
IFPEN

±10% µ

Drive-train torsional

stiffness
KD [N·m

2

rad
] G µ= 9.08e+ 09 σ = 3.03e+ 07 (Holierhoek et al., 2010)

Blade flap wise

stiffness
αBF [N ·m2] G µ= 1.00 σ = 3.33e− 02

IFPEN

∼±10% 1 FW

Blade edge wise

stiffness
αBE [N ·m2] G µ= 1.00 σ = 3.33e− 02

IFPEN

∼±10% 1 EW

Blade mass

coefficient
αmass [-] G µ= 1.00 σ = 1.67e− 02 (Witcher, 2017)

Blade rayleigh

damping
βBR [-] T G µ= 1.55 σ = 4.83e− 01 (Robertson et al., 2019b)

Blade mass

imbalance
ηB [%] G µ= 2.50 σ = 8.33e− 01 (Robertson et al., 2019b)

Individual pitch

error
Ω [◦] G µ= 0.10 σ = 3.33e− 02 (Simms et al., 2001)

The main contribution of the presented work is the inference of parameters involved in both the model properties of the wind

turbine having a static or slow evolution and the short-term wind inflow varying at each inference iteration of 10-minute. To150

take into account the non-explicit dynamics of the parameters related to the wind inflow in the recursive inference procedure,

the study relies on a data-driven approach combining a K-nearest neighbors with an ensemble Kalman filtering scheme. In the

next section, we propose to describe this data-driven procedure used in our model calibration strategy.
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3 Data-driven data assimilation

State-space model (SSM) is a useful framework to perform recursive inference strategy such as sequential data assimilation155

techniques (Bertino et al., 2003; Durbin and Koopman, 2012; Hirvoas et al.). In order to take into account the information

obtained from the SCADA system of the wind turbine, we consider the SSM formulation involving forcing variables defined

∀k ∈ N∗ as:

x(k) =M(k−1,k)(x(k−1)) + εm(k) , (3)

y(k) =H(k)(x(k),v(k)) + εo(k) · (4)160

where y(k) corresponds to the observation at step k and x(k) is a p-dimensional vector representing the hidden-state variables

which depict the wind inflow conditions denoted by x2 in the next section. The model denoted byM (potentially nonlinear)

allows to describe the dynamic behavior of the hidden process. The model error εm(k) is supposed to be a Gaussian white noise

of zero mean and of covariance Q(k), modeling the uncertainties related to the dynamics model structure. The propagator H
relates the hidden-state vector to the measured observations and contains some forcing variables v(k), e.g., mean wind speed165

obtained from the anemometer of the wind turbine. The sources of errors in the observation model defined in Equation (4) are

reflected by the Gaussian white noise of zero mean and of covariance R(k), denoted by εo(k), and assumed to be independent

of the model error εm(k). This SSM formulation can be represented thanks to the directed graph given below.

(M(k−1,k),Q(k))

Hidden-state · · · → x(k−1) → x(k) → x(k+1) → ·· ·
↓ ↓ (H(k),v(k),R(k)) ↓

Observations y(k−1) y(k) y(k+1)

In many situations, the dynamical modelM is numerically intractable or unknown. In the literature different studies have170

been conducted to emulate this propagator, used in Equation (3), from historical data. Several surrogate techniques have been

employed for the reconstruction of nonlinear dynamics model of chaotic system. Authors in (Tandeo et al., 2015) propose a

K-nearest neighbors based method, also known as the analog strategy in meteorology or geoscience community. Nevertheless,

it has been argued that methods relying onK-nearest neighbors technique are plagued by the curse-of-dimensionality, i.e., fails

in very high dimensional applications (Friedman, 1997; Chen, 2009). Consequently, other non-parametric surrogate modeling175

approaches have been investigated to learn the underlying dynamics by using for example regression machine learning (Brunton

et al., 2016), echo state networks (Pathak et al., 2018) or more recently residual neural networks (Bocquet et al., 2020).

Due to the limited dimension of our inference problem, we have decided to investigate and to use the analog forecasting

strategy coupled with data assimilation proposed in (Tandeo et al., 2015; Hamilton et al., 2016; Lguensat et al., 2017). Analog

forecasting is related to the notion of atmospheric predictability introduced by Lorenz (1969). Later, this approach has been180

widely used in several atmospheric, oceanic, and climate studies (Toth, 1989; Alexander et al., 2017; Ayet and Tandeo, 2018).

