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manifolds. We establish the well-posedness of measure-valued solutions (defined via mass
transport) on sphere, as well as investigate the mean-field particle approximation. We
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manifolds (e.g., a hypercylinder).
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1. Introduction

We consider a nonlocal aggregation model on a Riemannian manifold M that con-
sists in the following evolution equation for a population density ρ on M :

∂tρ−∇M · (ρ∇MK ∗ ρ) = 0. (1.1)

∗Corresponding author.

https://dx.doi.org/10.1142/S0219530521500081


September 29, 2021 7:6 WSPC/S0219-5305 176-AA 2150008

Here, K : M ×M → R is an interaction potential, which models social interactions 
such as attraction and repulsion, and ∇M · and ∇M represent the manifold diver-
gence and gradient, respectively. Also, for a time-dependent measure ρt on M , the  
convolution K ∗ ρt is given by

K ∗ ρt(x) =
∫
M

K(x, y) dρt(y). (1.2)

In (1.1), we restrict ρt to be a probability measure on M for all t, i.e.
∫
M dρt = 1

for all t.
There has been extensive research on model (1.1) in recent years. The model has

many applications, in diverse areas such as swarming in biological groups [38], mate-
rials science and granular media [14], self-assembly of nanoparticles [27], robotics
and space missions [28] and opinion formation [39]. Indeed, the model can capture
a wide variety of self-collective or swarm behaviors, such as aggregations on disks,
annuli, rings and soccer balls [29, 45, 44], making it very attractive for applications.
At the same time, model (1.1) in Euclidean space (M = R

k) has been investigated
thoroughly by PDE analysis. A partial list of issues addressed in analysis works
include the well-posedness of the initial-value problem [30, 8, 12, 9], the long-time
behavior of its solutions [33, 17, 7, 19, 18], and the minimizers for the associated
interaction energy [4, 16, 10, 42].

While model (1.1) in Euclidean spaces has been well studied in literature, there
have been far fewer works on the aggregation model posed on arbitrary surfaces or
manifolds. In [46, 13], the authors investigate the well-posedness of the aggregation
model (1.1) on certain subsets of R

k when interactions depend on the Euclidean
distance in the ambient space. Specifically, it is assumed there that the interaction
potential K(x, y) is of the form K(x, y) = K(|x − y|), where |x − y| denotes the
Euclidean distance in R

k between points x and y on M . A similar assumption is
made in various recent works on collective dynamics on matrix manifolds (e.g.,
orthogonal and unitary groups) [25, 26]. We will be referring to such models as
models with extrinsic interactions. Emergent behaviors of swarming models and
Fokker–Planck-type dynamics with extrinsic interactions on surfaces and manifolds
have been investigated (both analytically and numerically) in various papers in
recent years; see for instance [35, 34, 25, 22, 2].

In this paper we consider model (1.1) with an interaction potential of the form
K(x, y) = K(d(x, y)), where d(x, y) is the geodesic distance on M between x and
y. In other words, we consider model (1.1) with intrinsic interactions. Such model
was proposed and investigated recently in [20], where the authors demonstrate the
emergent self-collective behavior of its solutions on sphere and hyperbolic plane. In
particular, it is shown there that solutions can approach asymptotically a diverse set
of steady states, that include constant density equilibria, concentrations on geodesic
circles, aggregations on geodesic disks and annular regions, and others. Intrinsic
interactions are motivated by applications of the model in engineering (robotics)
[21, 28], specifically when individual agents/robots are restricted by environment or
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mobility constraints to remain on a certain manifold. In such applications, efficient
swarming must consider inter-individual geodesic distances, and hence, be modeled
by intrinsic interactions [43, 37]

We consider weak, measure-valued solutions to (1.1) defined in the mass trans-
portation sense [11]. Indeed, Eq. (1.1) is in the form of a continuity equation, and
in geometric terms it represents the transport of the measure ρ along the flow on
M generated by the tangent vector field v[ρ] = −∇MK ∗ ρ, which depends on
ρ itself [3]. This general framework includes for instance the case of an interact-
ing particle system and hence it can be used to study particle approximations and
mean-field limits. With this interpretation of solutions, a first goal of this paper is to
establish the well-posedness of solutions to model (1.1) set up on a sphere (Sec. 3)
and on a hypercylinder (Sec. 5), the main results being stated in Theorems 3.6
and 5.1, respectively. These are the first such results for model (1.1) with intrinsic
interactions. We note here that an alternative approach to study well-posedness of
solutions is using the theory of gradient flows in the space of probability measures
on M endowed with the Riemannian 2-Wasserstein metric [3]. Such techniques
were used for nonlinear diffusion equations in [36], and for the interaction equation
(with extrinsic interactions) in [46]. The approach in our paper, which follows sev-
eral previous studies of the interaction equation in R

k [11, 15], is less technical, as
it amounts to working with flows of locally Lipschitz vector fields on a manifold.
Also, the procedure leads naturally to the mean-field approximation (referred to in
the literature as the Dobrushin technique), which can be very useful for numerical
simulations.

In working with intrinsic interactions we have to deal with the regularity of
the distance function, which is known to be smooth away from cut loci and the
diagonal. For this reason we consider interaction potentials that depend on the
squared distance d(x, y)2 between points x and y on M (to avoid singularities at
x = y), and also restrict to subsets of the manifold for which no two points are in the
cut locus of each other (e.g., an open hemisphere). Note that by this restriction any
pair of points on the manifold can be connected by a unique minimizing geodesic.
Intuitively, this avoids situations where two interacting particles could be connected
by more than one minimizing geodesic and thus would not “know” which direction
to follow (as for instance, two antipodal points on a sphere).

A second goal of the paper is to investigate the emergence of asymptotic consen-
sus in solutions to model (1.1) with intrinsic interactions on sphere, on hypercylinder
and, more generally, on certain product manifolds. Consensus (also referred to in
literature as synchronization or rendezvous) corresponds to an asymptotic state of
a delta aggregation in one single point on M . Achieving consensus in a network of
agents is a very important problem in robotic control [41], in particular when the
interactions among agents are intrinsic, as in our paper [43, 37]. Also, such asymp-
totic states have been of central importance in the Kuramoto oscillator and related
models [24, 25], as well as in applications of the model to opinion formation [39].
In this paper we prove the formation of consensus equilibria for the intrinsic model
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on sphere with attractive potentials, as well as asymptotic consensus on certain 
product manifolds in the specific case of a quadratic interaction potential. To the 
best of our knowledge, this is the first systematic study of asymptotic behavior of 
intrinsic models.

The summary of the paper is as follows. In Sec. 2 we present some preliminar-
ies, in particular the notion of solution, some useful results regarding Wasserstein 
distances, and the main assumption on the interaction potential K. Section 3 is 
concerned with the well-posedness of solutions to model (1.1) on sphere (the main 
result being given in Theorem 3.6), and their stability and mean-field approxima-
tion. In Sec. 4 we investigate the asymptotic behavior of solutions to model (1.1) on 
sphere, specifically the formation of consensus equilibria in the continuum and dis-
crete models (Theorems 4.12 and 4.14). In Sec. 5 we consider other manifolds (e.g., 
a hypercylinder) for which we investigate issues such as well-posedness and consen-
sus formation. Finally, Appendix contains some fundamental concepts needed to 
support the work in the paper, such as general facts on flows on manifolds and how 
they apply to an interaction velocity field.

2. Preliminaries and General Considerations

Let M be a smooth, complete and connected k-dimensional Riemannian manifold, 
with intrinsic distance d. We denote by 〈u, v〉x and ‖u‖x the tangent inner product 
and norm, respectively, for u, v ∈ TxM and x ∈ M , where  TxM stands for the 
tangent space of M at x. The tangent bundle is denoted by TM . We emphasize 
that throughout this section the manifold M is not necessarily embedded in Rk+1.

Unless otherwise mentioned, throughout this paper we use T ∈ (0, ∞] to  denote  
a generic final time (usually related to existence of solutions) and U denotes a 
generic open subset of M .

2.1. Vector fields and flows on manifolds

Consider a time-dependent vector field X on U × [0, a), for some a ∈ (0, ∞], that is, 
X : U × [0, a) → TM  with X(x, t) ∈ TxM for all (x, t) ∈ U  × [0, a). We shall often 
use the Xt for X(·, t).

Given Σ ⊂ U , a flow map generated by (X, Σ) is a function ΨX : Σ× [0, τ) → U , 
for some τ ≤ a, that satisfies, for all x ∈ Σ and t ∈ [0, τ)⎧⎪⎨

⎪⎩
d
dt

Ψt
X(x) = Xt(Ψt

X(x)),

Ψ0
X(x) = x,

(2.1)

where we used the abbreviation Ψt
X for ΨX(·, t), which we shall do throughout.

Furthermore, a flow map is said to be maximal if its time domain cannot be extended
while (2.1) holds; it is said to be global if τ = a = ∞ and local otherwise. In this
paper, we are interested in flow maps generated by the velocity field v[ρ] of the
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interaction equation (see (2.2)), with Σ being the support of the initial measure ρ0.
In such case we will omit Σ and simply say that v[ρ], instead of (v[ρ], supp(ρ0)),
generates a flow map.

The local existence and uniqueness of a flow map follows from standard theory
of dynamical systems on manifolds whenever the set Σ above is compact; see [32,
Chap. 9] or [1, Chap. 4] for instance. We review some of this theory in Appendix 5.2.
In brief, by working in charts and using local coordinates, for a vector field that
satisfies a Lipschitz property on charts (see Definition A.1) one can make use of
standard ODE theory in Euclidean space R

k to establish the local well-posedness
of flow maps (Theorem A.3). As for Σ being compact, this is required to ensure
that the maximal time of existence of the flow map is strictly positive.

2.2. Notion of solution

As already mentioned, for the sake of generality, and also because of our future
considerations on particle solutions (see Theorem 3.10), we are interested in defining
measure-valued solutions to (1.1). To this end, denote by P(U) the set of Borel
probability measures on the metric space (U , d) and by C([0, T );P(U)) the set of
continuous curves from [0, T ) into P(U) endowed with the narrow topology. Recall
that a sequence (ρn)n≥1 ⊂ P(U) converges narrowly to ρ ∈ P(U) if∫

U
φ(x) dρn(x) →

∫
U
φ(x) dρ(x), as n→ ∞, for all φ ∈ Cb(U),

where Cb(U) is the set of continuous and bounded functions on U .
We denote by Ψ#ρ the push-forward in the mass transportation sense of ρ

through a map Ψ : Σ → U for some Σ ⊂ U , that is, Ψ#ρ is the probability measure
such that for every measurable function ζ :U → [−∞,∞] with ζ ◦Ψ integrable with
respect to ρ, we have∫

U
ζ(x) d(Ψ#ρ)(x) =

∫
Σ

ζ(Ψ(x)) dρ(x).

Also, for any curve (ρt)t∈[0,T ) ⊂ P(U), denote by v[ρ] :U × [0, T ) → TM the
velocity vector field associated to (1.1), that is

v[ρ](x, t) = −∇MK ∗ ρt(x), for all (x, t) ∈ U × [0, T ), (2.2)

where for convenience we used ρt in place of ρ(t), as we shall often do in the
following. The convolution in this context is defined as follows: for h :M ×M → R

and ρ ∈ P(U),

h ∗ ρ(x) :=
∫
U
h(x, y) dρ(y).
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Recall the standard notion of solution in the sense of distributions: we say that
a curve (ρt)t∈[0,T ) ⊂ P(U) is a weak solution in the sense of distributions to (1.1) if∫ T

0

∫
U
(∂tφ(x, t) + 〈v[ρ](x, t),∇Mφ(x, t)〉x) dρt(x) dt = 0,

for all φ ∈ C∞
c (U × (0, T )), (2.3)

where C∞
c (U × (0, T )) is the set of smooth and compactly supported functions on

U × (0, T ). For this definition, we implicitly suppose that∫
S

∫
Q

‖v[ρ](x, t)‖x dρt(x) dt <∞, for all compact sets S ⊂ (0, T ) and Q ⊂ U ,

(2.4)

to ensure, by the Cauchy–Schwarz inequality, that the left-hand side in the definition
is finite.

A solution in the distributional sense can be described in a stronger sense, which
is more intuitive and more geometric, as the push-forward of the initial data through
the corresponding flow map [3, Chap. 8.1]. Indeed, the following result holds.

Lemma 2.1. Let (ρt)t∈[0,T ) ⊂ P(U) and suppose that v[ρ] generates a flow map
Ψv[ρ] defined on supp(ρ0) × [0, T ) and satisfies (2.4). Furthermore, assume that ρ
satisfies the implicit relation

ρt = Ψt
v[ρ]#ρ0, for all t ∈ [0, T ). (2.5)

Then, ρ belongs to C([0, T );P(U)) and is a weak solution in the sense of distribu-
tions to Eq. (1.1).

The proof follows closely [3, Lemma 8.1.6]. For completeness, we provide it in
Appendix 5.2. In other words, it suffices to find a curve of the form (2.5) satisfying
(2.4) to show existence of a solution in the sense of distributions to the interaction
equation. This motivates the following definition of weak, or measure, solution (see
also [11]).

Definition 2.2 (Notion of solution). We say that (ρt)t∈[0,T ) ⊂ P(U) is a weak
solution to (1.1) if v[ρ] generates a unique flow map Ψv[ρ] defined on supp(ρ0)×[0, T )
and (2.5) holds.

From the proof of Lemma 2.1 in Appendix 5.2, we see that any weak solution
belongs to C([0, T );P(U)), whether or not it satisfies (2.4).

2.3. Wasserstein distance

To compare solutions to (1.1) we will use the intrinsic 1-Wasserstein distance: for
all ρ, σ ∈ P(U),

W1(ρ, σ) = inf
π∈Π(ρ,σ)

∫
U×U

d(x, y) dπ(x, y),
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where Π(ρ, σ) ⊂ P(U × U) is the set of transport plans between ρ and σ, i.e. the
set of elements in P(U × U) with first and second marginals ρ and σ, respectively.

We write P1(U) the set of probability measures on U with finite first moment
and P∞(U) ⊂ P1(U) the set of probability measures on U with compact support; we
have that (P1(U),W1) (and thus (P∞(U),W1)) is a well-defined metric space. We
furthermore metrize the space C([0, T );P1(U)) (and thus C([0, T );P∞(U))) with
the distance defined by

W1(ρ, σ) = sup
t∈[0,T )

W1(ρt, σt), for all ρ, σ ∈ C([0, T );P1(U)).

We give a preliminary lemma first, analogous to results in [11, Lemmas 3.11–
3.13], which considers various Lipschitz properties of W1.

Lemma 2.3. The following four statements hold.

(i) Let Σ ⊂ U . Let furthermore ρ ∈ P1(U) with supp(ρ) ⊂ Σ and Ψ1,Ψ2 : Σ → U
be measurable functions. Then,

W1(Ψ1#ρ,Ψ2#ρ) ≤ sup
x∈supp(ρ)

d(Ψ1(x),Ψ2(x)).

(ii) Let a ∈ (0,∞] and let X be a time-dependent vector field on U × [0, a). Let
ρ ∈ P1(U) and suppose that (X, supp(ρ)) generates a flow map ΨX defined on
supp(ρ) × [0, τ) for some τ ≤ a. Suppose furthermore that X is bounded on
U × [0, τ), i.e. there exists C > 0 such that ‖X(x, t)‖x∈U < C for all x ∈ U
and t ∈ [0, τ). Then,

W1(Ψt
X#ρ,Ψs

X#ρ) ≤ C|t− s|, for all t, s ∈ [0, τ).

(iii) Let Σ ⊂ U and let Ψ :Σ → U be Lipschitz continuous as a map from the metric
space (Σ, d) into the metric space (U , d); denote by LΨ its Lipschitz constant.
Moreover, let ρ, σ ∈ P∞(U). Then,

W1(Ψ#ρ,Ψ#σ) ≤ LΨW1(ρ, σ).

Proof. Let us first show (i). Consider the transport plan given by π = (Ψ1,Ψ2)#ρ,
where we define (Ψ1,Ψ2) : Σ → U × U by

(Ψ1,Ψ2)(x) = (Ψ1(x),Ψ2(x)), for all x ∈ Σ.

Then, π has Ψ1#ρ and Ψ2#ρ as first and second marginals, respectively, and there-
fore π ∈ Π(Ψ1#ρ,Ψ2#ρ). We get

W1(Ψ1#ρ,Ψ2#ρ) ≤
∫
U×U

d(x, y) dπ(x, y) =
∫

supp(ρ)

d(Ψ1(x),Ψ2(x)) dρ(x)

≤ sup
x∈supp(ρ)

d(Ψ1(x),Ψ2(x)),

where we used that ρ is a probability measure on U .
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Let us now prove (ii). Let t, s ∈ [0, τ). We have, from (i),

W1(Ψt
X#ρ,Ψs

X#ρ) ≤ sup
x∈supp(ρ)

d(Ψt
X(x),Ψs

X(x)). (2.6)

Without loss of generality, assume t > s and with x fixed in supp(ρ) consider the
curve b 
→ Ψb

X(x) on M , with s ≤ b ≤ t. The length L of this curve, that joins
Ψs
X(x) and Ψt

X(x), can be bounded above using (2.1) as

L =
∫ t

s

‖Xb(Ψb
X(x))‖Ψb

X (x) db ≤ C|t− s|. (2.7)

The conclusion now comes from (2.7), (2.6), and the fact that d(Ψt
X(x),Ψs

X(x)) ≤
L.

