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Abstract: In this paper, we propose a method for estimating in real-time the speed of the wind
to which a turbine is subjected using its SCADA (Supervisory Control And Data Acquisition)
measurements. The approach is fully data-driven. It is based on Gaussian Process Regression.
We use real experimental SCADA data from an operating commercial 3-bladed horizontal axis
wind turbine. The reference values for the wind speed are obtained from a nacelle LiDAR
(Light Distancing and Ranging) sensor. The comparison of the obtained estimation results with
the measurements provided by the LiDAR sensor emphasizes the performance of the proposed
method and underlines its interests for control purposes. Assessing performance on a day of
operation, we obtain median errors of less than 1%. A numerical comparison with a more
traditional model-based approach is also provided.
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1. INTRODUCTION

In recent years, the pursuit of clean energy has led to
massive investments in renewable sources. In particular,
wind energy has received a lot of attention and is now
a substantial part of the electrical supply in many coun-
tries. According to Lee and Zhao (2020), the worldwide
installed capacity has surpassed 650 GW in 2019, when
the two biggest players, China and the USA, have reached
an installed capacity of about 236 GW and 105 GW,
respectively.
In this context, control and estimation techniques for wind
turbines have witnessed a significant expansion. The main
goals are usually power production maximization and
load-mitigation (to increase the life-span of the turbines),
as well as diagnostics, both at the turbine scale and at the
farm scale. Many of these techniques require knowledge
of the wind speed, which can be obtained by sensors or
estimation methods. For a review on wind turbine control
based on wind speed estimation, we refer the reader to
Jena and Rajendran (2015).
A common approach in a model-based setting is to use
a Kalman Filter to estimate the aerodynamic torque on
the rotor and then solve the nonlinear equation relating
this torque and the wind speed. This is the case, e.g., in
(Boukhezzar and Siguerdidjane, 2011; Nam et al., 2011).
Some other model-based approaches are presented by
Østergaard et al. (2007); Sung et al. (2011); Song et al.
(2017a,b). These estimation strategies have the drawback

of requiring knowledge of the torque coefficient map of the
turbine, which might not be available. Another trend of
research uses machine Learning solutions, often combined
with model-based techniques, to estimate the wind speed,
e.g., (Yang et al., 2006; Jaramillo-Lopez et al., 2016; Deng
et al., 2019; Deng et al., 2020; Sierra-García and Santos,
2021). These works exhibit interesting capabilities. Hence,
we propose to follow this trend.
In this paper, we present an estimation method based
on Gaussian process regression to obtain the wind speed
value using only SCADA (Supervisory Control and Data
Acquisition) measurements that are commonly available in
wind turbines. Namely, we use the active power, the rotor
speed, and the pitch angle of the blades. The algorithm
works by learning a map from the recent history of these
SCADA measurements to the wind speed and then using
this map to compute the wind speed for the query inputs.
For training, i.e., for learning this map, we need the wind
speed reference values which we obtain from a LiDAR
(Light Detection and Ranging) sensor mounted on the
turbine nacelle. Our goal is thus to have an algorithm that
achieves wind speed estimates as close as possible to what
would be measured using the LiDAR sensor. The point
is that, after training, one could consider removing the
LiDAR and using the algorithm instead. This would reduce
the maintenance cost associated with the wind turbine.
Also, one could use the same training for several turbines of
the same model under similar conditions (e.g., all the front
row turbines in the same wind farm, provided the terrain
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turbine, which might not be available. Another trend of
research uses machine Learning solutions, often combined
with model-based techniques, to estimate the wind speed,
e.g., (Yang et al., 2006; Jaramillo-Lopez et al., 2016; Deng
et al., 2019; Deng et al., 2020; Sierra-García and Santos,
2021). These works exhibit interesting capabilities. Hence,
we propose to follow this trend.
In this paper, we present an estimation method based
on Gaussian process regression to obtain the wind speed
value using only SCADA (Supervisory Control and Data
Acquisition) measurements that are commonly available in
wind turbines. Namely, we use the active power, the rotor
speed, and the pitch angle of the blades. The algorithm
works by learning a map from the recent history of these
SCADA measurements to the wind speed and then using
this map to compute the wind speed for the query inputs.
For training, i.e., for learning this map, we need the wind
speed reference values which we obtain from a LiDAR
(Light Detection and Ranging) sensor mounted on the
turbine nacelle. Our goal is thus to have an algorithm that
achieves wind speed estimates as close as possible to what
would be measured using the LiDAR sensor. The point
is that, after training, one could consider removing the
LiDAR and using the algorithm instead. This would reduce
the maintenance cost associated with the wind turbine.
Also, one could use the same training for several turbines of
the same model under similar conditions (e.g., all the front
row turbines in the same wind farm, provided the terrain
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1. INTRODUCTION