Hereafter, we detail the principle of analog forecasting technique.
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The main idea of the methodology is to substitute the dynamical model in Equation (3) by a data-driven model relying on

an analog forecasting operator, denoted by A, such as :

∀k ∈ N∗,

 x(k) =A(k−1,k)(x(k−1)) + εm(k)

y(k) =H(k)(x(k),v(k)) + εo(k)
·185

Analog forecasting principle consists in searching for one or several similar situations of the current hidden-state vector that

occurred in historical trajectories of the system of interest, then retrieve the corresponding successors of these situations, and

finally assume that the forecast of the hidden-state can be retrieved from these successors. Consequently, this strategy requires

the existence of a representative catalog of historical data, denoted by C. The reference catalog is formed by pairs of consecutive

hidden-state vectors, separated by the same lag (Fablet et al., 2017). The first component of each pair is named as the analog190

(denoted by a) while the corresponding state is referred to as the successor (noted as s). The corresponding representative

dataset of hidden-state sequences can be written as:

C = {(ai,si) , i= [1 · · ·P ]}, with P ∈ N∗·

This historical catalog can be constructed using observational data recorded using in-situ sensors but as well as using numerical

simulations. Based on this database, the analog forecasting operator A is a non-parametric data-driven sampling of the state195

from iteration k−1 to iteration k. Three analog forecasting operators have been originally proposed by the authors in (Lguensat

et al., 2017). They are all based on nearest neighbors of the hidden-state in the reference catalog C weighted thanks to a kernel

function. Among the different kernels, Chau et al. (2021) propose to use a tricube kernel which has a compact support and is

smooth at its boundary. Throughout this article, as selected by Lguensat et al. (2017), a radial basis function (also known as

Gaussian kernel, squared exponential kernel, or exponentiated quadratic) is considered and defined as:200

g(u,v) = exp
(
−λ ||u−v||2

)
, (5)

where (u,v) are two distinct variables in the hidden-state space, λ is a scale parameter, and ||·|| is the Euclidean distance or any

other relevant distance function for our application. The kernel choice is case dependant. The Gaussian kernel used hereafter

is isotropic and parameterized allowing to easily control the bandwidth.

Let us denote by {an}n∈I the K-nearest neighbors (also known as analog situations) of a given hidden-state at iteration205

k− 1, where I = {i1, · · · , iK} contains the K indices of these situations. From the reference catalog C, one can retrieve the

corresponding successors {sn}n∈I . Then for every pair of analog and successor (an, sn)n∈I , a normalized kernel weight

(ωn)n∈I can be assigned such that:

ωn =
g(x(k−1), an)∑K
j=1 g(x(k−1),aij )

·

This term provides more importance to pairs that are best suited according to the kernel function for the estimation of the210

hidden-state x(k) in the K-nearest neighbor ones obtained from the catalog. Nevertheless, the parametrization of this weight is

highly dependent of the kernel function. Moreover in the context of Gaussian kernel as defined in Equation (5), the normalized
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kernel weight involves the choice of the number of nearest neighbors K and the scale parameter λ. Two common strategies in

the statistic field are used for K estimation: either a distance threshold in order to consider the nearest neighbors which respect

it, or an arbitrary number of analogs (Peterson, 2009). In our work, we consider the last strategy for simplicity. As proposed215

by Lguensat et al. (2017), the scale parameter can be fixed following the adaptive rule defined as:

λ=
1

md(x(k−1))
,

where md(x(k−1)) is the median distance between the hidden-state at iteration k−1 and itsK nearest neighbors. Nevertheless,

a more sophisticated procedure not used hereafter, based on a cross-validation procedure, can be employed to optimize the

choice of these hyper-parameters.220

Three analog forecasting operatorsA have been defined in Lguensat et al. (2017). Firstly, the locally-constant analog operator

which consists in forecasting the hidden-state by only using the successors. Let us denote by xf(k) the forecast of the state at

iteration k. The idea of the locally-constant operator is to sample this forecasted hidden-state from a Gaussian distribution

defined as :

xf(k) ∼N (µLC
(k),Σ

LC
(k)) ,225

where the mean forecast µLC
(k) =

∑K
j=1ωijsij is the weighted mean of the K successors, and ΣLC

(k) is the weighted empirical

covariance of the successors of the K-nearest neighbors.

