
HAL Id: hal-03462159
https://hal-ifp.archives-ouvertes.fr/hal-03462159

Submitted on 1 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LiDAR and SCADA Data Processing for Interacting
Wind Turbine Wakes with Comparison to Analytical

Wake Models
Amr Hegazy, Frédéric Blondel, Marie Cathelain, Sandrine Aubrun

To cite this version:
Amr Hegazy, Frédéric Blondel, Marie Cathelain, Sandrine Aubrun. LiDAR and SCADA Data Pro-
cessing for Interacting Wind Turbine Wakes with Comparison to Analytical Wake Models. Renewable
Energy, 2022, 181, pp.457-471. �10.1016/j.renene.2021.09.019�. �hal-03462159�

https://hal-ifp.archives-ouvertes.fr/hal-03462159
https://hal.archives-ouvertes.fr


1 
 

 LiDAR and SCADA data processing for interacting wind 1 

turbine wakes with comparison to analytical wake models 2 

Amr Hegazy 
a,1, Frédéric Blondel b, Marie Cathelain

 b
, Sandrine Aubrun 

a,* 3 

a 
École Centrale de Nantes, LHEEA, 1 rue de la Noë, 44321, Nantes, France 4 

b 
IFP Energies nouvelles, 1&4 avenue du Bois Préau, 92862 Rueil-Malmaison, France 5 

 6 
* Corresponding author: Email address: sandrine.aubrun@ec-nantes.fr (Sandrine Aubrun) 7 

 8 
Abstract: This study is a follow up on a previous one carried out within the frame of the 9 
French project SMARTEOLE, during which, a ground-based scanning LiDAR 10 
measurement campaign was conducted in the onshore wind farm of Sole du Moulin Vieux. 11 
That previous study focused on the wakes of two wind turbines that experienced different 12 
degrees of interaction depending on the incoming wind direction, through the processing 13 
of LiDAR measurements. The measurement duration (7 months) ensured the statistical 14 
convergence of the ensemble-averaged flow fields obtained after holding a categorisation 15 
process based on the wind speed at hub height, wind direction, and atmospheric stability, 16 
where only near-neutral stability conditions were considered. The present study focuses on 17 
integrating the operational data of the wind turbines through SCADA processing to 18 
complement the LiDAR wake field observations and to be used as an input for analytical 19 
wake models. First, the correlation between the atmospheric stability, deduced from 20 
MERRA-2 dataset, and the free-stream turbulence intensity, measured by the wind 21 
turbines’ anemometers, is studied for different wind speed ranges. It is observed that the 22 
turbulence intensity tends towards a consistent value as the atmospheric stability 23 
approaches near-neutral stability conditions, giving confidence into the applied strategy of 24 
data categorisation based on MERRA-2 outputs. The influence of the degree of wake 25 
interaction on the wake added turbulence, the velocity and power deficits between both 26 
turbines is assessed. Clear trends between the wake added turbulence and both the velocity 27 
and power deficits are detected. Consequently, two fitting laws are proposed. Then, 28 
different analytical wake models and wake superposition methods are fed with the 29 
operational data deduced from the processed SCADA data, and are used for predicting the 30 
evolution of the velocity deficit within the wake. Some statistical metrics are used for error 31 
quantification of the different engineering wake models compared to the scanning LiDAR 32 
measurements, used as reference, and Blondel and Cathelain produces the closest results to 33 
the field measurements.  34 
 35 
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 39 
1. Introduction 40 

The urgent need for designing large wind farm arrays requires a deep understanding of the 41 
wind turbine (WT) wakes, as their quantification and modelling are challenging, not only for the 42 
scientific community, but also for wind farm developers. When a WT operates within the wake 43 
of another, a reduction in its incoming wind speed occurs, which causes power losses that can 44 
reach 20% of the power generated from the undisturbed ones [1–3]. Furthermore, WTs 45 
experience fatigue loads due to the increased turbulence intensity within the wakes, leading to the 46 
reduction of their lifetime. Therefore, any improvements in the understanding and 47 
characterisation of WT wakes would reduce the uncertainties in the power losses [4], lead to an 48 
increase the power production, hence, increase the economic viability of wind energy [5].  49 

When air flows over a WT, it is affected by its presence both upstream and downstream [5,6]. 50 
Consequently, the area surrounding a WT is divided into an upstream region called induction zone 51 

reaching up to a distance of 2𝐷𝑟 , 𝐷𝑟 being the rotor diameter, whereas the downstream one is 52 
called wake region. In the induction zone, wind speed is progressively reduced upstream of the 53 
turbine [5,7,8]. The wake is composed of two sub-regions; the near-wake region that lies directly 54 
downstream the turbine with a length of 2 − 4𝐷𝑟 [5], and the far-wake region that starts after the 55 
near-wake region. The location and extent of the transition between near- and far-wake regions 56 
are not fully identified and depend on the environmental conditions, WT operational points, etc. 57 