Finally, let us prove (iii). Let π be an optimal transport plan between ρ and σ,
so that supp(π) ⊂ U ×U . Then the plan π̄ = (Ψ,Ψ)#π has Ψ#ρ and Ψ#σ as first
and second marginals, respectively, so that π̄ ∈ Π(Ψ#ρ,Ψ#σ). Thus,

W1(Ψ#ρ,Ψ#σ) ≤
∫
U×U

d(x, y) dπ̄(x, y)

=
∫

Σ×Σ

d(Ψ(x),Ψ(y)) dπ(x, y)

≤ LΨ

∫
Σ×Σ

d(x, y) dπ(x, y) ≤ LΨW1(ρ, σ).

Note that Lemma 2.3(ii) shows that if the velocity field v[σ] is bounded for
any curve σ on [0, T ) of probability measures, then any weak solution ρ on [0, T )
to the interaction equation starting from an element in P1(U) is in fact Lipschitz
continuous in time, and in particular absolutely continuous in time. Indeed, in this
case,

W1(ρt, ρs) = W1(Ψt
v[ρ]#ρ0,Ψs

v[ρ]#ρ0) ≤ C|t− s| for all t, s ∈ [0, T ),

where Ψv[ρ] is the unique flow map generated by v[ρ] on the time interval [0, T ) and
C is the constant from Lemma 2.3(ii).

2.4. Assumption on the interaction potential

We assume that K :M ×M → R depends only on the intrinsic distance d on M . To
avoid issues regarding the differentiability of the distance function on the diagonal
{(x, y) ∈ M ×M | x = y}, we take in fact K to depend on the squared distance
function instead. Specifically, we make the following assumption on the interaction
potential:

(H) K :M ×M → R has the form

K(x, y) = g(d(x, y)2), for all x, y ∈M, (2.8)

where g : [0,∞) → R is differentiable, with locally Lipschitz continuous deriva-
tive.
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In the following we use the notation Ky(x) for K(x, y) and dy(x) for d(x, y).
Given the expression (2.8) of K, its gradient can be computed as

∇MKy(x) = −2g′(d(x, y)2) logx y, (2.9)

where we used the chain rule and the fact that

∇Mdy(x) = − logx y
d(x, y)

, for x �= y. (2.10)

Here, logx y denotes the Riemannian logarithm map (i.e. the inverse of the Rieman-
nian exponential map) on M [40]. Equations (2.9) and (2.10) only hold for points y
within the injectivity radius of M at x (or, equivalently, away from the cut locus of
x). To ensure that these formulas hold, we shall therefore restrict in the following to
an open subset U of M which is geodesically convex; we remark that, in particular,
this implies that U can be covered by a single chart.

We also note here that the physical interpretation of (1.1) as an aggregation
model is encoded in (2.2) and (2.9). Specifically, by interacting with a point mass
at location y, the point mass at x is driven by a force of magnitude proportional
to |g′(d(x, y)2|d(x, y), to move either towards y (provided g′(d(x, y)2) > 0) or away
from y (provided g′(d(x, y)2) < 0). The velocity field at x computed by (2.2) takes
into account all contributions from interactions with point masses y ∈ M through
the nonlocality induced by the convolution.

3. Intrinsic Aggregation Model on the Unit Sphere

In this section, we take the Riemannian manifold M to be the k-dimensional unit
sphere S

k and show the well-posedness of model (1.1) in the case when the dynamics
is restricted to a geodesically convex subset of an open hemisphere. Note that here,
by compactness, P1(Sk) = P∞(Sk) = P(Sk).

We equip Sk with the induced metric from Rk+1; in particular, this means that
we shall equivalently regard points in Sk and tangent vectors of Sk as vectors in
Rk+1, with the property that 〈u, v〉x = u · v for all u, v ∈ TxS

k and x ∈ Sk, where
u · v stands for the canonical inner product in Rk+1 of u and v.

3.1. Intrinsic distance

Given x, y ∈ Sk, the Riemannian, or intrinsic, distance between points x, y ∈ Sk is
given by

d(x, y) = θxy ∈ [0, π],

where θxy = arccos(x · y) represents the angle made by the vectors x and y. Based
on the observation above, to have a well-defined gradient of the distance function,
we consider a subset of the sphere where no two points are in the cut locus of each
other. Specifically, fix any ε ∈ (0, π/2) and without any loss of generality choose
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the following open and geodesically convex subset:

Dε =
{
x ∈ S

k | d(x,N) <
π

2
− ε
}
, (3.1)

where N = (0, . . . , 0, 1) represents the North pole of the unit sphere. Note that the
maximum distance on Dε is bounded by π − 2ε < π.

On Dε, which here plays the role of U in the general setting of the previous
section, the logarithm map is given explicitly by

logx y =
θxy

sin(θxy)
(y − cos(θxy)x), for all x, y ∈ Dε, (3.2)

and by (2.10),

∇Skdy(x) =
cos(θxy)x− y

sin(θxy)
, for all x, y ∈ Dε with x �= y. (3.3)

As d is a distance function, one can check indeed that |∇Skdy(x)| = 1 for all
x, y ∈ Dε with x �= y.

For convenience of notation, set f(θ) := θ/ sin(θ) for θ ∈ [0, π), and hence, for
all x, y ∈ Dε

∇Skd2
y(x) = 2f(θxy)(cos(θxy)x− y). (3.4)

Note that f(θ) → ∞ as θ → π, which illustrates quantitatively why we need
to restrict to a geodesically convex subset of S

k: this prevents the gradient of the
squared distance from blowing up by not allowing any points x and y to be in the
cut locus of each other (i.e. from being antipodal and have θxy = π).

As f and f ′ are bounded on [0, π − 2ε], denote

Cf (ε) := sup
θ∈[0,π−2ε]

f(θ), Lf (ε) := sup
θ∈[0,π−2ε]

f ′(θ).

Both Cf (ε) and Lf(ε) blow up as ε → 0, which justifies the choice of ε > 0 in the
definition of Dε. Also, since by assumption (H) the function g′ is locally Lipschitz
continuous, denote by Cg′(ε) and Lg′(ε) the L∞ norm and the Lipschitz constants
of g′ on [0, (π − 2ε)2], respectively.

3.2. Vector fields on Dε

Our approach in what follows relies on the fact that Sk is embedded in Rk+1, which
allows us to view vector fields in Dε as vector fields in Rk+1 and in particular, to
take the difference of tangent vectors at different points of Dε. We give here two
important lemmas for flows of Lipschitz vector fields on Dε. We will require that
the vector fields satisfy a Lipschitz condition (see (3.5)) with respect to the norm of
the ambient space R

k+1, denoted by | · |. As shown later in Lemma 3.3, the vector
field associated to the interaction equation satisfies indeed this Lipschitz property.

Lemma 3.1. Let X,Y be two time-dependent vector fields on Dε. Let Σ ⊂ Dε
and suppose that ΨX and ΨY are flow maps defined on Σ× [0, τ), for some τ > 0,
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generated by (X,Σ) and (Y,Σ), respectively. Assume furthermore that X is bounded
on Dε × [0, τ) and Lipschitz continuous with respect to its first variable (uniformly
with respect to t ∈ [0, τ)) on Dε × [0, τ), i.e. there exists LX > 0 such that

|X(x, t) −X(y, t)| ≤ LX d(x, y), for all (x, y, t) ∈ Dε ×Dε × [0, τ). (3.5)

Then, for all p ∈ Σ,

d(Ψt
X(p),Ψt

Y (p)) ≤ e(LX+2‖X‖L∞(Dε×[0,τ)))t − 1
LX + 2‖X‖L∞(Dε×[0,τ))

‖X − Y ‖L∞(Dε×[0,τ)),

for all t ∈ [0, τ).

Proof. Fix p ∈ Σ and t ∈ [0, τ). We have to estimate the distance d(Ψt
X(p),Ψt

Y (p))
when Ψt

X(p) �= Ψt
Y (p) (otherwise the result is trivial). Compute

d
dt
d(Ψt

X(p),Ψt
Y (p)) = ∇Sk dΨt

Y (p)(Ψ
t
X(p)) ·Xt(Ψt

X(p))

+∇Sk dΨt
X (p)(Ψ

t
Y (p)) · Yt(Ψt

Y (p))

:= I + II. (3.6)

Add and subtract

A := ∇Sk dΨt
X (p)(Ψ

t
Y (p)) ·Xt(Ψt

X(p))

and

B := ∇Sk dΨt
X(p)(Ψ

t
Y (p)) ·Xt(Ψt

Y (p))

to the right-hand side of (3.6), which now reads

I +A−A+B −B + II.

The terms II −B estimate as

II −B = ∇Sk dΨt
X (p)(Ψ

t
Y (p)) · (Yt(Ψt

Y (p)) −Xt(Ψt
Y (p)))

≤ ‖X − Y ‖L∞([0,τ)×Dε), (3.7)

where we used the Cauchy–Schwarz inequality and the fact that the gradient of the
distance has norm equal to 1. By similar considerations, also estimate

B −A = ∇Sk dΨt
X (p)(Ψ

t
Y (p)) · (Xt(Ψt

Y (p)) −Xt(Ψt
X(p)))

≤ |Xt(Ψt
Y (p)) −Xt(Ψt

X(p))|
≤ LXd(Ψt

X(p),Ψt
Y (p)), (3.8)

where for the last inequality we used the Lipschitz condition (3.5).
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Finally, writing θ = d(Ψt
X(p),Ψt

Y (p)) and using (3.3),

I +A = (∇Sk dΨt
Y (p)(Ψ

t
X(p)) + ∇Sk dΨt

X(p)(Ψ
t
Y (p))) ·Xt(Ψt

X(p))

=
1

sin θ
(
cos θΨt

X(p) − Ψt
Y (p) + cos θΨt

Y (p) − Ψt
X(p)

) ·Xt(Ψt
X(p)).

(3.9)

To estimate (3.9), write x = Ψt
X(p) and y = Ψt

Y (p); note that θ is the angle between
Ox and Oy, where O is the center of the sphere; see Fig. 1 for an illustration. The
vector cos θ x − y at x is tangent to the great circle containing x and y, pointing
“away” from y. Analogous comment for the vector cos θ y − x at y. Consider two
orthogonal directions in the plane Oxy: one along the bisector of the angle xOy
and the other perpendicular to it; these directions are indicated by dotted lines in
Fig. 1. Also note that θ < π. By symmetry, cos θ x−y and cos θ y−x have the same
component in the bisector direction, and opposite components in the orthogonal
direction. The latter two cancel each other when the two vectors are added. The
components in the bisector direction combine.

By the geometry of the problem, cos θ x − y makes an angle of π
2 − θ

2 with
the bisector direction. Given that | cos θ x − y| = | cos θ y − x| = sin θ, and the
considerations above,

| cos θ x− y + cos θ y − x| = 2 sin θ cos
(
π

2
− θ

2

)
= 2 sin θ sin

(
θ

2

)
. (3.10)

O θ

x

y

θ/2

θ/2

cos θx− y

cos θy − x

Fig. 1. A great circle on the unit sphere containing points x and y. The vectors cos θ x − y at x
and cos θ y − x at y have the same component in the direction of the bisector of the angle xOy,
and opposite components in the direction orthogonal to the bisector.
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Now we return to (3.9) and estimate using the Cauchy–Schwarz inequality and
(3.10)

1
sin θ

(
cos θΨt

X(p) − Ψt
Y (p) + cos θΨt

Y (p) − Ψt
X(p)

) ·Xt(Ψt
X(p))

≤ 2‖X‖L∞(Dε×[0,τ) sin
(
θ

2

)
≤ 2‖X‖L∞(Dε×[0,τ))θ, (3.11)

where we used for the second inequality that sin
(
θ
2

) ≤ θ.
Collecting (3.7), (3.8) and (3.11) we find from (3.6)

d
dt
d(Ψt

X(p),Ψt
Y (p)) ≤ (LX + 2‖X‖L∞(Dε×[0,τ)))d(Ψt

X(p),Ψt
Y (p))

+‖X − Y ‖L∞(Dε×[0,τ)), (3.12)

and Gronwall’s lemma gives the desired estimate.

Lemma 3.2. Let X be a time-dependent vector field on Dε. Let Σ ⊂ Dε and
suppose that ΨX is a flow map defined on Σ × [0, τ), for some τ > 0, generated by
(X,Σ). Assume moreover that X is bounded on Dε× [0, τ) and Lipschitz continuous
with respect to its first variable on Dε × [0, τ) (i.e. it satisfies (3.5)) with Lipschitz
constant LX > 0. Then,

d(Ψt
X(p),Ψt

X(q)) ≤ e(LX+2‖X‖L∞(Dε×[0,τ)))td(p, q), for all p, q ∈ Σ and t ∈ [0, τ).

Proof. Fix t ∈ [0, τ) and p, q ∈ Σ and estimate the distance d(Ψt
X(p),Ψt

X(q)) by
computing

d
dt
d(Ψt

X(p),Ψt
X(q)) = ∇Sk dΨt

X (q)(Ψ
t
X(p)) ·Xt(Ψt

X(p))

+∇Sk dΨt
X(p)(Ψ

t
X(q)) ·Xt(Ψt

X(q)). (3.13)

Add and subtract ∇Sk dΨt
X(p)(Ψt

X(q)) ·Xt(Ψt
X(p)) to the right-hand side above. By

considerations similar to those used in the proof of Lemma 3.1 (see the estimates
on the term I +A leading to (3.11)), one gets

(∇Sk dΨt
X (q)(Ψ

t
X(p)) + ∇Sk dΨt

X (p)(Ψ
t
X(q))) ·Xt(Ψt

X(p))

≤ 2‖X‖L∞(Dε×[0,τ))d(Ψt
X(p),Ψt

X(q)).

Also, by the Cauchy–Schwarz inequality and the Lipschitz condition on X ,

∇Sk dΨt
X (p)(Ψ

t
X(q)) · (Xt(Ψt

X(q)) −Xt(Ψt
X(p))) ≤ LXd(Ψt

X(p),Ψt
X(q)).

Using the two estimates above in (3.13) one then finds

d
dt
d(Ψt

X(p),Ψt
X(q)) ≤ (LX + 2‖X‖L∞(Dε×[0,τ)))d(Ψt

X(p),Ψt
X(q)),

which by Gronwall’s lemma yields the desired result.
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3.3. Well-posedness of solutions

We first show that on sphere, the vector field (2.2) associated to Eq. (1.1) is bounded 
and satisfies the Lipschitz condition needed to apply the lemmas in Sec. 3.2.

Lemma 3.3. Let K satisfy (H) and let ρ ∈ C([0, T ); P(Dε)). Then, the vector field 
v[ρ] given by (2.2) is bounded on Dε × [0, T ) and satisfies the Lipschitz condition 
(3.5), that is, there exists L(ε) > 0 such that

|v[ρ](x, t) − v[ρ](y, t)| ≤  L(ε)d(x, y), for all (x, y, t) ∈ Dε ×Dε × [0, T ). 

More specifically,

‖v[ρ]‖L∞(Dε×[0,T )) ≤ 2πCg′ (ε),

and the Lipschitz constant L(ε) depends only on Cf (ε), Lf (ε), Cg′ (ε) and Lg′ (ε).

Proof. The boundedness of v[ρ] is immediate. Indeed, for all (x, t) ∈ Dε × [0, T ),

|v[ρ](x, t)| ≤
∫
Dε

|∇SkKy(x)| dρt(y)=
∫
Dε

|g′(d(x, y)2)∇Skd2
y(x)| dρt(y)≤ 2πCg′(ε),

(3.14)

where for the last inequality we used the relation |∇Skd2
y(x)| = 2d(x, y), the bound

on g′ and (3.4) (note that d(x, y) < π for every x, y ∈ Dε).
For the Lipschitz condition, let x, y ∈ Dε. By (2.2) we have

v[ρ](x, t) − v[ρ](y, t) =
∫
Dε

(∇SkKz(x) −∇SkKz(y)) dρt(z). (3.15)

As noted before, taking the difference of tangent vectors at different points x and y
makes sense here since, in the case of the sphere, tangent vectors can be regarded
as vectors in the embedding space R

k+1. Compute, for all z ∈ Dε, using (3.4),

∇Skd2
z(x) −∇Skd2

z(y) = 2f(θxz)(cos(θxz)x− z) − 2f(θyz)(cos(θyz)y − z),

where θxz := d(x, z) and θyz := d(y, z).
Add and subtract 2f(θxz) cos(θxz)y + 2f(θyz) cos(θxz)y in the right-hand side

above to get

∇Skd2
z(x) −∇Skd2

z(y) = 2f(θxz) cos(θxz)(x− y) + 2(f(θxz) − f(θyz)) cos(θxz)y

+ 2f(θyz)(cos(θxz) − cos(θyz))y − 2 (f(θxz) − f(θyz)) z.