The second proposed analog operator is called the locally-incremental which considers the analogs and the successors

of the state x(k−1) to obtain xf(k). In the same way as for the locally-constant analog operator, the principle is to sample

the forecasted state from a Gaussian distribution. Nevertheless, instead of only considering a weighted mean based on the230

K-nearest neighbors, the procedure uses a weighted mean of the differences between these K analogs and their respective

successors plus the value of the current hidden-state. The derived Gaussian distribution is defined as:

xf(k) ∼N (µLI
(k),Σ

LI
(k)) ,

where the mean forecast is µLI
(k) = x(k−1) +

∑K
j=1ωij (sij −aij ), and ΣLI

(k) is the weighted empirical covariance of the incre-

ments, i.e., differences between analogs and successors.235

The last operator, developed by Lguensat et al. (2017), is named as the locally-linear forecasting operator. It consists in

performing a weighted least square linear regression between the K-nearest neighbors and their corresponding successors in

the catalog C. The multivariate linear regression provides a slope matrice of size p× p denoted by α, a vector intercept of size

p×1 designated hereafter by β, and residuals defined as the following vectors ∀j ∈ [1, · · · ,K], sij−
(
αaij +β

)
. The Gaussian

sampling resorts to:240

xf(k) ∼N (µLL
(k),Σ

LL
(k)) ,

where the mean forecast is µLL
(k) =αx(k−1) +β, and ΣLL

(k) is the weighted empirical covariance of the residuals.
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The complexity of the application and the available computational resources are the two main constraints that will drive the

choice of one forecasting operator over the others. For example in situations facing some extreme values of the hidden-state

based on the available catalog, the locally-constant gives poor results due to the fact that the forecasting estimate is held in245

the range of K-nearest neighbors. In that context, the locally-incremental and the locally-linear forecasting operators are much

more efficient. A graphical representation of the locally-constant, locally-incremental, and locally-linear analog forecasting

operators for a 2-dimensional hidden-state is given in Figure 2. In this example, the underlying dynamics model has a simple

polynomial form and the analogs are obtained by using a normal distribution sampling centered on the real value of the hidden-

state at iteration k− 1.
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Figure 2. Analog forecasting operator strategies. The real values of the hidden-state x(k−1) and its forecast x(k) are represented by full

circles. Analogs are displayed in colored down-pointing triangles and successors in up-pointing triangles with their equivalent colors. The

size of each triangle is proportional to the normalized kernel weight. The ellipsoids in black and red represent respectively the 95 % confidence

intervals of the hidden state distribution before and after the analog forecasting strategy.

250

Hereafter, we propose to describe the data assimilation framework coupled with the analog forecasting method firstly pro-

posed by Tandeo et al. (2014) and further detailed in (Lguensat et al., 2017). Data assimilation methods allow us to combine

all the sources of information obtained from a physical model and observations. In particular, sequential data assimilation

techniques, also known as filtering approaches, which consist in estimating the filtering posterior distribution of the current

hidden-state knowing past and present observations pX(k)|Y(1:k)
(x(k)|y(1:k)) where Y(1:k) = [Y(1), · · · ,Y(k)]. Different meth-255

ods are available in order to compute the filtering distribution of interest. In the context of linear Gaussian state-space models,

Kalman filter methods can be considered to provide the exact filtering methods (Kalman, 1960; Brown, 1986; Harvey, 1990;

Haykin, 2004; Wells, 2013). Nevertheless in real applications, the linear assumption is often unrealistic and more sophisticated
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Kalman-based approaches have to be used (Julier and Uhlmann, 1997; Evensen, 2009). In particular, the ensemble Kalman

filter (EnKF) which is a Monte Carlo variant relying on an ensemble of members to represent the statistics. This sequential260

Monte Carlo filter, introduced by Evensen (1994), is widely used in data assimilation applications to take into account the non-

linearities in the state-space formulation and to handle the high dimensional problems (Houtekamer and Mitchell, 2001; Snyder

and Zhang, 2003; Aanonsen et al., 2009). The principle of the EnKF is to sequentially update all members of the ensemble by

means of a correction term relying on the Kalman gain which allows to blend the model responses and the observations at a

given iteration, see (Evensen, 2003). Due to the fact that this approach is based on an ensemble, it is inherently well-adapted265

to parallelization which is a crucial advantage with the current high-performance computing architectures for the inference of

time-consuming numerical models (Houtekamer et al., 2014).

Thus, we present the formulation of a non-parametric EnKF method, also known as analog EnKF (AnEnKF), see (Tandeo

et al., 2014; Lguensat et al., 2017). The procedure is similar to the stochastic ensemble Kalman recursion (Evensen, 2009).