In recent years, the pursuit of clean energy has led to
massive investments in renewable sources. In particular,
wind energy has received a lot of attention and is now
a substantial part of the electrical supply in many coun-
tries. According to Lee and Zhao (2020), the worldwide
installed capacity has surpassed 650 GW in 2019, when
the two biggest players, China and the USA, have reached
an installed capacity of about 236 GW and 105 GW,
respectively.
In this context, control and estimation techniques for wind
turbines have witnessed a significant expansion. The main
goals are usually power production maximization and
load-mitigation (to increase the life-span of the turbines),
as well as diagnostics, both at the turbine scale and at the
farm scale. Many of these techniques require knowledge
of the wind speed, which can be obtained by sensors or
estimation methods. For a review on wind turbine control
based on wind speed estimation, we refer the reader to
Jena and Rajendran (2015).
A common approach in a model-based setting is to use
a Kalman Filter to estimate the aerodynamic torque on
the rotor and then solve the nonlinear equation relating
this torque and the wind speed. This is the case, e.g., in
(Boukhezzar and Siguerdidjane, 2011; Nam et al., 2011).
Some other model-based approaches are presented by
Østergaard et al. (2007); Sung et al. (2011); Song et al.
(2017a,b). These estimation strategies have the drawback

of requiring knowledge of the torque coefficient map of the
turbine, which might not be available. Another trend of
research uses machine Learning solutions, often combined
with model-based techniques, to estimate the wind speed,
e.g., (Yang et al., 2006; Jaramillo-Lopez et al., 2016; Deng
et al., 2019; Deng et al., 2020; Sierra-García and Santos,
2021). These works exhibit interesting capabilities. Hence,
we propose to follow this trend.
In this paper, we present an estimation method based
on Gaussian process regression to obtain the wind speed
value using only SCADA (Supervisory Control and Data
Acquisition) measurements that are commonly available in
wind turbines. Namely, we use the active power, the rotor
speed, and the pitch angle of the blades. The algorithm
works by learning a map from the recent history of these
SCADA measurements to the wind speed and then using
this map to compute the wind speed for the query inputs.
For training, i.e., for learning this map, we need the wind
speed reference values which we obtain from a LiDAR
(Light Detection and Ranging) sensor mounted on the
turbine nacelle. Our goal is thus to have an algorithm that
achieves wind speed estimates as close as possible to what
would be measured using the LiDAR sensor. The point
is that, after training, one could consider removing the
LiDAR and using the algorithm instead. This would reduce
the maintenance cost associated with the wind turbine.
Also, one could use the same training for several turbines of
the same model under similar conditions (e.g., all the front
row turbines in the same wind farm, provided the terrain
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conditions are the same for all of them). The method we
propose is fully data-driven, requiring no physical model
of the turbine. In particular, the torque coefficient map is
not needed. This map is not always available or may be
known only approximately. Furthermore, we obtain our
results using real turbine data from the field instead of a
simulator, which is not the case for most studies available
in the literature.
The rest of this paper is organized as follows. In Section 2,
we make the formal problem statement. In Section 3, we
present a short review of the basic theory behind Gaussian
process regression. In Section 4, we explain how we apply
Gaussian process regression to our problem of wind speed
estimation. In Section 5, we present some results to show
the performance of the method. Finally, in Section 6, we
present some concluding remarks.

Notation

Let M be a matrix, then M−1 is its inverse and MT is its
transpose. We write ||v||2 to denote the Euclidean norm of
the vector v ∈ Rn, n ∈ N. v|M ∼ N (a,A) denotes that v
conditioned on M has a Gaussian distribution with mean
a and covariance A.

2. PROBLEM STATEMENT

In this section, we make a formal presentation of the
research problem faced in this paper.
Consider a wind turbine for which measurements of the
rotor angular speed, the active power, and the pitch angle
are available at each sampling time and let r ∈ N be a fixed
number chosen a priori. Our goal is to design an algorithm
that, given a time sequence of these measurements from
time t − r∆t to time t, produces an estimate of the wind
speed at time t, where ∆t is the sampling period. This
estimate should be as close as possible to what would be
obtained with a LiDAR sensor mounted on the turbine
nacelle. Notice that the time sequence under consideration
is discrete.
Let ωt, pt, βt, and vt represent, respectively, the rotor
angular speed, the active power, the pitch angle (assumed
to be the same for all blades), and the wind speed at
time t for a given wind turbine. As already mentioned,
the values of ωt, pt, and βt come from the SCADA system
of the turbine and the values of vt needed for training are
obtained using a LiDAR sensor.
Our problem is to estimate vt given

xt = [ωt−r:t,βt−r:t,pt−r:t]
T
, (1)

where ωt−r:t = [ωt−r, . . . , ωt−1, ωt], and similar definitions
hold for pt−r:t and βt−r:t. ωt−r:t, βt−r:t, and pt−r:t are
time-series of SCADA measurements. The dimension of
the input xt is D = 3(r + 1). For simplicity, the notation
assumes ∆t = 1.