This yields, for all z ∈ Dε
|∇Skd2

z(x) −∇Skd2
z(y)| ≤ 2Cf (ε)|x − y| + 2Lf(ε)|θxz − θyz| + 2Cf (ε)|θxz

− θyz| + 2Lf(ε)|θxz − θyz|
≤ 4(Cf (ε) + Lf (ε))d(x, y), (3.16)

where in the last inequality we used the triangle inequality |θxz − θyz| = |d(x, z) −
d(y, z)| ≤ d(x, y), and that the Euclidean distance in Rk+1 is less than or equal to
the induced distance on Sk.
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For an interaction potential in the form (2.8), one then gets, for all z ∈ Dε,
|∇SkKz(x) −∇SkKz(y)| = |g′(d(x, z)2)∇Skd2

z(x) − g′(d(y, z)2)∇Skd2
z(y)|

≤ |g′(θ2xz) − g′(θ2yz)||∇Skd2
z(x)| + |g′(θ2yz)||∇Skd2

z(x) −∇Skd2
z(y)|

≤ 2Lg′(ε)|θxz + θyz||θxz − θyz|θxz + 4Cg′(ε)(Cf (ε) + Lf(ε))d(x, y)

≤ (4π2Lg′(ε) + 4Cg′(ε)(Cf (ε) + Lf(ε)))d(x, y).

For the first inequality above we added and subtracted g′(θ2yz)∇Skd2
z(x) on the first

line and then used triangle inequality. For the second inequality we used (3.16), the
bounds and Lipschitz constants of g′, and the fact that |∇Skd2

z(x)| = 2θxz. Finally,
for the last inequality we used |θxz − θyz| ≤ d(x, y) by triangle inequality, and that
θxz, θyz < π.

Set

L(ε) := 4π2Lg′(ε) + 4Cg′(ε)(Cf (ε) + Lf (ε)).

Then, for all t ∈ [0, T ), by (3.15) and the estimate above we get

|v[ρ](x, t) − v[ρ](t, y)| ≤ L(ε)d(x, y)
∫
Dε

dρt(z) = L(ε)d(x, y),

where we also used that ρt is a probability measure on Dε.

Remark 3.4. In Lemma 3.3, the upper bound on ‖v[ρ]‖L∞(Dε×[0,T )) and the Lips-
chitz constant of v[ρ] do not depend on the curve ρ. This is important for subsequent
considerations, in particular for the proof of Theorem 3.6, the main result in this
section. The lemma also ensures that the implicit condition (2.4) holds.

The following lemma is a fundamental step towards the proof of well-posedness;
see for instance [11, Lemma 3.15], and also [15, Theorem 4.1].

Lemma 3.5. Let K satisfy (H) and let ρ, σ ∈ C([0, T );P(Dε)). Then,

‖v[ρ] − v[σ]‖L∞([0,T )×Dε) ≤ Lip(ε)W1(ρ, σ), (3.17)

where Lip(ε) is a constant depending on Cf (ε), Lf(ε), Cg′(ε) and Lg′(ε).

Proof. Let us first show that there exists Lip(ε) > 0 such that

|∇SkKy(x) −∇SkKz(x)| ≤ Lip(ε)d(y, z), for all x, y, z ∈ Dε. (3.18)

Let x, y, z ∈ Dε and write θxy := d(x, y) and θxz := d(x, z). Then, by (3.4),

|∇Skd2
y(x) −∇Skd2

z(x)|
= 2|f(θxy)(cos(θxy)x− y) − f(θxz)(cos(θxz)x − z)|
≤ 2|(f(θxy) − f(θxz))(cos(θxy)x− y)| + 2|f(θxz)((cos(θxy)

− cos(θxz))x| + 2|f(θxz)(z − y)|
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≤ 4Lf(ε)|θxy − θxz| + 2Cf (ε)|θxy − θxz| + 2Cf(ε)|z − y|
≤ 4(Lf(ε) + Cf (ε))d(y, z),

(3.19)

where we added and subtracted f(θxz)(cos(θxy)x−y) on the first line and then used
triangle inequality, we used the bound and Lipschitz constant of f for the second
inequality sign, and finally, we used |θxy− θxz| ≤ d(y, z) by triangle inequality, and
the fact that the Euclidean distance |z − y| is smaller than the spherical distance
d(y, z).

Now compute

|∇SkKy(x) −∇SkKz(x)| (3.20)

= |g′(d(x, y)2)∇Skd2
y(x) − g′(d(x, z)2)∇Skd2

z(x)|
≤ |g′(θ2xy) − g′(θ2xz)||∇Skd2

y(x)| + |g′(θ2xz)||∇Skd2
y(x) −∇Skd2

z(x)|
≤ 2Lg′(ε)|θxy + θxz||θxy − θxz|θxy + 4Cg′(ε)(Lf (ε) + Cf (ε))d(y, z)

≤ (4π2Lg′(ε) + 4Cg′(ε)(Lf (ε) + Cf (ε)))d(y, z). (3.21)

In the above, we first added and subtracted g′(θ2xz)∇Skd2
y(x) on the first line and

used triangle inequality. For the second inequality we used (3.19), the bound and
Lipschitz constant of g′, and |∇Skd2

y(x)| = 2θxy. For the last inequality we used
|θxy − θxz| ≤ d(y, z) by triangle inequality, and that θxy, θxz < π.

By setting

Lip(ε) := 4π2Lg′(ε) + 4Cg′(ε)(Lf (ε) + Cf (ε)),

we get (3.18). Then, for (x, t) ∈ Dε × [0, T ) arbitrary fixed, take πt ∈ Π(ρt, σt) to
be an optimal transport plan between ρt and σt, and estimate

|v[ρ](x, t) − v[σ](x, t)| =
∣∣∣∣
∫
Dε

∇SkKy(x) dρt(y) −
∫
Dε

∇SkKz(x) dσt(z)
∣∣∣∣

=
∣∣∣∣
∫
Dε×Dε

∇SkKy(x) dπt(y, z) −
∫
Dε×Dε

∇SkKz(x) dπt(y, z)
∣∣∣∣

≤
∫
Dε×Dε

|∇SkKy(x) −∇SkKz(x)| dπt(y, z).

Hence, using (3.20),

|v[ρ](x, t) − v[σ](x, t)| ≤ Lip(ε)
∫
Dε×Dε

d(y, z) dπt(y, z) = Lip(ε)W1(ρt, σt)

≤ Lip(ε)W1(ρ, σ). (3.22)

Taking now the supremum in (x, t) ∈ Dε × [0, T ) on the left-hand side above gives
the result.
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The main result of this section is given by the following theorem. The proof
is based on a fixed point argument, borrowing from the layout and the general
technique used by Canizo et al. [11] to prove the well-posedness of solutions in
the Euclidean case. We point out that we work here with probability measures on
Dε, which is a geodesically convex set that can be covered by a single chart. It is
expected in this case that the gradient flow techniques used in [46] can be extended
to deal with intrinsic interactions as in our setup. Nevertheless, this extension has
not been worked out explicitly in the literature.

Theorem 3.6 (Well-posedness on open hemisphere). Suppose that K satis-
fies (H) and let ρ0 ∈ P(Dε). Then, there exist T > 0 and a unique weak solution
among curves in C([0, T );P(Dε)) to the aggregation model (1.1) starting from ρ0.

Proof. We first invoke some results included in Appendix. Specifically, by
Lemma A.5 the interaction velocity field v[σ] (with σ fixed) is locally Lipschitz
and hence it satisfies the assumptions of the local well-posedness result in Theo-
rem A.3. In addition, by Remark A.6, the maximal time of existence for its flow
map does not depend on σ. Consequently, there exists a maximal time τ > 0 such
that the map Γ, given by

Γ(σ)(t) = Ψt
v[σ]#ρ0, for all σ ∈ C([0, τ);P(Dε)) and t ∈ [0, τ), (3.23)

is well-defined, where Ψv[σ] is the unique flow map generated by (v[σ], supp(ρ0))
and defined on supp(ρ0)×[0, τ). We will prove that Γ is a map from C([0, τ);P(Dε))
into itself and that it has a unique fixed point, which directly shows the desired
result.

Let us show first that Γ maps C([0, τ);P(Dε)) into itself. To this end, fix σ ∈
C([0, τ);P(Dε)). By the proof of Theorem A.3 we know that Ψt

v[σ](x) ∈ Dε for all
x ∈ supp(ρ0) and t ∈ [0, τ), so that Γ(σ)(t) is supported in Dε. We have in fact
Γ(σ)(t) ∈ P(Dε) for all t ∈ [0, τ) since ρ0 ∈ P(Dε) and the push-forward conserves
mass. Moreover, we get that the map t→ Γ(σ)(t) is continuous due to Lemmas 3.3
and 2.3(ii). All in all we obtain Γ : (C([0, τ);P(Dε)),W1) → (C([0, τ);P(Dε)),W1).

We now show that Γ is a contraction if we restrict our final time to some T ≤ τ

to be determined. Let ρ, σ ∈ C([0, τ);P(Dε)). Then, for all t ∈ [0, τ),

W1(Ψt
v[ρ]#ρ0,Ψt

v[σ]#ρ0) ≤ sup
x∈supp(ρ0)

d(Ψt
v[ρ](x),Ψ

t
v[σ](x))

≤ C(ε, t)‖v[ρ] − v[σ]‖L∞([0,τ)×Dε)

≤ C(ε, t)Lip(ε)W1(ρ, σ), (3.24)

where for the first inequality we used Lemma 2.3(i), for the second inequality we
used Lemmas 3.3 and 3.1 with

C(ε, t) =
e(L(ε)+4πCg′(ε))t − 1
L(ε) + 4πCg′(ε)

,
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and for the last inequality we used Lemma 3.5. Since C(ε, t) is  increasing in  t, with  
limt→0 C(ε, t) = 0 and Lip(ε) is independent of time, we can choose T ≤ τ small 
enough so that

C(ε, t)Lip(ε) < C(ε, T )Lip(ε) < C(ε), for all t ∈ [0, T ),

for some constant C(ε) < 1. Restricting T accordingly, by taking the supremum 
over [0, T ) in (3.24) we find that

W1(Γ(ρ), Γ(σ)) ≤ C(ε)W1(ρ, σ),

with C(ε) < 1. This shows that the restriction of Γ to (C([0, T ); P(Dε)), W1) is  a  
contraction.

We have thus shown that Γ : (C([0, T ); P(Dε)), W1) → (C([0, T ); P(Dε)), W1) 
has a unique fixed point, that is, there exists a unique ρ ∈ C([0, T ); P(Dε)) such 
that

ρt = Ψt
v[ρ]#ρ0 for all [0, T ),

which means that ρ is the desired solution.

Remark 3.7. The solution established in Theorem 3.6 can be extended in time 
as long as its support remains within the set Dε. In the particular case of purely 
attractive interactions (g′ ≥ 0), we show in Proposition 4.1 that the well-posedness 
of solutions holds globally in time, i.e. T = ∞; in other  words, Dε is an invariant set 
for the dynamics. Moreover, with further assumptions on the interaction potential, 
solutions approach asymptotically a consensus state; see Theorem 4.12.

3.4. Stability and particle solutions

In this section, we investigate the stability of solutions to (1.1) with respect to the 
initial conditions and, based on it, we demonstrate the mean-field approximation. 
The following result is analogous to [11, Theorem 3.16].

Theorem 3.8 (Stability). Consider an interaction potential K that satis-
fies (H). Let ρ0, σ0 ∈ P(Dε), and ρ and σ be weak solutions to (1.1) defined on 
[0, T ) starting from ρ0 and σ0, respectively. Then, there exist T ∗ ∈ (0, T ) and an 
increasing, bounded function r(ε, ·) with r(ε, 0) = 1 such that

W1(ρt, σt) ≤ r(ε, t)W1(ρ0, σ0), for all t ∈ [0, T ∗).

Proof. Let Σ = supp(ρ0) ∪ supp(σ0). By compactness of Σ, Theorem A.3 and

Lemma A.5, we know the existence of unique maximal flow maps Ψ̃v[ρ] and
Ψ̃v[σ] generated by (v[ρ],Σ) and (v[σ],Σ), respectively. Call τρ > 0 and τσ > 0
the respective maximal times of existence, and set T ∗ = min(τρ, τσ, T ). Fix
t ∈ [0, T ∗). Since ρ and σ are weak solutions up to time T , we have, by the triangle
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inequality,

W1(ρt, σt) = W1(Ψ̃t
v[ρ]#ρ0, Ψ̃t

v[σ]#σ0)

≤ W1(Ψ̃t
v[ρ]#ρ0, Ψ̃t

v[σ]#ρ0) +W1(Ψ̃t
v[σ]#ρ0, Ψ̃t

v[σ]#σ0). (3.25)

By Lemma 3.3, the vector field v[σ] is bounded and Lipschitz continuous with
respect to its first variable, which in turn implies by Lemma 3.2 that the map Ψ̃t

v[σ]

is Lipschitz continuous on Dε with Lipschitz constant e(L(ε)+2‖v[σ]‖L∞)t, where we
write ‖v[σ]‖L∞ for ‖v[σ]‖L∞(Dε×[0,T )) for the rest of the proof. Using Lemma 2.3
(parts (i) and (iii)) for the first and second terms in the right-hand side of (3.25),
we further estimate

W1(Ψ̃t
v[ρ]#ρ0, Ψ̃t

v[σ]#ρ0) +W1(Ψ̃t
v[σ]#ρ0, Ψ̃t

v[σ]#σ0)

≤ sup
x∈supp(ρ0)

d(Ψ̃t
v[ρ](x), Ψ̃

t
v[σ](x)) + e(L(ε)+2‖v[σ]‖L∞)tW1(ρ0, σ0). (3.26)

Also, using estimate (3.12) for the vector fields v[ρ] and v[σ], and integrating it
with an integrating factor, we find for all x ∈ supp(ρ0)

d(Ψ̃t
v[ρ](x), Ψ̃

t
v[σ](x)) ≤

∫ t

0

e(L(ε)+2‖v[σ]‖L∞)(t−s)‖v[ρ](·, s) − v[σ](·, s)‖L∞(Dε) ds

≤ Lip(ε)
∫ t

0

e(L(ε)+2‖v[σ]‖L∞)(t−s)W1(ρs, σs) ds, (3.27)

where for the second inequality we used (3.22).
Combine (3.25), (3.26) and (3.27) to find, after multiplying by

e−(L(ε)+2‖v[σ]‖L∞)t,

e−(L(ε)+2‖v[σ]‖L∞)tW1(ρt, σt)

≤ Lip(ε)
∫ t

0

e−(L(ε)+2‖v[σ]‖L∞)sW1(ρs, σs) ds+W1(ρ0, σ0).

By Gronwall’s lemma the above estimate yields

e−(L(ε)+2‖v[σ]‖L∞)tW1(ρt, σt) ≤ eLip(ε)tW1(ρ0, σ0).

Finally, use the upper bound for ‖v[σ]‖L∞ established in Lemma 3.3, and set

r(ε, t) := e(Lip(ε)+L(ε)+4πCg′ (ε))t (3.28)

to arrive at the desired conclusion.

An important application of the stability result is the approximation of a con-
tinuum measure by empirical measures, referred to as mean-field approximation.
We investigate this in what follows.

Lemma 3.9. Suppose that K satisfies (H). Take n a positive integer and con-
sider a collection of masses (mi)ni=1 ⊂ (0, 1) such that

∑n
i=1mi = 1, and points
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n n(xi
0)i=1 ⊂Dε. Then, there exists T > 0 and a unique collection of trajectories (xi)i=1 

so that xi : [0, T ) → Dε satisfies, for all i ∈ {1, . . . , n} and t ∈ [0, T ),{
x′i(t) = v[ρn](xi(t), t),

xi(0) = x0
i ,

(3.29)

where ρn : [0, T ) → P(Dε) is the empirical measure associated to masses mi and
trajectories xi, for i ∈ {1, . . . , n}, i.e.

ρnt =
n∑
i=1

miδxi(t), for all t ∈ [0, T ). (3.30)

Furthermore, ρn is the unique weak solution to (1.1) on [0, T ) with initial data

ρn0 =
n∑
i=1

miδx0
i
. (3.31)

Proof. For all i ∈ {1, . . . , n} we can rewrite the first equation in (3.29) as

x′i(t) = −
n∑
j=1

mi∇SkKxj(t)(xi(t)).