Nevertheless, the main difference of the AnEnKF occurs for the forecast step where the non-parametric data-driven sam-270

pling, i.e., the analog forecasting operator, is used instead of the dynamic model M in Equation (3). The Analog ensem-

ble Kalman filter consists at each iteration to apply one of the three analog forecast sampling strategies to each analy-

sis member of the ensemble to generate a forecast term. Then, the equations used in the procedure are equivalent to the

EnKF strategy. At each iteration during the analysis step, each forecast member of the ensemble is corrected by computing

x
a(i)
(k) = x

f(i)
(k) +K(k)

(
y
(i)
(k)−H(k)(x

f(i)
(k) ,v(k))

)
where K(k) = Pf(k) H

T
(k)

(
R(k) +H(k)P

f
(k)H

T
(k)

)−1
is named as the Kalman275

Gain with Pf(k) the forecast covariance matrix and H(k) the observation operator. Due to the nonlinearity of the model H(k),

the terms Pf(k) H
T
(k) and H(k)P

f
(k)H

T
(k) are respectively empirically estimated based on the ensemble members. The ensemble

Kalman filter coupled with the analog forecasting strategy is detailed in Algorithm 1.
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Algorithm 1 Ensemble Kalman Filter with analog forecast methodology, so-called AnEnKF.

1: Input:

number of members in the ensemble Nens;

catalog C and number of nearest neighbors K;

prior guess of the parameter vector xb and prior parameter covariance matrix Pb.

2: Initialisation step:

3: for i = 1 to Nens do

4: x
a(i)
(0)

= xb + εb with, εb ∼N (0,Pb)

5: end for

6: for k = 1 to T do

7: Forecast step:

8: for i = 1 to Nens do

9: x
f(i)
(k)

=A(k−1,k)(x
f(i)
(k−1)

) + ε
m(i)
(k)

, where,

Locally-constant forecasting analog operator: A(k−1,k)(x
f(i)
(k−1)

) := µLC
(k) =

K∑
j=1

ωij sij

and ε
m(i)
(k)

∼ ΣLC
(k)

Locally-incremental forecasting analog operator: A(k−1,k)(x
f(i)
(k−1)

) := µLI
(k) = x

a(i)
(k−1)

+
K∑
j=1

ωij (sij −aij )

and ε
m(i)
(k)

∼ ΣLI
(k)

Locally-linear analog operator: A(k−1,k)(x
f(i)
(k−1)

) := µLL
(k) = αx(k−1) +β

and ε
m(i)
(k)

∼ ΣLL
(k)

where (an, sn)n∈I (with I = {i1, · · · , iK}) are the K-pairs of analog and successor for the i-th analysis member of the ensemble at iteration

k− 1 and covω is the weighted covariance.

10: end for

11: Update step:

Pf
(k)

HT
(k) =

1

Nens− 1

Nens∑
i=1

(
x
f(i)
(k)
− x̄f

(k)

)(
H(k)(x

f(i)
(k)

,v(k))−H(k)(x̄
f
(k)

,v(k))
)T

H(k)P
f
(k)

HT
(k) =

1

Nens− 1

Nens∑
i=1

(
H(k)(x

f(i)
(k)

,v(k))−H(k)(x̄
f
(k)

,v(k))
)

(
H(k)(x

f(i)
(k)

)−H(k)(x̄
f
(k)

)
)T

K(k) = Pf
(k)

HT
(k)

(
R(k) +H(k)P

f
(k)

HT
(k)

)−1

12: for i = 1 to Nens do

13:
y
(i)
(k)

= y(k) + e
o(i)
(k)

with, eo(i)
(k)
∼N (0,R(k))

x
a(i)
(k)

= x
f(i)
(k)

+K(k)

(
y
(i)
(k)
−H(k)(x

f(i)
(k)

,v(k))
)

14: end for

15: end for
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4 Numerical results

In this section, the numerical results of the proposed methodology to quantify and reduce the uncertainties based on global280

sensitivity analysis and a data-driven data assimilation approach are presented in the context of an industrial operating wind

turbine. The two categories of parameters investigated in this application case are the wind turbine model properties and the

wind-inflow conditions. In the sensitivity analysis of the fatigue loads of the wind turbine, we assume that the 10-minute mean

and standard deviation obtained from the SCADA are respectively equal to 10 m/s and 1.4 m/s.