3. PRELIMINARIES ON GAUSSIAN PROCESS
REGRESSION

Definition 1. A Gaussian process is a collection of random
variables, any finite number of which have a joint Gaussian

distribution (Williams and Rasmussen, 2006, Definition
2.1).

Let f be a process from RD to R, with D ∈ N. Define its
mean function m : RD �→ R and its covariance function
(or kernel) k : RD × RD �→ R, such that

m(x) = E [f(x)],
k(x,x′) = E [(f(x)−m(x))(f(x′)−m(x′))],

(2)

where E denotes mathematical expectation and x and x′

are points in RD. We write f ∼ GP(m, k) to denote f is a
Gaussian process with mean m and covariance k.
To use Gaussian Process Regression (GPR), we first as-
sume a certain measured variable yi is related to the input
xi by

yi = f(xi) + ϵi, (3)
with ϵi ∼ N (0, σ2

ϵ ) and f ∼ GP(m, k) for some suitable
choice of m and k. Thus, for N training pairs (x1, y1), . . .,
(xN , yN ), we have

y|X ∼ N (m(X),Ky), (4)
where y = [y1, . . . , yN ]T , X = [x1, . . . ,xN ]T ∈ RN×D,
m(X) = [m(x1), . . . ,m(xN )]T , and Ky = k(X,X) + σ2

ϵI
(with k(X,X) ∈ RN×N such that its element at position
(i, j) is k(xi,xj) and I the identity matrix).
Next, consider test input locations x∗i, i = 1, . . . , N∗,
for which one wants to estimate the corresponding val-
ues of f . Let f∗ = [f(x∗1), . . . , f(x∗N∗)]

T and X∗ =
[x∗1, . . . ,x∗N∗ ]

T . Then, from the joint Gaussian distribu-
tion property of the Gaussian process,[
y
f∗

]
|X,X∗ ∼ N

([
m(X)
m(X∗)

]
,

[
Ky k(X,X∗)

k(X∗,X) k(X∗,X∗)

])
,

(5)
where m(X∗) = [m(x∗1), . . . ,m(x∗N∗)]

T , k(X,X∗) =
[k(X∗,X)]T is a matrix in RN×N∗ such that its element
at position (i, j) is k(xi,x∗j), and k(X∗,X∗) is a matrix
in RN∗×N∗ such that its element at position (i, j) is
k(x∗i,x∗j).
Using a property of joint Gaussian distributions (see, e.g.,
(Williams and Rasmussen, 2006, Eq. (A.6))), we are able
to compute the distribution conditioned on y:

f∗|y,X,X∗ ∼ N (µ(X∗),Σ(X∗,X∗)), (6)
where

µ(X∗) = m(X∗) + k(X∗,X)K−1
y (y −m(X)) , (7)

Σ(X∗,X∗) = k(X∗,X∗)− k(X∗,X)K−1
y k(X,X∗). (8)

The kernel k is chosen so to encode prior beliefs on
the latent function f (such as smoothness, periodicity,
etc) and is often parameterized by the so called hyper-
parameters θ. A common choice of kernel is the squared
exponential kernel with automatic relevance determination
parameters, which is given by

k(x,x′) = σ2
f exp

(
−1

2
(x− x′)TΛ−1(x− x′)

)
, (9)

with Λ = diag{l21, . . . , l2D} (recall D is the dimension of
the inputs). A popular way to set the hyper-parameters is
to maximize the log marginal likelihood

ln(p(y|X,θ))=−1

2
yTK−1

y y − 1

2
ln(det(Ky))−

N

2
ln(2π).

(10)

4. GAUSSIAN PROCESS REGRESSION BASED
WIND SPEED ESTIMATION

In this section, we explain the procedure we propose to
obtain an estimation for the wind speed at time t using
a sequence of SCADA measurements from time t − r∆t
to time t, r ∈ N. Recall that time is discrete in the setup
considered here.
We start with the data collected from the turbine SCADA
system and the LiDAR and we define the pairs (xt, yt),
with yt = vt and xt a sequence of SCADA measurements
as defined in (1).
In the following subsections, we describe the algorithm to
perform the estimation.

4.1 Clustering

The first step of the training process is to cluster the
data. Indeed, since we expect the turbine to have different
behaviors under different operating conditions, it seems
reasonable to look for different estimations depending on
the operating range.
Remember each input point xi in our training set is a
D-dimensional vector (with D = 3(r + 1)) containing
measurements of rotational speed, pitch angle, and active
power. Since these measurements have different scales, we
first standardize the training data. In other words, we
compute the mean and the standard deviation of each
component of the input points across the training set, and
then from each component we subtract the corresponding
mean and then divide the result by the corresponding
standard deviation.
The second step is to use Principal Component Analysis
(PCA) (Wold et al., 1987) to make a change of coordinates.
Note that PCA is not used for dimensional reduction here,
but only to design the clustering.
Finally, we use the k-means++ algorithm to split the data
into clusters (Arthur and Vassilvitskii, 2006).