The well-posedness of solutions to (3.29) thus follows from Theorem A.3 and the
local Lipschitz continuity on charts of x 
→ ∇SkKz(x), uniformly in z ∈ Dε, as
discussed in the proof of Lemma A.5. Since xi, i = 1, . . . , n, satisfies the first-
order ODE system (3.29), xi is continuous. Let φ ∈ Cb(Dε) and let t ∈ [0, T ) and
(tk)k≥1 ⊂ [0, T ) be such that tk → t as k → ∞. Then, using that φ is bounded,∫

Dε

φ(x) dρntk (x) =
n∑
i=1

miφ(xi(tk)) →
n∑
i=1

miφ(xi(t)) =
∫
Dε

φ(x) dρnt (x),

which shows that ρn ∈ C([0, T );P(Dε)). Let Ψt
v[ρn] be the unique flow map gener-

ated by v[ρn] defined on supp(ρn0 )× [0, T ) and let ζ :Dε → [−∞,∞] be measurable
such that ζ ◦Ψt

v[ρn] is integrable with respect to ρn0 . Then xi(t) = Ψt
v[ρn](x

0
i ) for all

i ∈ {1, . . . , n} and t ∈ [0, T ), and we get∫
Dε

ζ(x) d(Ψt
v[ρn ]#ρ

n
0 )(x) =

∫
Dε

ζ(Ψt
v[ρn](x)) dρn0 (x) =

n∑
i=1

miζ(Ψt
v[ρn](x

0
i ))

=
n∑
i=1

miζ(xi(t)) =
∫
Dε

ζ(x) dρnt (x),

which proves that

ρnt = Ψt
v[ρn]#ρ

n
0 , for all t ∈ [0, T ).

Thus, ρn is a weak solution to (1.1) on [0, T ), with initial datum ρn0 . The uniqueness
of ρn follows directly from Theorem 3.6.
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Theorem 3.10 (Mean-field limit). Suppose that K satisfies (H). Let ρ0 ∈
P(Dε) and let (ρn0 )n∈N ⊂ P(Dε) be of the form (3.31) and such that

W1(ρn0 , ρ0) → 0, as n→ ∞.

Suppose furthermore that T > 0 is such that there exist a unique weak solution ρ

to (1.1) on [0, T ) starting from ρ0 and a unique weak solution ρn to (1.1) on [0, T )
starting from ρn0 for all n ∈ N, which we know is of the form (3.30). Then, there
exists T ∗ ∈ (0, T ) such that

sup
t∈[0,T∗)

W1(ρnt , ρt) → 0, as n→ ∞.

Proof. By Theorem 3.8, there exists a strictly increasing, bounded function
rn(ε, ·) : [0, T ∗) → [0,∞) for all n ∈ N such that

W1(ρnt , ρt) ≤ rn(ε, t)W1(ρn0 , ρ0), for all t ∈ [0, T ∗).

As one can see from the proof of Theorem 3.8 (see Eq. (3.28)), the function rn(ε, ·)
is independent of n, hence we rename it r(ε, ·). By boundedness of r(ε, ·) on [0, T ∗)
(call Cr(ε, T ∗) > 0 such a bound), we get

sup
t∈[0,T∗)

W1(ρnt , ρt) ≤ Cr(ε, T ∗)W1(ρn0 , ρ0) → 0, as n→ ∞,

which finishes the proof.

4. Asymptotic Behavior on Sphere

In this section, we study the asymptotic dynamics of model (1.1) on sphere S
k when

the interaction potential is purely attractive. As in Sec. 3 we equip Sk with the met-
ric induced by the canonical topology of the ambient Euclidean space Rk+1. The aim
is to investigate the formation of consensus (or synchronized) states asymptotically,
i.e. when the solution ρt approaches a Dirac mass on sphere as t→ ∞.

Throughout this section the interaction potential K is assumed to satisfy
assumption (H) with g nondecreasing (i.e. g′ ≥ 0), which corresponds to purely
attractive interaction forces.

4.1. Global well-posedness and geodesic disks as invariant sets

In consideration of the well-posedness result in Theorem 3.6, a key aspect for inves-
tigating the asymptotic dynamics is whether the solution remains supported on the
set Dε, given in (3.1) for some ε ∈ (0, π/2), during the whole time evolution. In
other words, we want to get global versions of Theorem 3.6 and Lemma 3.9. We
study this in the following.

Fix ε ∈ (0, π/2) throughout. Note that the set Dε is a geodesic disk of radius
π/2− ε centered at the North pole of the unit sphere. In general, the geodesic disk
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on sphere with center at the North pole N and radius r > 0 is given by

Dr = {x ∈ S
k | d(x,N) < r}.

Given that the geodesics on sphere lie on great circles, all disksDr with 0 < r ≤ π/2,
and their closures Dr, are geodesically convex; in particular, so is Dε. We observe
that by spherical symmetry, the results we prove in what follows are easily extended
to any center which is not the North pole. We start with the continuum model (1.1).

Proposition 4.1 (Global well-posedness in continuum model). Let K sat-
isfy (H) with g′ ≥ 0. Let ρ0 ∈ P(Dε) be such that supp(ρ0) ⊂ Dr for some
r < π/2 − ε. Then, there exists a unique global weak solution to the aggregation
model (1.1) in C([0,∞);P(Dε)) that starts from ρ0; moreover, supp(ρt) ⊂ Dr for
all t ∈ [0,∞).

Proof. We will use the global version of the Cauchy-Lipschitz theorem presented
in the Appendix; see Theorem A.4 and also Lemma A.7 for its application to the
interaction velocity field. By abuse of notation, let us write P(Dr) for the set of
Borel probability measures on Dε which are supported within Dr. By Theorem A.4
and Lemma A.7, the map

Γ(σ)(t) = Ψt
v[σ]#ρ0, for all σ ∈ C([0,∞);P(Dr)) and t ∈ [0,∞),

is well-defined, where Ψt
v[σ] is the unique global flow map generated by

(v[σ], supp(ρ0)). By following the same approach as in the proof of Theorem 3.6,
we get that Γ is a map from (C([0,∞);P(Dr)),W1) into itself. We also get the
existence of a time T > 0 and a constant C ∈ (0, 1) such that the restriction of Γ
to (C([0, T );P(Dr)),W1) is a contraction, which means that there exists a unique
ρ ∈ C([0, T );P(Dr)) such that

ρt = Ψt
v[ρ]#ρ0 for all [0, T ).

From the proof of Theorem 3.6 we note that the time T is independent of ρ0.
Therefore, we can iteratively patch solutions together continuously through time
to get the existence of a unique weak solution among curves in C([0,∞);P(Dr)),
which concludes the proof.

We now get the analogous result of Proposition 4.1 for the discrete model (3.29).

Proposition 4.2 (Global well-posedness in discrete model). Let K sat-
isfy (H) with g′ ≥ 0. Take n to be a positive integer and consider a collection
of masses (mi)ni=1 ⊂ (0, 1) such that

∑n
i=1mi = 1, and points (x0

i )
n
i=1 ⊂ Dr for

some r < π/2−ε. Then, there exists a unique global collection of trajectories (xi)ni=1
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that satisfies, for all i ∈ {1, . . . , n} and t ∈ [0,∞), xi(t) ∈ Dr and⎧⎪⎨
⎪⎩
x′i(t) = −

n∑
j=1

mi∇SkKxj(t)(xi(t)),

xi(0) = x0
i .

(4.1)

Proof. The local well-posedness follows as in the proof of Lemma 3.9, while the
global extension follows directly by applying Theorem A.4 and the fact that

logxN · ∇SkKy(x) ≤ 0 for all x ∈ Dε\Dr and y ∈ Dr,

as can be inferred from the proof of Lemma A.7.

Remark 4.3. In the terminology of dynamical systems theory, Propositions 4.1
and 4.2 show that any closed disk in Dε is an invariant set for the aggregation
dynamics given by (1.1) and (4.1), respectively.

4.2. Asymptotic consensus in the continuum model

We consider the asymptotic behavior in the continuum model. Specifically, we study
the formation of consensus by investigating the behavior of an energy functional.

As discussed in [20], model (1.1) is a gradient flow with respect to an energy
functional. For the model set up on Dε, this energy functional E :P(Dε) → R is
given by

E[ρ] =
1
2

∫
Dε

∫
Dε

K(x, y) dρ(x) dρ(y), for all ρ ∈ P(Dε). (4.2)

Because K is assumed to satisfy (H), it is bounded and therefore E is indeed well-
defined on P(Dε). To simplify notation, given a weak solution ρ to (1.1) defined
on [0,∞) which is clear from context, we shall write t 
→ E(t) the map given by
E(t) = E[ρ(t)] for all t ∈ [0,∞) and by v :Dε×[0,∞) the function v(x, t) = v[ρ](x, t)
for all (x, t) ∈ Dε× [0,∞), where we recall that v[ρ] is the interaction velocity field
defined in (2.2).

First, we would like to show that any global weak solution ρ to (1.1) starting
inside a closed disk Dr with r < π/2 − ε satisfies

lim
t→∞

∫
Dε

|v(x, t)|2 dρt(x) = 0.

To this end, we will apply Barbalat’s lemma [6] which means we need to show that
E(t) has a finite limit as t→ ∞ and t 
→ E′′(t) is bounded on [0,∞).

Lemma 4.4. Let K satisfy (H) with g′ ≥ 0, and let ρ0 ∈ P(Dε) be such that
supp(ρ0) ⊂ Dr for some r < π/2 − ε. Write ρ ∈ C([0,∞);P(Dε)) the global weak
solution to (1.1) starting from ρ0 from Proposition 4.1. Then E(t) → E∞ as t→ ∞
for some E∞ ∈ R.

Proof. Writing Ψv for the global flow map generated by (v, supp(ρ0)) and using
the push-forward formulation of ρ and the chain rule, one can compute, for all
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t ∈ [0,∞),

E′(t) =
1
2

d
dt

∫
Dε

∫
Dε

K(Ψt
v(x),Ψ

t
v(y)) dρ0(x) dρ0(y)

=
∫
Dε

∇SkK ∗ ρt(Ψt
v(x)) · v(Ψt

v(x), t) dρ0(x)

= −
∫
Dε

|v(Ψt
v(x), t)|2 dρ0(x)

= −
∫
Dε

|v(x, t)|2 dρt(x) ≤ 0, (4.3)

where for the second equality we used the symmetry of K. Note that the last term
in (4.3) is well-defined and bounded by Lemma 3.3.

Proposition 4.1 ensures that the global solution ρ satisfies supp(ρt) ⊂ Dr, and
since Dr is compact, the map t 
→ E(t) is bounded below (because K is bounded on
compact sets). Moreover, t 
→ E(t) is nonincreasing by (4.3) and we thus conclude
E(t) → E∞ as t→ ∞ for some E∞ ∈ R.

Lemma 4.5. Let K satisfy (H) and r < π/2 − ε. Suppose that g′ ≥ 0 and g′ is
continuously differentiable on [0, 4r2]. Let ρ0 ∈ P(Dε) be such that supp(ρ0) ⊂ Dr,

and write ρ ∈ C([0,∞),P(Dε)) the global weak solution to (1.1) starting from ρ0

from Proposition 4.1. Then E′′ is bounded on [0,∞).

Proof. By Proposition 4.1 we know that supp(ρt) ⊂ Dr for all t ∈ [0,∞). We write
Ψv for the global flow map generated by (v, supp(ρ0)), which satisfies Ψt

v(x) ∈ Dr

for all x ∈ supp(ρ0) and t ∈ [0,∞). We know E′′ exists by continuity of g′′ on
[0, 4r2], and from the computation in (4.3) we have, for all t ∈ [0,∞),

E′′(t) = − d
dt

∫
Dε

|v(Ψt
v(x), t)|2 dρ0(x)

= −2
∫
Dε

d
dt
v(Ψt

v(x), t) · v(Ψt
v(x), t) dρ0(x). (4.4)

By definition of v and the formulation of push-forward, we find
d
dt
v(Ψt

v(x), t) = −
∫
Dε

d
dt

∇SkKΨt
v(y)(Ψt

v(x)) dρ0(y). (4.5)

To apply the product rule to compute the integrand above, set the following nota-
tion for ∇SkKy(x) when one of the variables is fixed and the other changes:

uy(x) := ∇SkKy(x), and wx(y) := ∇SkKy(x).

Then, by the product and chain rules, the above integrand becomes
d
dt

∇SkKΨt
v(y)(Ψt

v(x)) = duΨt
v(y)(Ψt

v(x))(v(Ψ
t
v(x), t))

+ dwΨt
v(x)(Ψt

v(y))(v(Ψ
t
v(y), t)). (4.6)
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Using the form of the interaction potential given in (H), we have, for all x, y ∈ Dε
and α ∈ TxS

k,

duy(x)(α) = HessSk Ky(x)α = g′′(d(x, y)2)〈∇Skd2
y(x), α〉x∇Skd2

y(x)

+ g′(d(x, y)2)HessSk d2
y(x)α,

where HessSk stands for the Hessian operator on the manifold Sk. Also, for all
β ∈ TyS

k,

dwx(y)(β) = g′′(d(x, y)2)〈∇Skd2
x(y), β〉y∇Skd2

y(x) − 2g′(d(x, y)2)d logx(y)(β).

As g′ and g′′ are continuous on [0, 4r2], the maps (x, y) 
→ g′(d(x, y)2) and
(x, y) 
→ g′′(d(x, y)2) are bounded on the compact set Dr × Dr. Furthermore, by
smoothness of the manifold Sk, the map (x, y) 
→ d2

y(x) is smooth on the geodesically
convex set Dr×Dr. This implies that (x, y) 
→ ∇Skd2

y(x), (x, y) 
→ HessSk d2
y(x) and

(x, y) 
→ d logx(y) are bounded on Dr×Dr, from which we get that (x, y) 
→ duy(x)
and (x, y) 
→ dwx(y) are bounded on Dr ×Dr. Then, as the map (x, t) 
→ v(x, t) is
bounded on Dr × [0,∞) by Lemma 3.3, we finally obtain, by (4.4), (4.5) and (4.6),
that E′′ is bounded on [0,∞).

We can now apply Barbalat’s lemma.

Proposition 4.6. Let K satisfy (H) and r < π/2−ε. Suppose that g′ ≥ 0 and g′ is
continuously differentiable on [0, 4r2]. Let ρ0 ∈ P(Dε) be such that supp(ρ0) ⊂ Dr,

and consider ρ ∈ C([0,∞),P(Dε)) the global weak solution to (1.1) starting from
ρ0 from Proposition 4.1. Then

lim
t→∞

∫
Dε

|v(x, t)|2 dρt(x) = 0.

Proof. By Lemmas 4.4 and 4.5 we know that E(t) has a finite limit as t→ ∞ and
t 
→ E′′(t) is bounded on [0,∞). From Barbalat’s lemma we then conclude that
E′(t) → 0 as t→ ∞, which by (4.3) leads to the desired result.

From Hölder’s inequality, an immediate consequence of this result is

lim
t→0

∫
Dε

v(x, t) dρt(x) = 0, (4.7)

where ρ and v are as in Proposition 4.6.
We now want to conclude the asymptotic limit for the continuum model. For

the considerations that follow it is convenient to use the following notation:

G(x, y) = 2g′(d(x, y)2)
d(x, y)

sin(d(x, y))
, for all x, y ∈ Dε, x �= y.

We also define G(x, x) = 2g′(0) for all x ∈ Dε, by taking the limit y → x in the
above.
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Throughout the rest of this section, we will make use of the following assump-
tions on G:

G(x, y) ≥ C, for all x, y ∈ Dε, for some C > 0, (4.8)

and

G(x1, y1) ≥ G(x2, y2), for all x1, y1, x2, y2 ∈ Dε such that d(x1, y1) ≥ d(x2, y2).

(4.9)

Note that by (3.2), given a global weak solution ρ to (1.1) we have

v(x, t) = −
∫
Dε

G(x, y)(y − (x · y)x) dρt(y), for all (x, t) ∈ Dε × [0,∞). (4.10)

We set an additional notation and define c :Dε × [0,∞) → Rd as

c(x, t) =
∫
Dε

G(x, y)y dρt(y), for all x, y ∈ Dε × [0,∞), (4.11)

which enables us to rewrite (4.10) further as

v(x, t) = −c(x, t) + (c(x, t) · x)x. (4.12)

Remark 4.7. For convenience, we work with the assumptions (4.8) and (4.9) on
G. We note, however, that in terms of the interaction function g, for (4.8) and (4.9)
to be satisfied it is sufficient to assume that g′ ≥ C/2 and g′ is nondecreasing.

We present now some important technical lemmas which will be needed to prove
our main consensus result given in Theorem 4.12.

Lemma 4.8. Let ρ ∈ P(Dε) be such that supp(ρ) ⊂ Dr for some r < π/2 − ε,

and assume that G satisfies (4.8). Write c(x) =
∫
Dε
G(x, y)y dρ(y) for all x ∈ Dε.

Then,

|c(x)| ≥ C cos r for all x ∈ Dε,
and

c(x) · z ≥ |c(x)| cos 2r, for any x ∈ Dε and z ∈ Dr.

Proof. Since the support of ρ lies on the closed geodesic disk Dr, we have

y ·N ≥ cos r, for all y ∈ supp(ρ). (4.13)

Hence, by (4.8) we have, for all x ∈ Dε,

|c(x)| ≥ c(x) ·N =
∫
Dε

G(x, y)y ·N dρ(y) ≥ C cos r,

proving the first inequality.
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To prove the second inequality we fix x ∈ Dε and assume that∫
Dε
G(x, y)y dρ(y) �= 0, otherwise the result is trivial. We note that the unit vector

c(x)/|c(x)| lies on the closed geodesic disk Dr. Indeed, from (4.13) one gets

c(x)
|c(x)| ·N =

∫
Dε

G(x, y)y ·N dρ(y)∣∣∣∣
∫
Dε

G(x, y)y dρ(y)
∣∣∣∣

≥

∫
Dε

G(x, y) cos r dρ(y)∫
Dε

G(x, y) dρ(y)
= cos r. (4.14)

Hence, the angle between N and c(x)/|c(x)| is smaller than or equal to r, and
therefore c(x)/|c(x)| belongs to Dr. Now, take any z ∈ Dr. Since both c(x)/|c(x)|
and z belong to Dr, the angle between these two vectors is smaller than or equal
to 2r, leading to the second inequality.