4.1 Case description285

For the purpose of this work, the considered model is a numerical representation of a reference 2MW onshore horizontal-axis

wind turbine based on the open-source aero-servo-elastic software FAST developed by the National Renewable Energy Labo-

ratory (NREL) (Jonkman et al., 2005). This numerical code employs a combined modal and multibody dynamics formulation

which allows to consider a limited degree of freedom number for the structure. Moreover, the aerodynamic model relies on the

blade-element momentum theory coupled with some corrections, e.g., dynamic stall. The generation of the synthetic turbulent290

wind field solicitation uses a Kaimal turbulence model with an exponential spatial coherence method thanks to the TurbSim

software (Jonkman, 2009). Some specifications of the turbine are presented in Table 4.

Table 4. Reference wind turbine specifications.

Quantity Value

Number of blades 3

Rated power 2.0 MW

Rotor speed range 8.5 – 17.1 rpm (±16 %)

Rated wind speed 13 m/s

Cut-in wind speed 3.0 m/s

Cut-out wind speed 25 m/s

Rotor radius 41 m

Hub height 80 m

The in situ data used to assess the performances of our procedure are based on a specific measurement campaign of eight

months from the French national project SMARTEOLE2. For that purpose, the wind turbine has a supervisory control and data

acquisition system (SCADA) gathering 10-minute statistics about the external conditions at the level of the nacelle hub, e.g.,295

wind speed or direction, and also information on the turbine operation, e.g., generator speed, generated power. Alongside, a

nacelle mounted Light Detection And Ranging (LIDAR) system is placed on top of the wind turbine nacelle in order to measure

2The author acknolewdge SMARTEOLE project partners for the use of experimental data from national project SMARTEOLE (ANR-14-CE05-0034)

measurement campaigns.
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the upstream wind flow conditions. A graphical representation of the monitoring system configuration is proposed in Figure 3.

In the study, we suppose that the wind speed at hub height reconstructed from the LIDAR system is the free wind to be applied

on the servo-aero-elastic model through the synthetic turbulence wind field. Lastly, bi-axial measuring devices are located at300

mid and top tower height position. From these sensors, we can record four functional acceleration time series. Then, the power

spectral density (PSD) of each measured acceleration time series is computed using Welch’s method.

Figure 3. Monitoring system configuration for the reference wind turbine.

4.2 Global sensitivity analysis on fatigue loads

To quantify the importance of each input parameter on the variability of the fatigue loads obtained from the aero-servo-elastic

numerical model, a global sensitivity analysis (GSA) based on Sobol’ index estimation has been investigated. We focus our305

interest on total Sobol’ sensitivity indices (Sobol’, 1990). The total Sobol’ index associated to each input parameter represents

the amount of the quantity of interest variance due to this parameter alone or in interaction with any other subset of parameters.

It allows to quantify the part of variation in the damage equivalent load that could be reduced if the parameter was to be fixed

to a single value. To alleviate the computational cost in the sensitivity index estimation, heteroscedastic Gaussian process (GP)

models (Ginsbourger et al., 2008) are built independently for each Damage Equivalent Load (DEL). Fitting such surrogate310

model to the load behavior of a wind turbine requires a design of experiments covering the range of variation in all parameters.

In that context, we rely on a Latin Hypercube Sampling (LHS) of size 996 with a geometrical criterion maximizing the

minimum distance between the design points (Damblin et al., 2013). To testify the accuracy of the fitted surrogate model for

each output of interest, an augmented LHS of size 200 has been generated. Then, ten different turbulent inflow realizations

are generated using the Kaimal spectrum with an exponential spatial coherence model for each point of the DOE, from which315

the empirical mean and standard deviation of the fatigue loads are estimated. The heteroscedastic property of the GP allows to
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capture the global fatigue behavior of the turbine but also to estimate the inherent variability due to different turbulent wind

field realizations. This study leads to a total number of 11,960 aero-servo-elastic numerical model evaluations.

Eight different model quantities of interest are considered for describing the fatigue behavior of the wind turbine, see Table

5. For each output, the total effect Sobol indices are estimated using the corresponding heteroscedastic Gaussian process320

metamodel, with an estimated predictivity on validation set-over at least 0.8, based on the estimator proposed by Jansen (1999)

and implemented in the function sobolGP of the R package sensitivity (Iooss et al., 2019). The estimation approach relies on

the complete conditional predictive distribution of the metamodel which allows to evaluate the uncertainty in the estimation

due to the Monte Carlo procedure or the surrogate approximation, see (Hirvoas et al.).

Table 5. Wind turbine model fatigue load outputs with their corresponding negative inverse slope coefficient m.