4.2 Finding an Estimate per Cluster

In this subsection, we treat each cluster separately. Here,
we show how to compute an estimate for the wind speed
of a given test point using data from one cluster only.

Kernel and Mean Function To use GPR we need to
define a kernel k and a mean function m that encode our
prior beliefs on the latent function that relates the inputs
to the outputs. We use a kernel of the form
k(xa,xb) = kω(ωa−r:a,ωb−r:b) + kβ(βa−r:a,βb−r:b)

+ kp(pa−r:a,pb−r:b),
(11)

where xa and xb are (possibly different) inputs and
kω(z, z

′) = zTL−1
1 z′

+ σ2
1 exp

(
−1

2
(z − z′)TL−1

2 (z − z′)

)
,

kβ(z, z
′) = σ2

2 exp

(
−1

2
(z − z′)TL−1

3 (z − z′)

)
,

kp(z, z
′) = zTL−1

4 z′

+ σ2
3 exp

(
−1

2
(z − z′)TL−1

5 (z − z′)

)
,

Li = diag{((r + 1)li)
2, . . . , (2li)

2, l2i }, (12)
with z and z′ replacing the corresponding arguments for
kω, kβ , and kp used in (11) (due to lack of space). Hence,
the hyper-parameters for the kernel in (11) are l1, . . ., l5,
σ1, σ2, and σ3. Notice this is a valid kernel since it is
a sum of valid kernels (Williams and Rasmussen, 2006).
The ideas behind this kernel are:
(1) the linear contributions (i.e., those of the form

zTLiz
′) account for the fact that we expect the wind

speed to be higher when the turbine is producing
more power and the rotor speed is faster;

(2) the nonlinear contributions are in the form of the
kernel (9), which is a more generic form and should
account for the more intricate dynamics of the tur-
bine;

(3) the matrices Li are as presented in (12) to yield
smaller weights for the input components containing
information further in the past while maintaining a
small number of hyper-parameters to be selected.

For the mean function we use a constant function equal to
the mean of the wind speed for the training points in the
cluster. Also, since we consider the reference wind speed
to be the ground truth, we use σϵ = 0, so Ky = k(X,X).

Training and Computing Estimates We select N pairs
(xi, yi) from the cluster to use in the following computa-
tions. Here we use the index i instead of t because these
training pairs are randomly chosen from the available data,
so that, e.g., y2 does not necessarily correspond to wind
speed measurement obtained in the sample time right after
the one corresponding to y1. However, the measurements
that constitute a particular xi are ordered. Thus, here, and
in the sequel, one should understand that the pair (xi, yi)
corresponds not to time t = i, but to some time ti.
After selecting the training pairs, the next step is to
tune the hyper-parameters by maximizing the marginal
likelihood (10). Notice that, for different values of r, the
training pairs are different and so might be the hyper-
parameters. Hence, we can effectively have several different
models for the relation between the SCADA measurements
and the wind speed. However, once the training data is
prepared and the hyper-parameters are set, the procedure
to obtain the estimates is the same regardless of the choice
of r.
Recall that, for a test point x∗, we would normally find
the estimate

ŷ∗ = m(x∗) + k(x∗,X)K−1
y (y −m(X)) . (13)

However, real-time computation of ŷ∗ using (13) leads to
a numerical burden since the time to compute k(x∗,X)
scales with the size N of the training set Thus, it is
desired to have a large training set to learn the map
well from SCADA measurements to wind speed, but a
small one to perform estimations in real-time. In order
to solve this dilemma, we follow the method proposed by
Mayer et al. (2020), which consists in using the following
approximation

ŷ∗ ≈ m(x∗) + k(x∗, X̄)ᾱ, (14)
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4. GAUSSIAN PROCESS REGRESSION BASED
WIND SPEED ESTIMATION

In this section, we explain the procedure we propose to
obtain an estimation for the wind speed at time t using
a sequence of SCADA measurements from time t − r∆t
to time t, r ∈ N. Recall that time is discrete in the setup
considered here.
We start with the data collected from the turbine SCADA
system and the LiDAR and we define the pairs (xt, yt),
with yt = vt and xt a sequence of SCADA measurements
as defined in (1).
In the following subsections, we describe the algorithm to
perform the estimation.