Lemma 4.9. Let ρ ∈ P(Dε) be such that supp(ρ) ⊂ Dr for some r < π/2− ε, and
assume that G satisfies (4.9). Then, for any x1, x2 ∈ Dε, it holds that

c(x1) · x1 + c(x2) · x2 ≤ c(x1) · x2 + c(x2) · x1, (4.15)

where c is as in Lemma 4.8.

Proof. Let x1, x2 ∈ Dε. By a direct calculation,

c(x1) · x1 + c(x2) · x2 − c(x1) · x2 − c(x2) · x1

=
∫
Dε

G(x1, y)(y · x1 − y · x2) dρ(y) +
∫
Dε

G(x2, y)(y · x2 − y · x1) dρ(y)

=
∫
Dε

(G(x1, y) −G(x2, y))(y · x1 − y · x2) dρ(y). (4.16)

If y ∈ Dε is such that d(x1, y) ≥ d(x2, y), then

G(x1, y) −G(x2, y) ≥ 0 and y · x1 − y · x2 ≤ 0,

where we used (4.9) and the fact that d(x1, y) = arccos(x1 · y) (and similarly for
x2). Also, if y ∈ Dε is such that d(x1, y) ≤ d(x2, y), then

G(x1, y) −G(x2, y) ≤ 0, and y · x1 − y · x2 ≥ 0.

We conclude that the product

(G(x1, y) −G(x2, y))(y · x1 − y · x2) ≤ 0 for all y ∈ Dε.
By (4.16), one then concludes

c(x1) · x1 + c(x2) · x2 − c(x1) · x2 + c(x2) · x1 ≤ 0.

We finally give a lemma involving the asymptotic behavior of the map c(x, t)
defined in (4.11).

Lemma 4.10. Let K satisfy (H) and r < π/2 − ε. Suppose that g′ ≥ 0 and
g′ is continuously differentiable on [0, 4r2]. Also assume that G satisfies (4.8)
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(see Remark 4.7). Let ρ0 ∈ P(Dε) be such that supp(ρ0) ⊂ Dr, and consider 
ρ ∈ C([0, ∞); P(Dε)) the global weak solution to (1.1) starting from ρ0 from Propo-
sition 4.1. Then

lim
t→∞

∫
Dε

(|c(x, t)| − c(x, t) · x) dρt(x) = 0.

Proof. By Proposition 4.6 and (4.12) we have

lim
t→∞

∫
Dε

(|c(x, t)|2 − (c(x, t) · x)2) dρt(x) = 0. (4.17)

From the second inequality in Lemma 4.8, we infer, for all x ∈ Dε,

|c(x, t)| + c(x, t) · x ≥ |c(x, t)|(1 + cos 2r).

Hence, also using the first inequality in Lemma 4.8∫
Dε

(|c(x, t)|2 − (c(x, t) · x)2) dρt(x)

=
∫
Dε

(|c(x, t)| − c(x, t) · x)(|c(x, t)| + c(x, t) · x) dρt(x)

≥ C cos r(1 + cos 2r)
∫
Dε

(|c(x, t)| − c(x, t) · x) dρt(x) ≥ 0.

From the estimate above and (4.17) we conclude the proof.

We now state and prove an important lemma towards our consensus result.

Lemma 4.11. Let K satisfy (H) and r < π/2 − ε. Suppose that g′ ≥ 0 and g′

is continuously differentiable on [0, 4r2]. Also assume that G satisfies (4.8) and
(4.9) (see Remark 4.7). Let ρ0 ∈ P(Dε) be such that supp(ρ0) ⊂ Dr, and write
ρ ∈ C([0,∞);P(Dε)) the global weak solution to (1.1) starting from ρ0 from Propo-
sition 4.1. Then

lim
t→∞

∫
Dε

∫
Dε

(1 − x1 · x2) dρt(x1) dρt(x2) = 0.

Proof. At start we shall suppress all the dependences on t ∈ [0,∞) for clarity. For
all x1, x2 ∈ Dε, subtract (x1 · x2)(c(x1) · x1 + c(x2) · x2) on both sides of (4.15) to
get

(1 − x1 · x2)(c(x1) · x1 + c(x2) · x2)

≤ c(x1) · x2 − (c(x1) · x1)(x1 · x2) + c(x2) · x1 − (c(x2) · x2)(x1 · x2).
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Integrating the above inequality and passing all terms to the right-hand side

0 ≤
∫
Dε

∫
Dε

(c(x1) · x2 − (c(x1) · x1)(x1 · x2)) dρ(x1) dρ(x2)

+
∫
Dε

∫
Dε

(c(x2) · x1 − (c(x2) · x2)(x1 · x2)) dρ(x1) dρ(x2)

−
∫
Dε

∫
Dε

(1 − x1 · x2)(c(x1) · x1) dρ(x1) dρ(x2)

−
∫
Dε

∫
Dε

(1 − x1 · x2)(c(x2) · x2) dρ(x1) dρ(x2).

Now add
∫
Dε

∫
Dε

(1 − x1 · x2)(|c(x1)| + |c(x2)|) dρ(x1) dρ(x2) to both sides to get∫
Dε

∫
Dε

(1 − x1 · x2)(|c(x1)| + |c(x2)|) dρ(x1) dρ(x2)

≤
∫
Dε

∫
Dε

(c(x1) · x2 − (c(x1) · x1)(x1 · x2)) dρ(x1) dρ(x2) (:= I1)

+
∫
Dε

∫
Dε

(c(x2) · x1 − (c(x2) · x2)(x1 · x2)) dρ(x1) dρ(x2) (:= I2)

+
∫
Dε

∫
Dε

(1 − x1 · x2)(|c(x1)| − c(x1) · x1) dρ(x1) dρ(x2) (:= I3)

+
∫
Dε

∫
Dε

(1 − x1 · x2)(|c(x2)| − c(x2) · x2) dρ(x1) dρ(x2) (:= I4).

From the first inequality in Lemma 4.8, we have

0 ≤ 2C cos r
∫
Dε

∫
Dε

(1 − x1 · x2) dρ(x1) dρ(x2) ≤
∫
Dε

∫
Dε

(1 − x1 · x2)(|c(x1)|

+ |c(x2)|) dρ(x1) dρ(x2).

Combining the above inequalities we get

0 ≤ 2C cos r
∫
Dε

∫
Dε

(1 − x1 · x2) dρ(x1) dρ(x2) ≤ I1 + I2 + I3 + I4. (4.18)

We now show that the each term I1, I2, I3 and I4 converges to 0 as t → ∞.
Indeed, by restoring the dependence on t, we have

I1 =
∫
Dε

x2 ·
(∫

Dε

(c(x1, t) − (c(x1, t) · x1)x1) dρt(x1)
)

dρt(x2).

By (4.7) and (4.12) we get limt→∞ I1 = 0, and by a similar argument limt→∞ I2 =
0. For I3 we estimate (note that |1 − x1 · x2| ≤ 2 and |c(x1)| − c(x1) · x1 ≥ 0)

I3 ≤ 2
∫
Dε

∫
Dε

(|c(x1, t)| − c(x1, t) · x1) dρt(x1) dρt(x2)

= 2
∫
Dε

(|c(x1, t)| − c(x1, t) · x1) dρt(x1). (4.19)



September 29, 2021 7:6 WSPC/S0219-5305 176-AA 2150008

Since I3 ≥ 0 and by Lemma 4.10 the right-hand side of the inequality above 
approaches 0 at infinity, we infer limt→∞ I3 = 0. A similar argument yields 
limt→∞ I4 = 0. Finally, by passing to the limit t → ∞  in (4.18) we obtain

0 ≤ lim
t→∞ 2C cos r

∫
Dε

∫
Dε

(1 − x1 · x2) dρ(x1) dρ(x2) ≤ 0,

which leads to the desired result.

We can finally prove the main result of this section:

Theorem 4.12 (Asymptotic consensus in the continuum model). Let K
satisfy (H) and r < π/2−ε. Suppose that g′ ≥ 0 and g′ is continuously differentiable
on [0, 4r2]. Also assume that G satisfies (4.8) and (4.9). Let ρ0 ∈ P(Dε) be such
that supp(ρ0) ⊂ Dr, and consider ρ ∈ C([0,∞);P(Dε)) the global weak solution
to (1.1) starting from ρ0 from Proposition 4.1. Then there exists p ∈ Dr such that
W1(ρt, δp) → 0 as t→ ∞.

Proof. By Proposition 4.1, for all t ∈ [0,∞) we have that supp(ρt) is a subset
of Dr, which is compact, so that Prokhorov’s theorem ensures the existence of
ρ∞ ∈ P(Dε) such that supp(ρ∞) ⊂ Dr and (ρt)t≥0 converges narrowly to ρ∞. By
compactness of the sphere we further get W1(ρt, ρ∞) → 0 as t→ ∞.

Let φ : Dε × Dε → R denote the map (x1, x2) 
→ 1 − x1 · x2, which we observe
is continuous and bounded. We also note that the family (ρt ⊗ ρt)t≥0 of product
measures narrowly converges to ρ∞ ⊗ ρ∞. By Lemma 4.11 we then have

0 = lim
t→∞

∫
Dε

∫
Dε

φ(x1, x2) dρt(x1) dρt(x2) =
∫
Dε

∫
Dε

φ(x1, x2) dρ∞(x1) dρ∞(x2).

Since φ ≥ 0 we get that φ(x1, x2) = 0 for ρ∞ ⊗ ρ∞-almost all (x1, x2) ∈ Dε × Dε.
Suppose, by contradiction, that there exist x1, x2 ∈ supp(ρ∞) with x1 �= x2. Then,
there exists δ > 0 so that Bδ(x1)∩Bδ(x2) = ∅ and (ρ∞⊗ρ∞)(Bδ(x1)×Bδ(x2)) > 0.
Furthermore, there exists (x′1, x

′
2) ∈ Bδ(x1) ×Bδ(x2) such that φ(x′1, x

′
2) = 0, that

is, x′1 · x′2 = 1. Since x′1 and x′2 lie on the sphere, this implies that x′1 = x′2, which
contradicts Bδ(x1) ∩ Bδ(x2) = ∅. We infer that supp(ρ∞) is a singleton, which
concludes the proof.

4.3. Asymptotic consensus in the discrete model

We turn now to the asymptotic behavior of solutions in the discrete model with
purely attractive interaction potentials. First we want to note that the theory devel-
oped in Sec. 4.2 (e.g., Theorem 4.12) considers weak measure-valued solutions, and
in particular it applies to the discrete case as well. Nevertheless, we prove in what
follows a consensus result for the discrete model that assumes weaker assumptions
on the interaction potential.

Fix an integer n ≥ 2 and, without loss of generality, consider n particles of
identical masses 1/n that evolve on Dε according to the discrete model (4.1), which
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then reads ⎧⎪⎨
⎪⎩
x′i(t) = − 1

n

n∑
j=1

∇SkKxj(t)(xi(t)),

xi(0) = x0
i .

(4.20)

In analogy with the continuum model, we remark that the discrete model (4.20) is
a gradient flow with respect to the discrete energy En :Dεn → R given by

En(x1, . . . , xn) =
1
n2

∑
1≤i<j≤n

K(xi, xj), for all (x1, . . . , xn) ∈ Dεn. (4.21)

Indeed, one can reformulate the first line in (4.20) as

x′i(t) = −n∇i
SkEn(x1(t), . . . , xn(t)), (4.22)

where ∇i
Sk stands for the manifold gradient with respect to the ith variable. This

energy will play an important role in the considerations in the following.
We present a technical lemma first.

Lemma 4.13. Let x1, . . . , xn ∈ Dπ/4 be such that

Δ := max
1≤i,j≤n

d(xi, xj) > 0.

By reindexing if necessary, assume that d(x1, x2) = Δ. Then,

logx1
x2 · logx1

xj ≥ 0, for all j ∈ {1, . . . , n}.

Proof. Consider the closed disk DΔ(x2) centered at x2 with radius Δ. Then, by
definition of Δ and the fact that d(x1, x2) = Δ, we have xj ∈ DΔ(x2) for all
j ∈ {1, . . . , n}.

If n = 2, then the result is trivial; suppose that n ≥ 3. For j ∈ {3, . . . , n} fixed,
consider the minimizing geodesic between x1 and xj . Parametrize this geodesic by
x(t), with x(0) = x1 and x′(0) = logx1

xj ; in particular, x(1) = xj and x(t) �= x2

for all t ∈ [0, 1]. Then, by the chain rule and (2.10) we find
d
dt
d(x(t), x2)2 = ∇Skd2

x2
(x(t)) · x′(t) = −2 logx(t) x2 · x′(t). (4.23)

Note that by the geodesic convexity of DΔ(x2), we have x(t) ∈ DΔ(x2) and
d(x(t), x2) ≤ d(x1, x2) for all t ∈ [0, 1]. Hence the map t 
→ d(x(t), x2)2 is non-
increasing at t = 0, and by setting t = 0 in (4.23) we find

0 ≥ d
dt

∣∣∣∣
t=0

d(x(t), x2)2 = −2 logx1
x2 · logx1

xj ,

which yields the desired conclusion.

The following theorem shows the asymptotic convergence towards a consen-
sus/synchronized state for the intrinsic model on sphere.

Theorem 4.14 (Asymptotic consensus in discrete model). Let K sat-
isfy (H) and r < π/4 − ε. Assume that g′ has continuous derivative on [0, 4r2]
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n n

wh

and satisfies g′(s) ≥ Csα for all s ∈ [0, 4r2], for some C > 0 and α ≥ 0. Let
furthermore (xi0)i=1 ⊂ Dr. Then the unique global solution (xi)i=1 to (4.20) from 
Proposition 4.2 is such that d(xi(t), xj (t)) → 0 as t → ∞  for every i, j ∈ {1, . . . n}.

Proof. We proceed in two steps.

Step 1. By abuse of notation, denote t 
→ En(t) the map such that En(t) =  
En(x1(t), . . . , xn(t)) for all t ∈ [0, ∞), ere we recall that the discrete energy
En is given by (4.21). Writing ρ0 = 1

n

∑n
i=1 δx0

i
, we have supp(ρ0) ⊂ Dr, and

Proposition 4.1 gives us the existence of a unique global weak solution ρ to (1.1)
starting from ρ0. From Lemma 3.9, the unique global weak solution ρn starting
from ρ0 from Proposition 4.1 reads

ρnt =
1
n

n∑
i=1

δxi(t), for all t ∈ [0,∞).

Noting that the discrete energy En(t) = E[ρnt ], where E is the continuum energy
(4.2), we obtain from Lemmas 4.4 and 4.5 that En(t) → E∞ as t → ∞ for some
E∞ ∈ R and the map t 
→ E′′

n(t) is bounded on [0,∞).
By applying Barbalat’s lemma to t 
→ En(t), we then get

E′
n(t) → 0, as t→ ∞.

Using (4.22), we compute, for all t ∈ [0,∞),

E′
n(t) =

n∑
i=1

∇i
SkEn(x1(t), . . . , xn(t)) · x′i(t) = − 1

n

n∑
i=1

|x′i(t)|2 ≤ 0, (4.24)

which then implies that

x′i(t) → 0, as t→ ∞ for all i ∈ {1, . . . , n}. (4.25)

Step 2. Recall from Proposition 4.2 that xi(t) ∈ Dr for all t ∈ [0,∞) and i ∈
{1, . . . , n}; in particular, any particles stay within distance 2r at all times. Let
Δ : [0,∞) → [0,∞) be given by

Δ(t) = max
1≤i,j≤n

d(xi(t), xj(t)) for all t ∈ [0,∞).

We want to show that Δ(t) → 0 as t → ∞, which will conclude the proof. We will
use Lemma 4.13.

Reindexing particles at all times if necessary, assume that

d(x1(t), x2(t)) = Δ(t), for all t ∈ [0,∞).
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Taking the inner product with logx1(t) x2(t) on both sides of (4.20) for particle
i = 1, we get

x′1 · logx1
x2 =

1
n

n∑
j=1

2g′(d(x1, xj)2) logx1
xj · logx1

x2

≥ 2
n
g′(d(x1, x2)2)| logx1

x2|2, (4.26)

where we dropped the dependence on t for simplicity, and where for the inequality
on the second line we used Lemma 4.13 to bound from below a sum of nonnegative
terms by the second term.

Using the Cauchy–Schwarz inequality |x′1 · logx1
x2| ≤ |x′1|| logx1

x2| and the fact
that | logx1

x2| = d(x1, x2), from (4.26) we find

2
n
g′(d(x1, x2)2)d(x1, x2) ≤ |x′1|.