Quantity of interest m

DEL blade root in-plane bending moment 10

DEL blade root out-of-plane bending moment 10

DEL tower bottom fore-aft bending moment 3

DEL tower bottom side-to-side bending moment 3

DEL tower top side-to-side bending moment 3

DEL tower top fore-aft force 3

DEL shaft torsional moment 3

For the estimation procedure, two distinct LHSs with a maximin criterion of size 9,946 have been generated. The uncertainty325

related to the kriging approximation is quantified by using 100 samples from the conditional distribution of the predictor based

on the learning sample. Moreover, the uncertainty due to Monte Carlo integration was estimated with a bootstrap procedure

with a sample size of 100, see Efron (1981) for futher details in bootstrapping strategy. The estimated total Sobol’ indices

for the considered quantities of interest with their corresponding 95% confidence intervals are presented in Figure 4. Most

of the outputs have a large total Sobol’ index for the errors relative to the wind speed ∆u and ∆σu. These input parameters330

have an important impact on the variability of fatigue loads obtained from our aero-servo-elastic numerical model. The vertical

wind shear coefficient α has also a clear impact in particular for the torsional moment of the shaft and the out-of-plane bending

moment of the blade. The noticeable effect of the wind shear for rotating components can be explained by the fact that they will

face cyclic changes in wind velocity if wind shear is considered. Eight other parameters describing the wind inflow conditions

or the wind turbine model properties have total Sobol’ indices higher to the arbitrary threshold (set to 2.5e− 02) and can be335

considered as influential. The arbitrary threshold is used to discriminate efficiently sensitive and insensitive input parameters.

For simplicity, these parameters are underlined in Figure 4. In particular, we can notice that model property parameters related

to tower thickness, lineic mass and mass imbalance related to the blades (e, αmass, and ηB) have a non-negligible influence on
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fatigue load variance of the considered wind turbine components. The remaining parameters can be fixed to any specific value

in their range of variability without affecting the considered fatigue loads.340

After assessing the sensitivity analysis of the fatigue load of some critical components of the wind turbine structure, one

major challenge is to reduce the uncertainties affecting the most influential input parameters.

∆
u

∆
σ u φ v φ h Λ U

a b’ α
Nm

as
s

N C
M
x e

β T
R I zz KD αB

F
αB

E

αm
as
s

βB
R ηB Ω

Unknown Parameters

0.
0

0.
2

0.
4

0.
6

0.
8

S
T

DEL at 10 m/s

Threshold = 0.025

Blade in-plane bending moment [N/m]

Blade out-of-plane bending moment [N/m]

Shaft torque moment [N/m]

Tower bottom side-to-side moment [N/m]

Tower bottom fore-aft moment [N/m]

Tower top fore-aft force [N]

Tower top side-to-side force [N]

Figure 4. Estimation of total Sobol’ indices (y-axis) with their 95% confidence interval corresponding to each of the 20 parameters (x-axis)

for the different fatigue loads. The dashed line corresponds to a threshold arbitrarily chosen to 5e-2. Confidence intervals (CI) are obtained by

taking into account the uncertainties due to both the metamodel and the Monte Carlo estimation. The number of samples for the conditional

Gaussian process, in order to quantify the uncertainty of the kriging approximation, was set to 100. The uncertainty due to Monte Carlo

integration was computed with a bootstrap procedure with a sample size of 100.

4.3 Identifiability study

A major issue for parameter estimation problem is the identifiability. In this context, Dobre et al. (2012) highlights that nullity

of total sensitivity index for a specific input parameter implies its non-identifiability from the measured output. Consequently,345

we perform a GSA on the measured outputs in order to determine which parameters cannot be inferred with the current sensors

on the wind turbine. In our industrial application, six measured outputs are considered, see Table 6.
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For the acceleration outputs, we are mainly interested in their response in the frequency-domain by using the power spectral

density (PSD). When performing GSA, discretized PSD series involve a substantial dimensionality and a high degree of

redundancy. To overcome this issue, the different discretized PSD outputs have been reduced using a Principal Component350

Analysis (PCA) (Wold et al., 1987). This dimensionality reduction approach allows the functional output expansion in a new

reduced space spanned by the most significant directions in terms of variance. Then, a method based on PCA and GSA with a

GP model is used to compute an aggregated Sobol’ index for each input parameter of the model (Lamboni et al., 2011). The

proposed index synthesizes the influence of the parameter on the whole discretized functional output. Table 7 summarizes the

estimated total aggregated Sobol’ indices. In this sensitivity analysis, the input parameters having total Sobol’ index values355

under a threshold set at 1e− 02 are considered as non-identifiable from the measured output.