4.1 Clustering

The first step of the training process is to cluster the
data. Indeed, since we expect the turbine to have different
behaviors under different operating conditions, it seems
reasonable to look for different estimations depending on
the operating range.
Remember each input point xi in our training set is a
D-dimensional vector (with D = 3(r + 1)) containing
measurements of rotational speed, pitch angle, and active
power. Since these measurements have different scales, we
first standardize the training data. In other words, we
compute the mean and the standard deviation of each
component of the input points across the training set, and
then from each component we subtract the corresponding
mean and then divide the result by the corresponding
standard deviation.
The second step is to use Principal Component Analysis
(PCA) (Wold et al., 1987) to make a change of coordinates.
Note that PCA is not used for dimensional reduction here,
but only to design the clustering.
Finally, we use the k-means++ algorithm to split the data
into clusters (Arthur and Vassilvitskii, 2006).

4.2 Finding an Estimate per Cluster

In this subsection, we treat each cluster separately. Here,
we show how to compute an estimate for the wind speed
of a given test point using data from one cluster only.

Kernel and Mean Function To use GPR we need to
define a kernel k and a mean function m that encode our
prior beliefs on the latent function that relates the inputs
to the outputs. We use a kernel of the form
k(xa,xb) = kω(ωa−r:a,ωb−r:b) + kβ(βa−r:a,βb−r:b)

+ kp(pa−r:a,pb−r:b),
(11)

where xa and xb are (possibly different) inputs and
kω(z, z

′) = zTL−1
1 z′

+ σ2
1 exp

(
−1

2
(z − z′)TL−1

2 (z − z′)

)
,

kβ(z, z
′) = σ2

2 exp

(
−1

2
(z − z′)TL−1

3 (z − z′)

)
,

kp(z, z
′) = zTL−1

4 z′

+ σ2
3 exp

(
−1

2
(z − z′)TL−1

5 (z − z′)

)
,

Li = diag{((r + 1)li)
2, . . . , (2li)

2, l2i }, (12)
with z and z′ replacing the corresponding arguments for
kω, kβ , and kp used in (11) (due to lack of space). Hence,
the hyper-parameters for the kernel in (11) are l1, . . ., l5,
σ1, σ2, and σ3. Notice this is a valid kernel since it is
a sum of valid kernels (Williams and Rasmussen, 2006).
The ideas behind this kernel are:
(1) the linear contributions (i.e., those of the form

zTLiz
′) account for the fact that we expect the wind

speed to be higher when the turbine is producing
more power and the rotor speed is faster;

(2) the nonlinear contributions are in the form of the
kernel (9), which is a more generic form and should
account for the more intricate dynamics of the tur-
bine;

(3) the matrices Li are as presented in (12) to yield
smaller weights for the input components containing
information further in the past while maintaining a
small number of hyper-parameters to be selected.

For the mean function we use a constant function equal to
the mean of the wind speed for the training points in the
cluster. Also, since we consider the reference wind speed
to be the ground truth, we use σϵ = 0, so Ky = k(X,X).

Training and Computing Estimates We select N pairs
(xi, yi) from the cluster to use in the following computa-
tions. Here we use the index i instead of t because these
training pairs are randomly chosen from the available data,
so that, e.g., y2 does not necessarily correspond to wind
speed measurement obtained in the sample time right after
the one corresponding to y1. However, the measurements
that constitute a particular xi are ordered. Thus, here, and
in the sequel, one should understand that the pair (xi, yi)
corresponds not to time t = i, but to some time ti.
After selecting the training pairs, the next step is to
tune the hyper-parameters by maximizing the marginal
likelihood (10). Notice that, for different values of r, the
training pairs are different and so might be the hyper-
parameters. Hence, we can effectively have several different
models for the relation between the SCADA measurements
and the wind speed. However, once the training data is
prepared and the hyper-parameters are set, the procedure
to obtain the estimates is the same regardless of the choice
of r.
Recall that, for a test point x∗, we would normally find
the estimate

ŷ∗ = m(x∗) + k(x∗,X)K−1
y (y −m(X)) . (13)

However, real-time computation of ŷ∗ using (13) leads to
a numerical burden since the time to compute k(x∗,X)
scales with the size N of the training set Thus, it is
desired to have a large training set to learn the map
well from SCADA measurements to wind speed, but a
small one to perform estimations in real-time. In order
to solve this dilemma, we follow the method proposed by
Mayer et al. (2020), which consists in using the following
approximation

ŷ∗ ≈ m(x∗) + k(x∗, X̄)ᾱ, (14)
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Fig. 1. Schematic of the algorithm for one cluster.

where ᾱ is found as the solution of a regularized least
squares (LS) problem,

ᾱ = arg min
α∈RM

|| (y −m(X))− K̄yα||22 + µ||α||22

=
(
K̄T

y K̄y + µI
)−1

K̄T
y (y −m(X)) ,

(15)