Finally, using the bound assumption on g′ we get, for all t ∈ [0,∞),

2
n
Cd(x1, x2)1+2α ≤ |x′1|,

where 1 + 2α > 0. And since by (4.25), x′1(t) approaches 0 as t → ∞, so does
d(x1(t), x2(t)). Hence

Δ(t) → 0, as t→ ∞.

Examples. We discuss here some examples of interaction potentials that satisfy
the assumptions in Theorem 4.14.

(1) Power-law potentials. The quadratic potential

K(x, y) = d(x, y)2, for g(s) = s,

satisfies g′(s) ≥ Csα for all s ∈ [0,∞) with C = 1 and α = 0, and g is
furthermore of class C2. More generally, for q ≥ 2,

K(x, y) = d(x, y)2q , for g(s) = sq,

satisfies g′(s) ≥ Csα for all s ∈ [0,∞) with C = q and α = q − 1, and is of
class C2.

Interaction potentials in power-law form have been one of the main types of
potentials investigated in the aggregation literature [4, 5, 16, 19, 18]. Despite
their simplicity, it was shown that they can capture a wide variety of “swarm”
behaviors, such as aggregations on disks, annuli, rings, delta concentrations,
and others, for both the model with extrinsic interactions [29], as well as for
the intrinsic model investigated in this paper [20].

(2) Potential in Lohe sphere model. The potential

K(x, y) = 2 sin2

(
d(x, y)

2

)
, for g(s) = 2 sin2

(√
s

2

)
,
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corresponds to the Lohe sphere model studied in various recent papers [26, 23].
Indeed, the discrete Lohe model on the unit sphere reads

x′i = Ωixi +
κ

n

n∑
k=1

(xk − (xk · xi)xi), i ∈ {1, . . . , n},

where Ωi is a natural frequency matrix and κ is a coupling strength. As done
previously, all particles xi(t) ∈ S

k for all t ∈ [0,∞) are considered as vectors
in R

k+1. Given that on the unit sphere, d(x, y) = arccos(x · y) for all x, y ∈ S
k,

from the identity cos θ = 1 − 2 sin2(θ/2), one can write the potential as

K(x, y) = 1 − cos d(x, y) = 1 − x · y =
1
2
|x− y|2.

Therefore, K can also be regarded as a quadratic potential with respect to the
Euclidean distance in the ambient space R

k+1. The Euclidean gradient of K is
given by

−∇Ky(x) = y, for all x, y ∈ Dε,
and projecting it onto the tangent plane to the sphere one gets the manifold
gradient of K:

−∇SkKy(x) = y − (x · y)x, for all x, y ∈ Dε,
which is the coupling term in the Lohe sphere model. Compute

g′(s) =
1
2

sin
√
s

2√
s

2

cos
√
s

2
, for all s ∈ [0,∞).

Take an initial particle configuration of particles in a geodesic disk Dr, with
r < π/2 − ε. The function g′ verifies

g′(s) ≥ cos r
2

, for all s ∈ [0, 4r2],

so it satisfies the bound condition of Theorem 4.14 with C = cos(r)/2 and
α = 0. Finally, it can also be checked that g is of class C2.

Remark 4.15. Among the examples above, we note that only the quadratic poten-
tial and the Lohe sphere potential satisfy the assumptions of Theorem 4.12, our
continuum result. Indeed, for the quadratic potential the function g satisfies the
sufficient conditions given in Remark 4.7, while for the Lohe model, a direct cal-
culation shows G(x, y) = 1 for all x, y ∈ Dε. Higher-order power-law potentials,
however, do not satisfy (4.8) as G is not bounded below by a positive constant in
this case. This illustrates the fact that our discrete result (Theorem 4.14) holds for
a wider class of potentials than our continuum counterpart (Theorem 4.12).
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5. Intrinsic Aggregation Model and Consensus on Other Manifolds

In this section, we consider the intrinsic aggregation model and its asymptotic
behavior on other manifolds, in particular on a hypercylinder.

5.1. Intrinsic aggregation model on cylinder

We show that results similar to those in Sec. 3 can be obtained for a cylinder
in R

3, or, more generally, for a hypercylinder in arbitrary dimension. Here, by a
hypercylinder in R

k+1 we mean the product manifold of a circle (endowed with the
induced metric from R

2) with R
k−1, canonically embedded in R

k+1. Similarly as
in the case of the sphere, this embedding in R

k+1 allows us to treat points and
tangent vectors of Ck as vectors in Rk+1. For simplicity, we present the calculations
for the cylinder in R3; extending the considerations to a hypercylinder would be
immediate.

Consider the wrapping parametrization (cosx, sinx, z) with (x, z) ∈ [0, 2π)× R

of a cylinder in R
3. Similarly to the sphere, we restrict our study to a subset of

the cylinder where no two points are in the cut locus of each other. Note that for a
point on the cylinder, its cut locus consists in the line on the cylinder opposite to
it. Specifically, consider the subset Bε of the cylinder that corresponds, under the
wrapping map, to the band (0, π − ε) × R, where 0 < ε < π is fixed, that is,

Bε = {(cosx, sin x, z) |x ∈ (0, π − ε), z ∈ R}.
This subset is contained in an open half-cylinder and hence, the cut locus of each
point in it lies outside the set; see (3.1) to compare with the sphere case.

The wrapping parametrization is an isometry between the xz-plane and the
cylinder. The metric is the identity matrix, and so is its inverse (as is for the
Euclidean plane). Take two generic points (x, z) and (x̄, z̄) on the band (0, π−ε)×R,
corresponding to points P and Q on Bε. The distance on the cylinder between P

and Q is the distance between the two points on the plane:

d(P,Q) = ((x− x̄)2 + (z − z̄)2)1/2.

A well-posedness result for the intrinsic model (1.1) on the cylinder would follow
as in Sec. 3, provided analogues to Lemmas 3.1, 3.3 and 3.5 are established for the
cylinder (Lemma 3.2 following similarly). We sketch briefly the arguments leading
to such analogous lemmas. Using the formula for surface gradient in coordinates
one can compute, for points P = (x, z) and Q = (x̄, z̄) in the cylinder

∇C2d2
Q(P ) =

∂

∂x
d2(P,Q)ex +

∂

∂z
d2(P,Q)ez

= 2(x− x̄)ex + 2(z − z̄)ez,

where ex and ez are the tangent vectors along coordinate lines at P , given by

ex = (− sinx, cos x, 0), and ez = (0, 0, 1).
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Also, the logarithm map in coordinates is given by

logP Q = (x̄− x)ex + (z̄ − z)ez.

5.1.1. Analogue of Lemma 3.1

Consider two time-dependent vector fields X and Y on Bε and let Σ ⊂ Bε. Let
moreover Ψt

X and Ψt
Y be the flow maps defined on Σ × [0, τ), for some τ > 0,

generated by (X,Σ) and (Y,Σ). We also assume that X bounded on Bε× [0, τ) and
Lipschitz continuous with respect to its first variable on Bε × [0, τ) (i.e. it satisfies
(3.5) on Bε × Bε × [0, τ) for some LX > 0).

Fix p ∈ Σ and t ∈ [0, τ); we will be using (x, z) as coordinates for P = Ψt
X(p)

and (x̄, z̄) for Q = Ψt
Y (p). Suppose P �= Q and compute

d
dt
d(P,Q) = ∇C2dQ(P ) ·Xt(P ) + ∇C2dP (Q) · Yt(Q)

=
1

d(P,Q)

(
((x− x̄)ex + (z − z̄)ez)︸ ︷︷ ︸

:=A

·Xt(P )

+ ((x̄− x)ex̄ + (z̄ − z)ez̄)︸ ︷︷ ︸
:=B

·Yt(Q)

)
.

Note that |A| = |B| = d(P,Q). Add and subtract A ·Xt(Q) and B ·Xt(Q) to the
term in between the large brackets in the right-hand side above. Then estimate this
term as

A ·Xt(P ) +B · Yt(Q) = A ·Xt(P ) −A ·Xt(Q) +A ·Xt(Q) +B ·Xt(Q)

−B ·Xt(Q) +B · Yt(Q)

≤ |A| |Xt(P ) −Xt(Q)|︸ ︷︷ ︸
≤LX d(P,Q)

+|A+B|‖X‖L∞(Bε×[0,τ))

+ |B|‖X − Y ‖L∞(Bε×[0,τ)).

In computing A+B the z-terms cancel and we get

|A+B| = |x− x̄||(− sinx+ sin x̄, cosx− cos x̄, 0)|
≤

√
2|x− x̄|2 ≤

√
2 d(P,Q)2.

Putting the estimates together we find

d
dt
d(P,Q) ≤ (LX +

√
2‖X‖L∞(Bε×[0,τ)))d(P,Q) + ‖X − Y ‖L∞(Bε×[0,τ)),

and Gronwall’s lemma will yield a similar result as in Lemma 3.1.
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5.1.2. Analogue of Lemma 3.3

To get a similar Lipschitz property, we consider three generic points P = (x, z),
Q = (x̄, z̄) and R = (x̄, z̄), and estimate

|∇C2d2
R(P ) −∇C2d2

R(Q)| = 2|(x− x̃)ex + (z − z̃)ez − (x̄− x̃)ex̄ + (z̄ − z̃)ez̄|
≤ 2(|(x− x̄)ex| + |(x̄− x̃)(ex − ex̄)| + |(z − z̄)ez|),

where in the above we added and subtracted (x̄ − x̃)ex, used ez = ez̄, and the
triangle inequality. Then use

|ex − ex̄| = |(− sinx+ sin x̄, cosx− cos x̄, 0)| ≤
√

2|x− x̄|,

together with |x̄− x̃| ≤ π and |ex| = |ez| = 1 to get

∣∣∇C2d2
R(P ) −∇C2d2

R(Q)
∣∣ ≤ 2((1 +

√
2π)|x − x̃| + |z − z̃|)

≤ 2
√

2(1 +
√

2π)d(P,Q). (5.1)

For a potential that satisfies (H), one estimates

|∇C2KR(P ) −∇C2KR(Q)|
= |g′(d(P,R)2)∇C2 d2

R(P ) − g′(d(Q,R)2)∇C2 d2
R(Q)|

≤ |g′(d(P,R)2) − g′(d(Q,R)2)||∇C2 d2
R(P )| + |g′(d(Q,R)2)|

×|∇C2 d2
R(P ) −∇C2 d2

R(Q)|
≤ 2Lg′ |d(P,R)2 − d(Q,R)2|d(P,R) + Cg′ |∇C2 d2

R(P ) −∇C2 d2
R(Q)|

≤ (2Lg′(d(P,R) + d(Q,R))d(P,R) + Cg′2
√

2(1 +
√

2π))d(P,Q), (5.2)

where we added and subtracted g′(d(Q,R)2)∇C2 d2
R(P ) on the first line and then

used the triangle inequality, we used the bound and Lipschitz constant of g′ for the
second inequality, and triangle inequality |d(P,R) − d(Q,R)| ≤ d(P,Q) and (5.1)
for the last inequality.

There is an important word of caution here, as the cylinder is unbounded and
the bounds and Lipschitz constants of g′ need to be taken on compact sets. We deal
with this issue similarly to how Cañizo et al. [11] have dealt with the unboundedness
of the Euclidean space. Namely, we consider estimates such as (5.2) only for points
in an a priori fixed compact subset of Bε, say of diameter Δ, in which case, for
preciseness, one has to indicate the dependence of the constants on this diameter
(i.e. Lg′(Δ) and Cg′(Δ)). We also note that, for simplicity of notation, we have not
indicated the dependence on ε of the various constants, as we did for the sphere.
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With this clarification, from (5.2) one can find the following Lipschitz estimate 
on a compact set of diameter Δ:

|∇C2KR(P ) −∇C2KR(Q)| ≤ LΔd(P,Q), (5.3)

where

LΔ = 4Lg′(Δ)Δ2 + Cg′ (Δ)2
√

2(1 +
√

2π).

Then, similarly to the sphere case, one can use (5.3) and the analogue of (3.15) for
the cylinder to establish a Lipschitz estimate as in Lemma 3.3 for the vector field
v[ρ] on Bε, for ρ ∈ C([0, T );P∞(Bε)) such that ρt is supported within a compact
subset of Bε of diameter Δ for all t ∈ [0, T ), where the Lipschitz constant is given
by LΔ above.

On the other hand, the boundedness of v[ρ] is immediate. Indeed, for ρ ∈
C([0, T );P∞(Bε)) such that ρt is supported within a compact subset of Bε of diam-
eter Δ for all t ∈ [0, T ), one has, for all (x, t) ∈ Bε × [0, T ),

|v[ρ](x, t)| ≤
∫
Bε

|g′(d(x, y)2)∇C2d2
y(x)| dρt(y)

≤ 2ΔCg′(Δ). (5.4)

5.1.3. Analogue of Lemma 3.5

Finally, we show how one can get a Lipschitz condition of type (3.17) on the cylinder.
For three points P = (x, z), Q = (x̄, z̄) and R = (x̃, z̃), one finds∣∣∇C2d2

Q(P ) −∇C2d2
R(P )

∣∣ = 2|(x̄− x̃)ex + (z̄ − z̃)ez|

= 2
(
(x̄− x̃)2 + (z̄ − z̃)2

)1/2
= 2d(Q,R). (5.5)

Then, for a potential K that satisfies (H), we estimate

|∇C2KQ(P ) −∇C2KR(P )|
= |g′(d(P,Q)2)∇C2d2

Q(P ) − g′(d(P,R)2)∇C2d2
R(P )|

≤ |g′(d(P,Q)2) − g′(d(P,R)2)||∇C2d2
Q(P )| + |g′(d(P,R)2)|

×|∇C2d2
Q(P ) −∇C2d2

R(P )|
≤ (4Lg′(Δ)Δ2 + 2Cg′(Δ))d(Q,R), (5.6)

where we added and subtracted g′(d(P,R)2)∇C2d2
Q(P ) on the first line and then

used the triangle inequality, and for the second inequality we used the bounds and
Lipschitz constant of g′, the triangle inequality |d(P,Q) − d(P,R)| ≤ d(Q,R), Eq.
(5.5), and the a priori assumption that the three points lie on a set of diameter Δ.

Similar to the proof for the sphere in Lemma 3.5, estimate (5.6) leads to a
Lipschitz condition like (3.17) for ρ, σ ∈ C([0, T );P∞(Bε)) such that ρt and σt are
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supported within a compact subset of Bε of diameter Δ, with the Lipschitz constant
given by

LipΔ = 4Lg′(Δ)Δ2 + 2Cg′(Δ).

The considerations above lead to the following well-posedness result on the
cylinder.

Theorem 5.1 (Well-posedness on open half-cylinder). Suppose that K sat-
isfies (H) and let ρ0 ∈ P∞(Bε). Then, there exist a time T > 0, a compact set
supp(ρ0) ⊂ Q ⊂ Bε, and a unique weak solution to (1.1) among all curves in
C([0, T );P(Q)) starting from ρ0, where P(Q) denotes the set of probability mea-
sures which are supported within Q.

Proof. The proof is very similar to that of Theorem 3.6 and we just sketch it here.
Because of the unboundedness of Bε, the proof slightly differs from the case of the
sphere; as already mentioned, we deal with this issue by considering only solutions
which stay supported within an a priori fixed compact set. More specifically, in this
proof take zm < zM such that supp(ρ0) lies within the cylindrical band between
z = zm and z = zM , and write QΔ the compact cylindrical band between z =
2zm − zM and z = 2zM − zm, whose diameter we denote by Δ.

The idea is to consider a map Γ on C([0, τ);P(QΔ)), analogously defined as in
(3.23), where τ > 0 is the maximal time so that Γ is well-defined, and to show that,
if restricted to some time interval [0, T ) with T ≤ τ small enough, Γ is a map from
C([0, T );P(QΔ)) into itself and a contraction.

We first show that supp(Γ(σ)(t)) ⊂ QΔ for all t ∈ [0, T ), for some T ≤ τ to
be chosen later, and for all σ ∈ C([0, τ);P(QΔ)). Take such σ and then, given
the bound (5.4) on the velocity field v[σ] and the bounds on supp(ρ0), note that
supp(Γ(σ)(t)) lies within the cylindrical band between z = 2zm − zM and z =
2zM − zm, i.e. within QΔ, provided t < (zM − zm)/(2ΔCg′(Δ)) =: T . Similarly as
in the proof of Theorem 3.6, one then finds that Γ defines a map from the metric
space (C([0, T );P(QΔ)),W1) into itself.

The rest of the proof, that is, showing that Γ is a contraction, follows exactly as
for Theorem 3.6 (by eventually restricting T further) using the analogues of Lemmas
3.1, 3.3 and 3.5 for the cylinder, as established above. We leave the details to the
reader.

Remark 5.2. Thanks to the considerations above, the results for the sphere of
Sec. 3.4 hold analogously for the cylinder; in particular, stability and mean-field
limit hold true on the cylinder.

5.2. Consensus on product manifolds

In this subsection, we consider the intrinsic aggregation model on product mani-
folds. Specifically, given two smooth, complete and connected Riemannian manifolds
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(M1, g1), (M2, g2), we consider M = M1 ×M2 with the product metric g1 + g2 [31]. 
The goal is to infer the formation of consensus on the product manifold M from 
aggregation phenomena known on M1 and M2. We denote by  U1 and U2 two generic 
open, geodesically convex subsets of M1 and M2, respectively, and set U = U1 ×U2.