Table 6. Observations performed in our reference wind turbine.

Observation Unit

10-minute mean

power production
[kW]

10-minute mean

rotor speed
[rpm]

Tower middle fore-aft

acceleration’s PSD
[dB]

Tower middle side-to-side

acceleration’s PSD
[dB]

Tower top fore-aft

acceleration’s PSD
[dB]

Tower top side to side

acceleration’s PSD
[dB]

According to the GSA, the coefficient related to the distributed blade mass αmass is not identifiable with the current observa-

tions. Consequently, the model parameter properties remaining for the inference procedure are the tower thickness coefficient

e, and the mass imbalance factor ηB . Moreover, all the influent parameters related to the wind field remain candidates for the

recursive inference strategy.360
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Table 7. Total Sobol’ and aggregated Sobol’ indices for each output used during the recursive inference procedure. Estimated total Sobol’

indices higher than the arbitrary threshold are underlined.

Measured outputs
∆u

[m/s]

∆σu

[m/s]

φh

[◦]

Λu

[m]

a

[−]

α

[−]

e

[%]

αmass

[%]

ηB

[%]

10-minute mean

power production
9.81e-01 4.29e-04 1.71e-02 1.30e-04 3.70e-04 1.50e-02 3.84e-05 3.83e-04 5.23e-05

10-minute mean

rotor speed
9.75e-01 3.30e-03 1.87e-02 9.43e-04 1.61e-03 1.62e-02 1.03e-04 7.56e-04 7.34e-05

Tower middle fore-aft

acceleration’s PSD
1.44e-01 2.49e-01 1.00e-02 1.77e-01 3.70e-01 1.33e-02 4.58e-02 5.82e-03 3.48e-03

Tower middle side-to-side

acceleration’s PSD
2.04e-01 2.51e-01 1.09e-02 1.92e-01 3.00e-01 1.33e-02 4.49e-02 4.86e-03 3.42e-03

Tower top fore-aft

acceleration’s PSD
3.12e-01 2.16e-01 1.87e-02 1.75e-01 2.69e-01 9.59e-03 3.36e-02 8.49e-03 7.01e-03

Tower top side to side

acceleration’s PSD
2.84e-01 1.87e-01 1.18e-02 1.76e-01 2.50e-01 1.21e-02 8.33e-02 5.52e-03 2.38e-02

4.4 Recursive inference strategy based on AnEnKF approach

The current in situ wind data availability or quality from the LIDAR system does not allow a proper extraction of the mean flow

angle φh, the longitudinal turbulence length scale Λu, and the decrement parameter of the coherence model a. Consequently,

only the six remaining parameters having an influential effect on the fatigue behavior of the structure and potentially identifi-

able are considered during the recursive inference procedure. These input parameters and their corresponding prior Gaussian365

distributions are detailed in Table 8. Their corresponding reference variable in the augmented state vector is also specified.
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Table 8. A-priori Gaussian distribution G for each of the considered input parameters.

Input parameter Variable Distribution Initial prior State

Tower

thickness
e G µ=−10.00 σ = 7.00

x1

Blade mass

imbalance
ηB G µ= 4.00 σ = 8.33e− 01

Error mean of the wind

speed at hub height
∆u G µ= 0.00 σ = 9.11e− 01

x2

Error standard deviation of

the wind speed at hub height
∆σu G µ= 0.00 σ = 9.70e− 02

Vertical wind

shear exponent
α G µ= 1.30e− 01 σ = 2.90e− 01

For assessing the performance of the AnEnKF for our recursive inference procedure, we rely on pseudo-experimental numer-

ical tests. They consist in performing forward aero-servo-elastic simulations considering known values of the input parameters,

and then adding a Gaussian noise of known variance to the simulated measurements. In our study, the simulated data are

perturbed by considering a covariance matrix such as the obtained standard deviation is equivalent to a 10% signal-to-noise370

ratio. The pseudo-simulated responses of the wind turbine structure are generated using the wind inflow conditions obtained

from the nacelle mounted LIDAR for a specific day and the mean values of the model properties described in Table 3. The

noisy pseudo-experimental outputs used to recursively update the wind turbine model are 10-minute mean power production

and rotor speed, and the PSD of the acceleration time series obtained for side to side and fore-aft at the two different tower

positions. Our recursive inference problem using a filtering-based estimation procedure can be considered as a state estimation375

problem for the following augmented system:

∀k ∈ N∗,


x(k) =

x1
(k)

x2
(k)

=

 x1
(k−1)

A(k−1,k)(x
2
(k−1))

+ εm(k)

y(k) =H(k)(x(k),v(k)) + εo(k)

·

where x1
(k−1) and x2

(k−1) are respectively the uncertain parameters for the model properties and the wind inflow conditions at

iteration k− 1 as described in Table 8, A(k−1,k) is the analog forecasting operator as detailed in Section 3, v(k) is the forcing

vector corresponding to the 10-minute mean and standard deviation wind speed obtained from the SCADA system, and H(k)380

is the combination of the aero-servo-elastic model FAST and the turbulent wind field generation software Turbsim.
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For the initialization of the EnKF approach, independent Gaussian distributions are assumed to be the initial prior for each of

the input parameters, see Table 8. The initial error covariance matrix of the input parameters, denoted by P b, is thus assumed

to be diagonal. To create the catalog, we rely on the measurements obtained from both the SCADA system and the LIDAR

installed on the onshore wind turbine. A data pretreatment has been performed in order to find any corrupted observations. The385

obtained database consists in both 4,735 analog situations to be compared to the current parameters related to the wind inflow

and their corresponding successors at a 10-minute interval.

Figure 5 shows the results of the identification of the considered input parameters by applying the AnEnKF approach

with the locally-linear forecasting operator using N = 500 members and K = 50 nearest-neighbors. It can be noticed that the

augmented state vector is well reconstructed by using this non-parametric data assimilation procedure which allows to emulate390

the dynamical model from a dataset. Indeed, the mean of the empirical distribution obtained from the members of the ensemble

is close to the true hidden-state for every parameter. A major advantage of the procedure is the confidence intervals obtained at

each inference iteration allowing us to give information about the difficulty to retrieve the value of the input parameters from

the measured outputs.
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Figure 5. Iteration evolution of the posteriori estimates of the input parameters. Results obtained by running the AnEnKF procedure with

N = 500 members of the ensemble used for the estimation and considering pseudo-experimental numerical observations.
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5 Conclusions395

In the present work, we extend a procedure to quantify and reduce the uncertainties affecting the fatigue load estimation of

a wind turbine numerical model. The fatigue loads encountered by a wind turbine structure are function of the parameters

describing the turbulent wind field, the structural properties, and the control system. The study aims at taking into account

these parameters used as input to aero-servo-elastic fatigue load simulations of an operating wind turbine. The procedure relies

on a global sensitivity analysis and a recursive Bayesian inference method. A major challenge during the recursive inference400

procedure is the dynamic behavior of the inflow-related parameters. Unfortunately, the underlying dynamic behavior of these

parameters is not explicitly known. To overcome this issue, a combination of the implicit analog forecasting of the dynamics

with the ensemble Kalman filtering scheme is investigated.

Finally, we demonstrate the applicability and performance of the procedure using a numerical representation of a reference

wind turbine. The study leads to the following main conclusions. The global sensitivity analysis based on heteroscedastic405

Gaussian processes for the estimation of Sobol’ indices shows that parameters related both to the wind and the structure have an

influence on the fatigue loads of a wind turbine structure. The presented metamodeling approach is an efficient way to capture

the inherent stochasticity of aero-servo-elastic simulations due to the turbulent inflow realization leading to variations in the

quantities of interest. After determining the most influential parameters in terms of fatigue loads variability, an identifiability

study based on a global sensitivity analysis is performed to assess if these parameters can be inferred from the current sensors.410

The sensitivity analysis is based on the estimation of the so-called aggregated Sobol’ indices involving a principal component

analysis in order to take into account the functional behavior of the measured outputs. Finally, the ensemble Kalman filtering

method coupled with the analog forecasting strategy used in this study is very suitable for carrying the recursive inference of

parameters related to the wind field solicitation and the wind turbine numerical description.

Further research should focus on the quality of the catalog used for the analog forecasting strategy. Additionally, other types415

of kernels in the forecasting operator have to be studied. Lastly, the hyperparameters used in the K-nearest neighbors method

and the chosen kernel function could be optimized for each member of the ensemble Kalman filtering procedure by using

a cross-validation approach. From an industrial perspective, the proposed AnEnKF methodology has to be performed using

measured acceleration time-series obtained from the sensor devices of the onshore wind turbine.
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