X̄ is obtained by deleting a number of rows from X, K̄y

is obtained by deleting the corresponding columns of Ky,
µ ≥ 0 is a regularization coefficient, and M is the number
of rows of X̄. We refer to this method as GPR+LS in the
following.
Notice ᾱ depends only on the training set, hence, we can
store its value and then compute k(x∗, X̄) online for each
new test point. Therefore, once ᾱ is known, the time to
compute ŷ∗ using (14) is O(M). Furthermore, we found
in our numerical experiments that the matrix Ky is often
poorly conditioned, which leads to numerical problems in
computing the estimates using the exact GPR method.
Fig. 1 depicts a flowchart of the algorithm for one cluster.
Notice once X̄ and ᾱ are known, we can input each test
point x∗ to the model displayed on the right-hand side of
Fig. 1 and obtain an output ŷ∗. We included a computation
of m(x∗) for the figure to be more general, but in our case
m(x∗) is the mean wind speed for the cluster, so it is fixed.

4.3 Computing the Final Estimate

In the last subsection, we performed the regression using
each cluster separately. Thus, we can find C output esti-
mates (ŷ1,∗, . . ., ŷC,∗) for the same test point x∗, where
C is the number of clusters. In this subsection, we discuss
how to compute a final value for the estimate.
First, we apply to x∗ the same transformations we applied
to the training set in Subsection 4.1 (standardization with
the training set statistics and PCA) to obtain x′

∗. Then,
we propose two approaches to find the final estimate:
(1) to use only the estimate associated with the cluster

whose centroid is closest to x′
∗;

(2) to compute a weighted average of all the estimates

ŷfinal,∗ =

∑C
i=1 wiŷi,∗∑C

i=1 wi

, (16)

where the weights w1, . . ., wC are computed as

wi =
1

||x′
∗ − ci||n2

, (17)

with n > 0 and ci the centroid of the ith cluster.

Notice that, when using only the nearest cluster, i.e.,
the first option, one can reduce the computational cost
of computing the estimate by first verifying which is
the nearest cluster and then computing the estimation
only with the model which is associated to it (since the
remaining ŷi,∗’s are not necessary for the final computation
in this case).

5. NUMERICAL RESULTS FROM EXPERIMENTAL
DATA

5.1 Data Description

In this section, we use data corresponding to several days
of operation of a 3-bladed horizontal axis wind turbine.
This turbine is located at a wind farm in Ablaincourt-
Pressoir, France, operated by Engie Green. The SCADA
data were provided by Engie Green, and the Lidar data
were provided by Leosphere, within the framework of the
ANR (French National Research Agency) project “Smar-
tEole”. We use measurements of the rotor speed, the pitch
angle, the produced power which are obtained from the
SCADA system of the turbine. On the other hand, the
wind speed is obtained with the LiDAR sensor.
The sampling period for the SCADA measurements is
1 second, while the one for the sampling period for the
wind speed measurements is 0.25 second. Due to missyn-
chronization, we use a simple linear interpolation to get
wind speed at time instants corresponding to the SCADA
measurements and use these values as reference.
The LiDAR is used in conjunction with the IFP Energies
nouvelles WiSE WindField commercial software to com-
pute the reference wind speed. The main features of the
algorithm are i) this is a real time three dimensional wind
field reconstruction; ii) the knowledge of past wind field
information, obtained from a temporal history of LiDAR
measurements, can be incorporated into current and future
estimates of the wind field; iii) the blade blocking effect
is taken into account. The WiSE WindField algorithm is
data-driven and requires no access to the turbine model,
in line with the requirements of the current paper. The
interested reader may refer to Guillemin et al. (2018);
Nguyen and Guillemin (2020) to get more information
about the algorithm.

5.2 Performance Measurement

To assess the performance of the proposed methods, we
compute the following index (relative error):

e∗ =

∣∣∣∣
ŷ − y∗
y∗

∣∣∣∣× 100%, (18)

where y∗ is a reference value and ŷ is the corresponding
estimate. For each set of tests, we use boxplots of this
index to depict its distribution.

5.3 Results

We start with a large set Strain of training points, split it
into C clusters, and compute their centroids c1, . . ., cC .
Then, for each cluster, we randomly choose N points to
build the matrix X and a subset of these with M < N
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Fig. 2. Rotor speed time-series corresponding to Fig. 5.
The points are color coded according to the cluster
used for the estimation of the wind speed at the
corresponding time.

points to build the matrix X̄ to perform the regression
as discussed in Subsection 4.2. Finally, we select test
inputs (SCADA measurements) from another set, Stest,
and estimate the corresponding outputs (i.e., the wind
speed values) as discussed in Subsection 4.3. The sets Strain
and Stest are disjoint. In this section, we present the results
for different choices of C, M , and N . We keep r = 20 fixed.