The minimizing geodesic γ connecting points (x, y), (x̄, ȳ) ∈ U can be 
expressed as

γ(t) =  (γ1(t), γ2(t)), for t ∈ [0, 1],

where γ1 and γ2 are the minimizing geodesics connecting x and x̄ on U1, and  y and 
ȳ  on U2, respectively. We consider the product distance between the two points on 
M to be given by

d((x, y), (x̄, ȳ)) =
√
d1(x, x̄)2 + d2(y, ȳ)2, (5.7)

where d1 and d2 are the Riemannian distances on M1 and M2, respectively. Finally,
particularly important for the considerations of this section, from the definition of
the product manifold the Riemannian logarithm on U is given by

log(x,y)(x̄, ȳ) = (logx x̄, logy ȳ). (5.8)

Example 5.3. We give in the following a few examples of common product man-
ifolds:

(1) Euclidean space R
k+k̃ = Rk × Rk̃.

(2) Cylinder S1 × R, where S1 represents the unit circle with induced metric from
R2.

(3) Flat torus S1 × S1, considered as a subset of R4, where S1 has the induced
metric from R2.

Consider now our intrinsic aggregation model on a product manifold M with a
(purely attractive) quadratic potential given by

K(z, z̄) =
1
2
d2(z, z̄), for all z, z̄ ∈M, (5.9)

i.e. an interaction potential in the form (2.8), with g(s) = s/2. For this potential,

∇MKz̄(z) = − logz z̄, for all z, z̄ ∈ U .
We first show that with this interaction potential, solutions to the aggregation

model on the product manifoldM can be obtained from solutions on its components
M1 and M2.

Proposition 5.4 (Well-posedness in continuum product model). Let K be
as in (5.9), and suppose that there exist unique solutions ρ1 ∈ C([0, T );P1(U1)) and
ρ2 ∈ C([0, T );P1(U2)) to model (1.1) on U1 and U2, respectively. Then, μ := ρ1⊗ρ2

is the unique weak solution to (1.1) among curves in C([0, T );P1(U)).
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Proof. For all (x, y) =: z ∈ supp(μ0) = supp(ρ1
0 ⊗ ρ2

0) and t ∈ [0, T ), set

Ψv[μ](z, t) = (Ψv[ρ1](x, t),Ψv[ρ2](y, t)) =: (Ψt
v[ρ1],Ψ

t
v[ρ2])(x, y),

where Ψv[ρ1] and Ψv[ρ2] are the unique flow maps generated by v[ρ1] and v[ρ2] and
defined on the time interval [0, T ), and compute

d
dt

Ψv[μ](z, t) =
(

d
dt

Ψv[ρ1](x, t),
d
dt

Ψv[ρ2](y, t)
)

= (v[ρ1](x, t), v[ρ2](y, t)).

Further, by using the specific form of K in (5.9), along with (5.8), we find

(v[ρ1](x, t), v[ρ2](y, t)) =
(∫

M1

logx x̄ dρ1
t (x̄),

∫
M2

logy ȳ dρ2
t (ȳ)

)

=
∫
M1

∫
M2

(logx x̄, logy ȳ) dρ2
t (ȳ) dρ1

t (x̄)

=
∫
M

logz z̄ dμt(z̄)

= v[μ](z, t).

Hence Ψv[μ] is the unique flow map generated by v[μ] and defined on the time
interval [0, T ). Recalling now that, for all t ∈ [0, T ),

ρ1
t = Ψt

v[ρ1]#ρ
1
0, ρ2

t = Ψt
v[ρ2]#ρ

2
0,

we have

Ψt
v[μ]#μ0 = (Ψt

v[ρ1],Ψ
t
v[ρ2])#(ρ1

0 ⊗ ρ2
0) = (Ψt

v[ρ1]#ρ
1
0) ⊗ (Ψt

v[ρ2]#ρ
2
0) = ρ1

t ⊗ ρ2
t = μt,

which ends the proof.

This result gives us the continuum consensus on product manifolds.

Proposition 5.5 (Asymptotic consensus in continuum product model).
Let K be as in (5.9). Suppose that there exist unique global solutions ρ1 ∈
C([0,∞);P1(U1)) and ρ2 ∈ C([0,∞);P1(U2)) to model (1.1) on U1 and U2,

respectively, and suppose they reach asymptotic consensus, that is, there exist p ∈ U1

and q ∈ U2 such that W1(ρ1
t , δp) → 0 and W1(ρ2

t , δq) → 0 as t→ ∞. Assume more-
over that there exist t̄ > 0 and compact sets Q1 ⊂ U1 and Q2 ⊂ U2 such that
supp(ρ1

t ) ⊂ Q1 and supp(ρ2
t ) ⊂ Q2 for all t ∈ [t̄,∞). Then, the unique global weak

solution μ to (1.1) on U from Proposition 5.4 satisfies W1(μt, δ(p,q)) → 0 as t→ ∞.

Proof. Since μ = ρ1⊗ρ2, we get that (μt)t≥0 converges narrowly to δp⊗δq = δ(p,q).
Furthermore, the compactness of Q1 × Q2 ensures that in fact W1(μt, δ(p,q)) → 0
as t→ ∞.
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Remark 5.6. In Proposition 5.5, the assumption of support compactness beyond a 
certain time allows us to infer consensus on the product manifold in the W1 topology 
from the W1 consensus on each component. Indeed, it ensures the convergence of 
the first moment of the product measure.

We observe that this assumption can be relaxed if consensus in each compo-
nent is regarded in the W2 topology instead, that is, in the topology given by the 
quadratic Wasserstein distance, as illustrated by the following computation. Given 
z0 = (x0, y0) ∈ U , the second moment of μt = ρt1 ⊗ ρt2 with respect to z0 for all 
t ∈ [0, ∞), satisfies∫

U
d(z0, z)2 dμt(z) =

∫
U1

∫
U2

d((x0, y0), (x, y))2 dρ2
t (y) dρ1

t (x)

=
∫
U1

∫
U2

(d1(x0, x)2 + d2(y0, y)2) dρ2
t (y) dρ1

t (x)

=
∫
U1

d1(x0, x)2 dρ1
t (x) +

∫
U2

d2(y0, y)2 dρ2
t (y).

Then, provided W2(ρ1
t , δp) → 0 and W2(ρ2

t , δq) → 0 as t→ ∞, we get∫
U
d(z0, z)2 dμt(z) →

∫
U1

d1(x0, x)2 dδp(x) +
∫
U2

d2(y0, y)2 dδq(y)

=
∫
U
d(z0, z)2 dδ(p,q)(z), as t→ ∞,

and conclude that W2(μt, δ(p,q)) → 0 as t→ ∞.
We further note from the computation above that as an alternative to changing

the topology of consensus, the compactness assumption in Proposition 5.5 can also
be relaxed by choosing d = d1 + d2 as product distance instead of (5.7).

To be able to consider a wider range of product manifolds (see Remark 5.8),
we consider now the case when M is the real line R, equipped with the canonical
topology. The well-posedness and asymptotic consensus on R with a quadratic
attractive potential is well-known in the literature; well-posedness can be obtained
by following the same ideas as in the proof of Proposition 4.1, while we present the
consensus in the following for completeness.

Lemma 5.7. Consider model (1.1) on R with quadratic interaction potential,
K(x, y) = 1

2 |x−y|2, and a compactly supported initial measure ρ0. Then, the unique
global weak solution ρ starting from ρ0 reaches asymptotic consensus.

Proof. For all t ∈ [0,∞), denote by x1(t) and x2(t) the left- and right-end points
of the support of ρt, respectively; we know x1(t) and x2(t) are finite by the same
arguments as given in the proof of Proposition 4.1. Then, using that ∇Ky(x) = x−y
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for all x, y ∈ R, we find, for all t ∈ [0,∞)

d
dt

|x1 − x2|2(t) = 2
(∫

R

(x− x1(t)) dρt(x) −
∫

R

(x− x2(t)) dρt(x)
)
· (x1(t) − x2(t))

= −2|x1(t) − x2(t)|2,

so that

|x1(t) − x2(t)| = |x1(0) − x2(0)| exp(−t),

which yields the conclusion by taking t→ 0.

Note that the asymptotic consensus in Lemma 5.7 is unconditional, in the sense
that any initial configuration with compact support evolves into a consensus state.

Remark 5.8. Using Proposition 5.5 one can infer results on asymptotic conver-
gence to a consensus state for a variety of product manifolds, including those illus-
trated in Example 5.3. Indeed, consensus on circle S

1 (or S
k in general) is shown

in Theorem 4.12, while consensus on R is shown in Lemma 5.7.

The results above can be applied in the discrete setting. In brief, for n particles
zi ∈ U , i ∈ {1, . . . , n}, the discrete model with quadratic potential reads⎧⎪⎨

⎪⎩
z′i(t) =

1
n

n∑
j=1

logzi(t) zj(t),

zi(0) = z0
i .

(5.10)

By (5.8), for all i ∈ {1, . . . , n} the dynamics of zi = (xi, yi) starting from z0
i =

(x0
i , y

0
i ) ∈ U separate into dynamics of xi on U1 and of yi on U2, respectively, i.e.

(5.10) is equivalent to⎧⎪⎨
⎪⎩
x′i(t) =

1
n

n∑
j=1

logxi(t) xj(t),

xi(0) = x0
i ,

⎧⎪⎨
⎪⎩
y′i(t) =

1
n

n∑
j=1

logyi(t) yj(t),

yi(0) = y0
i .

(5.11)

Each of the decoupled systems corresponds to the discrete model with quadratic
potential on M1 and M2, respectively. Consequently, we directly have the following
theorem ensuring that separate consensuses on U1 and U2 imply consensus on U .

Proposition 5.9 (Asymptotic consensus in discrete product model). Let
K be given by (5.9), and consider the discrete systems in (5.11). Suppose that these
systems have unique global solutions (xi)ni=1 and (yi)ni=1 in U1 and U2, respectively,
which satisfy, for every i, j ∈ {1, . . . , n},

d1(xi(t), xj(t)) → 0 and d2(yi(t), yj(t)) → 0, as t→ ∞.
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n nThen, the unique global solution (zi)i=1 := ((xi, yi))i=1 to (5.10), given by Proposi-tion 
5.5, verifies, for every i, j ∈ {1, . . . , n},

d(zi(t), zj (t)) → 0, as t → ∞.

Finally, using Proposition 5.9 together with Theorem 4.14 and the discrete ver-
sion of Lemma 5.7, one can establish asymptotic consensus in the discrete model 
on product manifolds such as those in Example 5.3.
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Appendix A

A.1. Flows on manifolds

We summarize here some standard concepts and results on flow maps generated 
by vector fields on a smooth, complete and connected k-dimensional Riemannian 
manifold M with intrinsic distance d. As in the main body of the paper, T ∈ (0, ∞] 
denotes a generic final time and U a generic open subset of M .

A.1.1. Well-posedness of flow maps

Local well-posedness of the flow map Eq. (2.1) can de established in local charts 
using standard ODE theory. To this end, we introduce here the notion of Lipschitz 
continuity and boundedness of a vector field on U .

Definition A.1 (Lipschitz continuity and boundedness on charts). Let X 
be a vector field on U . We say that X is locally Lipschitz continuous on charts if 
for every chart (U, ϕ) of M and compact set Q ⊂ U ∩U , there exists Lϕ,Q > 0 such  
that

‖ϕ∗X(x) − ϕ∗X(y)‖Rk ≤ Lϕ,Q‖ϕ(x) − ϕ(y)‖Rk , for all x, y ∈ Q; (A.1)

we denote by ‖X‖Lip(ϕ,Q) the smallest such constant. We say that X is locally 
bounded on charts if for every chart (U, ϕ) of M and compact set Q ⊂ U ∩U , there  
exists Cϕ,Q > 0 such that

‖ϕ∗X(x)‖Rk ≤ Cϕ,Q, for all x ∈ Q;

we denote by ‖X‖L∞(ϕ,Q) the smallest such constant.
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In the above definition, ϕ∗ stands for the push-forward of ϕ in the differential
geometric sense. Recall the definition: given M1 and M2 two differentiable mani-
folds, a differentiable function f :M1 → M2, a point x ∈ M1 and a tangent vector
v ∈ TxM1, we call f∗v := df(x)(v) ∈ Tf(x)M2 the push-forward of v through f . In
particular, in Definition A.1 we have ϕ∗X(x) ∈ Tϕ(x)R

k � Rk and ϕ∗X ◦ ϕ−1 is a
vector field on ϕ(U) ⊂ Rk.

Given a chart (U,ϕ) of M containing a point x ∈ M , one has the basis
{ ∂
∂ϕ1 (x), . . . , ∂

∂ϕk (x)} of TxM defined by

∂

∂ϕi
(x) = dϕ−1(ϕ(x))(ei), or ei = dϕ(x)

(
∂

∂ϕi
(x)
)

= ϕ∗
∂

∂ϕi
(x),

where, for all i ∈ {1, . . . , k}, ei is the ith vector of the canonical basis of Rk. Also,
for

v = v1 ∂

∂ϕ1
(x) + · · · + vk

∂

∂ϕk
(x) ∈ TxM,

where (v1, . . . , vk) ∈ R
k, by linearity we get

ϕ∗v = dϕ(x)(v) = v1e1 + · · · + vkek.

Remark A.2. It is easy to check that local Lipschitz continuity on charts implies
local boundedness on charts. One can also see that when M = Rk equipped with
the only chart (Rk, id), in Definition A.1 we recover the classical Euclidean notion
of a locally Lipschitz continuous vector field.

We also point out that this notion of Lipschitz continuity is consistent with
the standard notion of differentiability of a vector field from differential geometry,
which says that a vector field X on U is differentiable at x ∈ U if for every chart
(U,ϕ) of M with x ∈ U the map ξ 
→ ϕ∗X(ϕ−1(ξ)) is differentiable at ϕ(x) in the
standard Euclidean sense. Indeed, note that (A.1) can be equivalently reformulated
as: for every chart (U,ϕ) of M and compact set R ⊂ ϕ(U∩U), there exists Lϕ,R > 0
such that

‖ϕ∗X(ϕ−1(ξ)) − ϕ∗X(ϕ−1(η))‖Rk ≤ Lϕ,R‖ξ − η‖Rk , for all ξ, η ∈ R.

We now state and prove the Cauchy–Lipschitz theorem on U .

Theorem A.3 (Cauchy–Lipschitz). Let a ∈ (0,∞] and let X be a time-
dependent vector field on U × [0, a). Suppose that the vector fields in {Xt}t∈[0,T )

are locally Lipschitz continuous on charts and satisfy, for any chart (U,ϕ) of M
and compact sets Q ⊂ U ∩ U and S ⊂ [0, a),∫

S

(‖Xt‖L∞(ϕ,Q) + ‖Xt‖Lip(ϕ,Q)

)
dt <∞. (A.2)

Then, for every compact subset Σ of U , there exists a unique maximal flow map
generated by (X,Σ).
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Proof. Take x ∈ U  and choose a chart (U, ϕ) of M with x ∈ U . Consider the 
initial-value problem {

α′(t) = Ξ(α(t), t),

α(0) = ϕ(x),
(A.3)

where we define Ξ :ϕ(U ∩ U) × [0, a) → Rk by

Ξ(ξ, t) = ϕ∗(Xt ◦ ϕ−1(ξ)), for all (ξ, t) ∈ ϕ(U ∩ U) × [0, a).

Take R ⊂ ϕ(U ∩ U) and S ⊂ [0, a) compact, so that in particular Q := ϕ−1(R) ⊂
U ∩ U is compact. For all ξ, η ∈ R and t ∈ S, our Lipschitz-continuity assumption
on Xt yields

‖Ξ(ξ, t) − Ξ(η, t)‖Rk = ‖ϕ∗(Xt ◦ ϕ−1(ξ)) − ϕ∗(Xt ◦ ϕ−1(η))‖Rk

≤ ‖Xt‖Lip(ϕ,Q)‖ξ − η‖Rk .

Also, for all ξ ∈ R it holds that

‖Ξ(ξ, t)‖Rk = ‖ϕ∗(Xt ◦ ϕ−1(ξ))‖Rk ≤ ‖Xt‖L∞(ϕ,Q).

Therefore, by (A.2)we get that Ξ satisfies∫
S

(‖Ξ(·, t)‖L∞(R) + ‖Ξ(·, t)‖Lip(R)) dt ≤
∫
S

(‖Xt‖L∞(ϕ,Q) + ‖Xt‖Lip(ϕ,Q)) dt <∞.

By arbitrariness of the compact sets R ⊂ ϕ(U ∩ U) and S ⊂ [0, a) and by the
classical Cauchy–Lipschitz theorem on R

k, this yields the existence of a unique
maximal solution αx to (A.3) defined on some time interval [0, τx), with τx ≤ a,
and with values in ϕ(U ∩ U). By defining Ψx = ϕ−1 ◦ αx, we see that αx satisfies
(A.3) if and only if{

ϕ∗Ψ′
x(t) = (ϕ ◦ Ψx)′(t) = ϕ∗Xt(Ψx(t)) for all t ∈ [0, τx),

ϕ(Ψx(0)) = ϕ(x).
(A.4)

By the bijectivity of ϕ, we get that Ψx is thus the unique maximal solution to the
characteristic equation (2.1) starting at x.

Let now Σ be a compact subset of U . We are left with showing that τ :=
infx∈Σ(τx) > 0. By classical Euclidean Lipschitz theory, we deduce that for all
x ∈ U there exists δx > 0 such that τ̄x := infy∈Bδx (x) τy > 0. Since Σ is compact
we know it can be covered by a finite subfamily of {Bδx(x)}x∈Σ, which we index
by {x1, . . . , xn} for some n ∈ N. We thus get τ = mini∈{1,...,n} τ̄xi > 0. The map Ψ
defined by Ψ(x, t) = Ψx(t) for all x ∈ Σ and t ∈ [0, τ) is then the unique maximal
flow map generated by (X,Σ).

From Theorem A.3 we recover the classical Cauchy–Lipschitz theorem for flow
maps in Euclidean space when M = Rk. For completeness, we mention that another
important result for flow maps on manifolds is when U = M itself is compact.
The Escape Lemma [32, Chap. 9] states that if an integral curve of a Lipschitz
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continuous vector field on a manifold is not global (i.e. not defined for all t ∈ R),
then the image of that curve cannot lie in any compact subset of the manifold.
Consequently, Lipschitz continuous vector fields on compact manifolds defined at
all times (i.e. a = ∞ above) generate global flows. Another consequence of the
Escape Lemma is the following global version of the Cauchy–Lipschitz theorem, in
which we assume that U is geodesically convex. We recall that then, for all x, y ∈ U ,
we have

∇Md
2
y(x) = −2 logx(y) and ‖ logx(y)‖x = d(x, y), (A.5)

where dy(x) stands for d(x, y), and log stands for the Riemannian logarithm on M .
We shall also use the notation

Dr(p) = {x ∈M | d(x, p) < r}, for any p ∈M and r > 0,

for the open disk in M of center p and radius r.

Theorem A.4 (Global Cauchy–Lipschitz). Suppose that U is geodesically con-
vex. Under the same hypotheses as those of Theorem A.3, where Σ is a compact
subset of U , suppose moreover that a = ∞ and there exist p ∈ U , r > 0 and R > r

so that DR(p) ⊂ U , Σ ⊂ Dr(p) and

〈− logx p,X(x, t)〉x ≤ 0 for all x ∈ DR(p)\Dr(p) and t ∈ [0,∞). (A.6)

Then, there exists a unique flow map Ψ generated by (X,Σ) defined on Σ× [0,∞);
furthermore, Ψ(x, t) ∈ Dr(p) for all (x, t) ∈ Σ × [0,∞).

Proof. By Theorem A.3 we know there exists a maximal flow map Ψ generated by
(X,Σ) defined on Σ×[0, τ) for some τ ∈ (0,∞]. Write Ψt(x) = Ψ(x, t) for all (x, t) ∈
Σ × [0, τ). Let x ∈ Σ and suppose, by contradiction, that there exists τ∗ ∈ (0, τ)
such that Ψτ∗

(x) ∈ DR(p)\Dr(p). Then, by time continuity of the flow map, we
know there exists τ̄ ∈ (0, τ∗) such that Ψτ̄ (x) ∈ ∂Dr(p) and Ψt(x) ∈ DR(p)\Dr(p)
for all t ∈ [τ̄ , τ∗]. Thus, for all t ∈ [τ̄ , τ∗], we have

d
dt
d(Ψt(x), p)2 = 〈∇Md

2
p(Ψ

t(x)), X(Ψt(x), t)〉Ψt(x)

= 2〈− logΨt(x)(p), X(Ψt(x), t)〉Ψt(x) ≤ 0,

and by integrating the above between τ̄ and τ∗ we get

r < d(Ψτ∗
(x), p) ≤ d(Ψτ̄ (x), p) = r,

which is absurd. We must therefore have Ψt(x) ∈ Dr(p) for all t ∈ [0, τ). By the
Escape Lemma, this implies that τ = ∞, which ends the proof.
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A.2. The case of the interaction velocity field

In this subsection, we show that for a fixed curve ρ ∈ C([0, T ), P(U)), the velocity 
field v[ρ] associated to the interaction equation (see Eq. (2.2)) under hypothesis (H) 
satisfies the assumptions of Theorem A.3, and hence it generates a local flow map. 
This, in particular, justifies the definition of the map Γ used in Theorems 3.6 and 5.1. 
We also show that v[ρ] satisfies Theorem A.4 whenever K is purely attractive, that 
is, g′ ≥ 0 in hypothesis (H).

For a curve ρ ∈ C([0, T ),P(U)) we recall

v[ρ](x, t) = −
∫
U
∇MKy(x) dρt(y), x ∈ U , t ∈ [0, T ),

where K :M ×M → R is the interaction potential and Ky stands for x 
→ K(x, y).
To ensure that v[ρ] is pointwise well-defined we can restrict to curves ρ ∈
C([0, T ),P1(U)) and assume that there exist measurable functions α, β :M → [0,∞)
such that

‖∇MKy(x)‖x ≤ α(x) + β(x)d(x, y), for all x, y ∈M.

Otherwise, one can also restrict to ρ ∈ C([0, T );P∞(U)) and assume that the
vector field ∇MKy is locally bounded on charts for all y ∈ U . In this case, if
we further assume that ∇MKy is locally Lipschitz continuous on charts for all
y ∈ U , then Theorem A.3 applies to the vector field v[ρ] provided the maps y 
→
‖∇MKy‖L∞(ϕ,Q) and y 
→ ‖∇MKy‖Lip(ϕ,Q) are locally bounded for any chart (U,ϕ)
of M and compact set Q ⊂ U ∩ U .

Indeed, let ρ ∈ C([0, T );P∞(U)), (U,ϕ) be a chart of M , Q ⊂ U ∩U be compact
and let Qt ⊂ U be a compact set containing supp(ρt) such that t 
→ diam(Qt) is
nondecreasing. Then, for all x, y ∈ Q and t ∈ S, where S ⊂ [0, T ) is compact, we
have

‖ϕ∗v[ρ](x, t)‖Rk ≤
∫
Qt

‖ϕ∗∇MKy(x)‖Rk dρt(y) ≤ sup
ȳ∈Qs

‖∇MKȳ‖L∞(ϕ,Q), (A.7)

where s = sup(S), and

‖ϕ∗v[ρ](x, t) − ϕ∗v[ρ](y, t)‖Rk ≤
∫
Qt

‖ϕ∗∇MKz(x) − ϕ∗∇MKz(y))‖Rk dρt(z)

≤ sup
z̄∈Qs

‖∇MKz̄‖Lip(ϕ,Q)‖ϕ(x) − ϕ(y)‖Rk . (A.8)

In practice, however, it may not be easy to check whether ∇MK satisfies this
uniform Lipschitz condition because of the push-forward with the chart that needs
to be computed. In the particular case when the potential satisfies (H), as in our
paper, the conditions can be checked as follows.

Suppose in the rest of this subsection that U is geodesically convex. In particu-
lar, this implies that U can be covered by a single chart, which we shall generically
denote by (U , ψ); such a chart is for instance provided by any normal chart. Fur-
thermore, the relations in (A.5) hold for all x, y ∈ U . This allows us to treat the
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nonlocality in the velocity field which takes the form of an integral on U . The fol-
lowing lemma ensures that under assumption (H) the Lipschitz theory given in
Theorem A.3 applies to the interaction velocity field v[ρ] as long as ρt is compactly
supported for all t.

Lemma A.5. Let K satisfy (H), and let ρ ∈ C([0, T );P∞(U)). Then the velocity
fields in {v[ρ](·, t)}t∈I are locally Lipschitz continuous on charts and satisfy (A.2),
that is, they satisfy the assumptions of the Cauchy–Lipschitz Theorem A.3.

Proof. By the above discussion, we only need to show that ∇MKz is locally
Lipschitz continuous on charts and the maps z 
→ ‖∇MKz‖L∞(ϕ,Q) and z 
→
‖∇MKz‖Lip(ϕ,Q) are locally bounded for any chart (U,ϕ) on M and compact set
Q ⊂ U ∩U . Since U can be covered entirely by a single chart (U , ψ), we can restrict
our computations to (U , ψ). Note furthermore that since M is smooth we know
that the map (x, y) 
→ ∇Md

2
y(x) is smooth on U × U .

Let Q ⊂ U be compact. For all x ∈ Q and y ∈ U we get

‖ψ∗∇MKy(x)‖Rk ≤ |g′(d(x, y)2)|‖ψ∗∇Md
2
y(x)‖Rk ≤ |g′(d(x, y)2)|‖∇Md

2
y‖L∞(ψ,Q),

so that by the local boundedness of g′ and of y 
→ ‖∇Md
2
y‖L∞(ψ,Q) we get that

y 
→ ‖∇MKy‖L∞(ψ,Q) is locally bounded. Furthermore, for all x, y ∈ Q and z ∈ U
we have

‖ψ∗∇MKz(x) − ψ∗∇MKz(y)‖Rk

= ‖g′(d(x, z)2)ψ∗∇Md
2
z(x) − g′(d(y, z)2)ψ∗∇Md

2
z(y)‖Rk

≤ |g′(d(x, z)2)|‖ψ∗∇Md
2
z(x) − ψ∗∇Md

2
z(y)‖Rk

+ ‖ψ∗∇Md
2
z(y)‖Rk |g′(d(x, z)2) − g′(d(y, z)2)|

≤ |g′(d(x, z)2)|‖∇Md
2
z‖Lip(ψ,Q)d(x, y)

+ ‖∇Md
2
z‖L∞(ψ,Q)|g′(d(x, z)2) − g′(d(y, z)2)|.

Hence, by the local Lipschitz continuity of g′ (and thus of r 
→ g′(r2)), and the local
boundedness of g′, z 
→ ‖∇Md

2
z‖Lip(ψ,Q) and z 
→ ‖∇Md

2
z‖L∞(ψ,Q), we conclude

that z 
→ ‖∇MKz‖Lip(ψ,Q) is locally bounded, which ends the proof.

Remark A.6. The maximal time of existence of the Cauchy–Lipschitz Theo-
rem A.3 for the interaction velocity field v[ρ] does not depend on the curve ρ;
this is because the L∞ and Lipschitz bounds in (A.7) and (A.8) do not depend
on ρ.

Lemma A.7. Let K satisfy (H) with g′ ≥ 0, and let ρ ∈ C([0,∞);P∞(U)). Let
furthermore Σ ⊂ U be compact and such that Σ ⊂ Dr(p) ⊂ DR(p) ⊂ U for some
p ∈ U and r,R > 0 with Dδ(p) geodesically convex for all δ ∈ [r,R). Then, the
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pair (v[ρ], Σ) satisfies the assumptions of the global Cauchy–Lipschitz Theorem A.4 
provided supp(ρt) ⊂ Dr(p) for all t ∈ [0, ∞).

Proof. Thanks to Lemma A.5, we are only left with checking that v[ρ] verifies 
(A.6). Suppose that supp(ρt) ⊂ Dr(p) for all t ∈ [0, ∞) and  let x ∈ DR(p)\Dr(p). 
Then, for all t ∈ [0, ∞) there holds

〈− logx p, v[ρ](x, t)〉x = 〈logx p,∇MK ∗ ρt(x)〉x

=
∫
Dr(p)

g′(d(x, y)2)〈logx p,∇Md
2
y(x)〉x dρt(y)

= −2
∫
Dr(p)

g′(d(x, y)2)〈logx p, logx y〉x dρt(y). (A.9)

Fix now y ∈ Dr(p) and write γ : [0, 1] → M the unique minimizing geodesic
connecting x to y. For all t ∈ [0, 1], compute

d
dt

∣∣∣∣
t=0

d(γ(t), p)2 = 〈∇Md
2
p(γ(0)), γ′(0)〉γ(0) = −2〈logx p, logx y〉x.

By smoothness of t 
→ d(γ(t), p)2 (because M is smooth), we must have
d
dt |t=0d(γ(t), p)2 ≤ 0. Indeed, otherwise there would exist τ ∈ (0, 1) such that
d(γ(τ), p) > d(γ(0), p) = d(x, p), which would contradict γ([0, 1]) ⊂ Dd(x,p)(p) and
thus the geodesic convexity of Dd(x,p)(p).

Coming back to (A.9), we get 〈− logx p, v[ρ](x, t)〉x ≤ 0 for all t ∈ [0,∞), since
inside the integral we have g′(d(x, y)2) ≥ 0 and 〈logx p, logx y〉x ≥ 0 (by the above
argument).

A.3. Solution to the interaction equation

Proof of Lemma 2.1. Let φ ∈ C∞
c (U × (0, T )) and, for all x ∈ supp(ρ0), define

ζx : [0, T ) → R by

ζx(t) = φ(Ψt
v[ρ](x), t), for all t ∈ [0, T ).

We have that ζx is differentiable for all x ∈ supp(ρ0) with, for all t ∈ [0, T ),

ζ′x(t) = ∂tφ(Ψt
v[ρ](x), t) +

〈
v[ρ](Ψt

v[ρ](x), t),∇Mφ(Ψt
v[ρ](x), t)

〉
Ψt

v[ρ](x)

=: Λt ◦ Ψt
v[ρ](x).

Denote by Q ⊂ U and S ⊂ (0, T ) two compact sets such that supp(φ) ⊂ Q×S, and
by Lφ the quantity max(sup |∂tφ|, sup ‖∇Mφ‖), where the supremums are taken
over supp(φ) × (0, T ). Writing s = sup(S) and using (2.4), we have∫ T

0

∫
supp(ρ0)

|ζ′x(t)| dρ0(x) dt =
∫ T

0

∫
supp(ρ0)

∣∣Λt(Ψt
v[ρ](x))

∣∣ dρ0(x) dt

=
∫ T

0

∫
U
|Λt(x)| dρt(x)dt



September 29, 2021 7:6 WSPC/S0219-5305 176-AA 2150008

=
∫
S

∫
Q

|∂tφ(x, t) + 〈v[ρ](x),∇Mφ(x, t)〉x | dρt(x) dt

≤ Lφ

(
s+

∫
S

∫
Q

‖v[ρ](x, t)‖x dρt(x) dt
)
<∞.

Consider now the calculation above in reverse (just the first two lines), without the
absolute value in the integrand. By Fubini’s theorem and since φ(x, 0) = φ(x, s) = 0
for all x ∈ U , we get∫

S

∫
Q

(
∂tφ(x, t) +

〈
v[ρ](x, t),∇Mφ(x, t)

〉)
dρt(x) dt

=
∫ T

0

∫
supp(ρ0)

ζ′x(t) dρ0(x) dt

=
∫

supp(ρ0)

∫
S

ζ′x(t) dt dρ0(x) =
∫

supp(ρ0)

(
φ(Ψs

v[ρ](x), s) − φ(x, 0)
)

dρ0(x)

=
∫
U
φ(x, s) dρs(x) −

∫
U
φ(x, 0) dρ0(x) = 0.

This shows that ρ is a solution in the sense of distributions to Eq. (1.1).
Let us finally prove that in fact ρ ∈ C([0, T );P(U)). Take t ∈ [0, T ) and a

sequence (tk)k≥1 ⊂ [0, T ) such that tk → t as k → ∞. For all φ ∈ Cb(U), as k → ∞
we get∫

U
φ(x) dρtk (x) =

∫
supp(ρ0)

φ(Ψtk
v[ρ](x)) dρ0(x) →

∫
supp(ρ0)

φ(Ψt
v[ρ](x)) dρ0(x)

=
∫
U
φ(x) dρt(x),

where we used the time continuity of the flow map, that is, Ψtk
v[ρ] → Ψt

v[ρ] point-
wise, since it solves the first-order ODE system (2.1), and Lebesgue’s dominated
convergence theorem.
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[11] J. A. Cañizo, J. A. Carrillo and J. Rosado, A well-posedness theory in measures for
some kinetic models of collective motion, Math. Models Methods Appl. Sci. 21(3)
(2011) 515–539.

[12] J. A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent and D. Slepčev, Global-in-time
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[42] R. Simione, D. Slepčev and I. Topaloglu, Existence of ground states of nonlocal-

interaction energies, J. Stat. Phys. 159(4) (2015) 972–986.
[43] R. Tron, B. Afsari and R. Vidal, Intrinsic consensus on SO(3) with almost-global

convergence, in Proc. 51st IEEE Conf. Decision and Control (Maui, HI, USA, 2012),
pp. 2052–2058.

[44] J. von Brecht and D. Uminsky, On soccer balls and linearized inverse statistical
mechanics, J. Nonlinear Sci. 22(6) (2012) 935–959.

[45] J. von Brecht, D. Uminsky, T. Kolokolnikov and A. Bertozzi, Predicting pattern
formation in particle interactions, Math. Models Methods Appl. Sci. 22(Suppl. 1)
(2012) 1140002.
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