Simulation of a Real-Time Application To simulate a
real-time application, we took consecutive points from a
randomly chosen day and estimated the corresponding
wind speed values.
Figs. 2, 3, and 4 show, respectively, the rotor speed, the
pitch angle, and the produced power time-series corre-
sponding to the wind speed time-series in Fig. 5. The
points at time t are color coded according to the cluster
used for the estimation of the wind speed at the corre-
sponding time, i.e., the one whose centroid is nearest to
the input point at that time. We used 5 clusters in this
case, but this particular day happens not to have any input
point associated with cluster 2. Note that the selected day
covers a relatively large range of wind speeds, from cut-
in to above-rated, but very high speeds are absent. It has
been verified on other days that the estimation behaves
similarly well in this range. Clustering is required to obtain
a good behaviour both in the cut-in speed and the above-
rated regions.
The estimation results are depicted in Figs. 5 and 6. In this
case, the number of clusters is C = 5, the time window size
is r = 20, the number of points per cluster (used offline)
is N = 104, and number of points per cluster used in the
online computations is M = 3 × 103. We use only the
nearest cluster estimate. We observe the result in this case
is highly satisfactory for control applications.
Also, in Fig 6, we included the results obtained with a
more traditional model based approach. It consists in a
two-step strategy. First, the aerodynamic torque on the
rotor is estimated using a linear Kalman Filter with the
following state-space formulation of the turbine model:

ω̇ =
1

J
Ta −

1

J
Tg + ξ1

Ṫa = ξ2,
(19)
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Fig. 3. Pitch angle time-series corresponding to Fig. 5. The
points are color coded according to the cluster used for
the estimation of the wind speed at the corresponding
time.
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Fig. 4. Produced power time-series corresponding to Fig.
5. The points are color coded according to the cluster
used for the estimation of the wind speed at the
corresponding time.

where ω is the rotor speed, Ta is the aerodynamic torque,
Tg is the generator torque, ξ1 and ξ2 are noise, and J is
the inertia of the turbine. Then, this estimation is used
to calculate the wind speed by numerically solving the
following nonlinear equation:

Ta =
1

2
ρπR3Cq

(
β,

ωR

v

)
v2, (20)

where ρ is the air density, R is the rotor radius, Cq is the
torque coefficient map, β is the blades pitch angle, and v
is the wind speed. This is similar to, e.g., what Nam et al.
(2011) used to estimate the wind speed.
The error comparison is presented formally in Fig. 7. No-
tice our proposed approach has comparable performance
to that of the Kalman Filter approach and, most impor-
tantly, requires no access to the turbine model. Further-
more, the Kalman Filter requires manual tuning of the
parameters. In this case, we carefully tuned the Kalman
Filter using part of our data before testing it with the data
of the day presented in Figs. 5 and 6.

Performance Assessment on Data from Several Days
Here, we show the effects of varying the parameters C
(number of clusters), M (number of points per cluster used
in the online computation), and N (numbers of points per
cluster) on the performance of our method. We do it by
inputting test points collected from several different days
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points to build the matrix X̄ to perform the regression
as discussed in Subsection 4.2. Finally, we select test
inputs (SCADA measurements) from another set, Stest,
and estimate the corresponding outputs (i.e., the wind
speed values) as discussed in Subsection 4.3. The sets Strain
and Stest are disjoint. In this section, we present the results
for different choices of C, M , and N . We keep r = 20 fixed.

Simulation of a Real-Time Application To simulate a
real-time application, we took consecutive points from a
randomly chosen day and estimated the corresponding
wind speed values.
Figs. 2, 3, and 4 show, respectively, the rotor speed, the
pitch angle, and the produced power time-series corre-
sponding to the wind speed time-series in Fig. 5. The
points at time t are color coded according to the cluster
used for the estimation of the wind speed at the corre-
sponding time, i.e., the one whose centroid is nearest to
the input point at that time. We used 5 clusters in this
case, but this particular day happens not to have any input
point associated with cluster 2. Note that the selected day
covers a relatively large range of wind speeds, from cut-
in to above-rated, but very high speeds are absent. It has
been verified on other days that the estimation behaves
similarly well in this range. Clustering is required to obtain
a good behaviour both in the cut-in speed and the above-
rated regions.
The estimation results are depicted in Figs. 5 and 6. In this
case, the number of clusters is C = 5, the time window size
is r = 20, the number of points per cluster (used offline)
is N = 104, and number of points per cluster used in the
online computations is M = 3 × 103. We use only the
nearest cluster estimate. We observe the result in this case
is highly satisfactory for control applications.
Also, in Fig 6, we included the results obtained with a
more traditional model based approach. It consists in a
two-step strategy. First, the aerodynamic torque on the
rotor is estimated using a linear Kalman Filter with the
following state-space formulation of the turbine model:

ω̇ =
1

J
Ta −

1

J
Tg + ξ1

Ṫa = ξ2,
(19)
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where ω is the rotor speed, Ta is the aerodynamic torque,
Tg is the generator torque, ξ1 and ξ2 are noise, and J is
the inertia of the turbine. Then, this estimation is used
to calculate the wind speed by numerically solving the
following nonlinear equation:

Ta =
1

2
ρπR3Cq

(
β,

ωR

v

)
v2, (20)

where ρ is the air density, R is the rotor radius, Cq is the
torque coefficient map, β is the blades pitch angle, and v
is the wind speed. This is similar to, e.g., what Nam et al.
(2011) used to estimate the wind speed.
The error comparison is presented formally in Fig. 7. No-
tice our proposed approach has comparable performance
to that of the Kalman Filter approach and, most impor-
tantly, requires no access to the turbine model. Further-
more, the Kalman Filter requires manual tuning of the
parameters. In this case, we carefully tuned the Kalman
Filter using part of our data before testing it with the data
of the day presented in Figs. 5 and 6.

Performance Assessment on Data from Several Days
Here, we show the effects of varying the parameters C
(number of clusters), M (number of points per cluster used
in the online computation), and N (numbers of points per
cluster) on the performance of our method. We do it by
inputting test points collected from several different days
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Kalman Filter (KF) approach.
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Fig. 7. Boxplots of the estimation error for the day shown
in Figs. 5 and 6.

of operation of the turbine to estimate the corresponding
wind speed and then plotting the corresponding boxplots
to show how the relative error distribution changes accord-
ing to the changes in these parameters.
First, we chose N = 104, M = 3000, and C = 5 to present
the effect of combining the estimates from each cluster
using different weight functions. The best mean error was
obtained using only the nearest cluster estimate. This is
advantageous since, as commented on Subsection 4.3, the
estimate can be computed much faster. Considering this
result, we use only the nearest cluster estimate for the
other tests presented in the paper.
In Fig. 8, we show the effect of varying the number of
clusters C. The median error steadily decreases with the
number of clusters. From C = 5, the mean error and
the 25%-quantile error are low and steadily decreasing.
Only the 5%-quantile error is still slightly irregular. Note
that we need not to select a low value of C, since it does
not impact the cost of online computations (when using
only the nearest cluster estimate). Finally, for the results
presented in this paper, we pick up C = 5.
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Fig. 8. Relative error for different choices of number of
clusters. In this case r = 20, N = 104, M = 3000,
and we only use the nearest cluster estimate.
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Fig. 9. Relative error for different values of M . The
remaining parameters are C = 5, r = 20, and N =
104. We use only the nearest cluster estimate.

Also note that, using a very low number of clusters such as
C = 1 would lead to unsatisfactory results in the vicinity
of the turbine cut-in speed and/or above-rated speeds.
The results are not shown here due o lack of space, but
this is particularly visible when plotting time-series of the
estimates.
Fig. 9 depicts a comparison among the results using
different values of M . We see the trade-off related to using
an approximation instead of the exact GPR (in which case
we would have M = N and would use (13) to perform the
estimation with each kernel). We see a downward trend
in the median of the error as we increase the number of
points, as expected.
Finally, we show the effect of varying N in Fig. 10. N is
related to the offline computational cost, so it needs not
to be selected very carefully, and can be much larger than
M . In this paper, we work with N = 104. Again, we see
an overall downward trend in the median of the error as
the number of points increases.

6. CONCLUSION

In this paper, we present a method based on Gaussian
Process Regression (GPR) to estimate in real-time the
wind speed using only SCADA measurements that are
commonly available on wind turbines. We use GPR to-
gether with a regularized least squares optimization to
obtain a map from the recent history of the SCADA
measurements to the current wind speed. We train and
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3000. We use only the nearest cluster estimate.

test the method using data gathered from an operating
commercial wind turbine equipped with a nacelle LiDAR
sensor that gives the reference wind speed. The method
presented requires no physical modeling as it is fully data-
driven.
The obtained numerical results feature very interesting
estimation capabilities, so that this algorithm would be
accurate enough to be considered for controls and/or diag-
nostics purposes. It constitutes an interesting alternative
to more traditional methods, as it requires no access to
turbine manufacturing data or torque coefficient maps,
uses only commonly available measurements, has a light
and simple tuning procedure, and shows very good per-
formance. Also, we depict how the performance is affected
by the number of training points (offline computations)
and how it is affected by the number of points chosen
for the least squares approximation used for the online
computations.
In a practical application, one would have to find the
optimal trade-off between accuracy and computational
cost in order to set the parameters of the algorithm.
Promising directions of work include the use of this al-
gorithm to control and diagnostics applications or as a
basis to estimate other wind properties at the wind farm
scale, extend its capabilities to perform prediction (i.e.,
estimate the future wind speed rather than the current
one), and investigate the use of different mean functions
for the GPR.
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