There are several approaches to study the flow over WTs. They include analytical models [5, 58 
9–15], computational fluid dynamics (CFD) [16–20], wind tunnel experiments [21–23] and field 59 
experiments [24–26]. Analytical modelling presents a simple approach that requires low 60 
computational cost and is thus preferred in industry for wind farm design. CFD on the other 61 
hand, is a more sophisticated and expensive approach, yet gives more physical insight. Wind 62 
tunnel experiments provide valuable information on the flow structure of WT wakes in 63 
homogeneous and boundary layer flows, and very useful datasets for the validation of analytical 64 
and CFD models. However, it is always difficult to resemble the real process in the lab due to the 65 
applied trade-offs (e.g., full similarity issues). Field measurements provide the real-life insights, 66 
but they often lack statistical convergence because of the continuous changes in the atmospheric 67 
conditions and terrain properties, which affects the wake characteristics significantly [1]. 68 
Therefore, long term field observations are essential for proper wake characterisation [1,27,28]. It 69 
is also difficult to have high spatial precision measurements.  70 

Field measurements used to be collected using anemometers mounted either on 71 
meteorological masts or on the turbines themselves to measure WT wakes. Nowadays, scanning 72 
wind Light Detection And Ranging (LiDAR) is used more often [1,5], which helps overcome the 73 
drawbacks of using anemometers; including poor space resolution and limited wind direction [1].  74 

Regarding analytical wake modelling, there are several models that are simple and 75 
computationally inexpensive, yet superior in capturing the physics when compared to empirical 76 
models (i.e., obtained by data fitting) such as Zhang et al. [29], Iungo and Porté-Agel [30], and 77 
Aitken et al. [31]. This is due to the fact that these analytical wake models such as Jensen [9], 78 
Ainslie [10], Larsen [11], Frandsen et al. [12], Bastankhah and Porté-Agel [13], Qian and Ishihara 79 
[14], and Blondel and Cathelain [15] are derived from flow governing equations; either mass 80 
conservation equation only or mass and momentum conservation equations together [5]. The 81 
models that attracted attention the most (Jensen [9], Frandsen et al. [12], Bastankhah and Porté-82 
Agel [13]), and a new promising one (Blondel and Cathelain [15]), are used in this study.  83 

Jensen [9] assumed a top-hat shape for the wake velocity deficit profile which was based on 84 
solving the mass conservation equation only [5,9,13,15,32]. Duc et al. [33] proposed a tuning 85 
procedure to improve the accuracy of Jensen wake model based on locally updating the wake 86 
decay constant at each WT depending on the turbulence intensity measured by the nacelle 87 
anemometer. Following that procedure, the modified Jensen wake model describes more 88 
precisely the individual wake deficit at each WT as reported in [33].  89 
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The same assumption of the top-hat wake profile was pursued by Frandsen et al. [12], 90 
however, the model is based on satisfying both the mass and momentum conservation equations 91 
[5,12,13,15,32]. The assumption of the top-hat profile is very bold and unrealistic, as studies 92 
showed that the streamwise velocity deficit profiles tends towards an axisymmetric Gaussian 93 
distribution in the far-wake region [34]. As a result, Bastankhah and Porté-Agel [13] recently 94 
developed an extension of the Jensen model, replacing the overly simplified top-hat profile with a 95 
self-similar Gaussian profile, which presents a closer approximation for classic far-wake profile 96 
[5,15,32].  97 

Although Jensen [9] and Frandsen et al. [12] models are meant to describe the wake profile in 98 
the far-wake, yet there is no explicit limitation on applying them for the whole wake, while 99 
Bastankhah and Porté-Agel model [13] considered the far-wake region only, none of these 100 
models accounted for the near-wake region. Therefore, the choice of either the top-hat shape 101 
only or the Gaussian shape only is not quite accurate [15], as the velocity deficit increases till 102 
reaching a maximum value, then decreases, due to the turbulent mixing. It was also observed that 103 
the velocity profile evolves downstream of the wind turbine from a top-hat shape to a Gaussian 104 
shape in the far wake [15,21,35,36]. There was no wake model providing a full demonstration of 105 
the whole wake region till the recent contributions from Qian and Ishihara [14]. They proposed a 106 
modified version of the Bastankhah and Porté-Agel model [13] that improves the velocity deficit 107 
prediction in the near wake. In this updated model, a corrective term is added to predict realistic 108 
values for near-wake wind speeds. However, this corrective term causes a violation of the mass 109 
and momentum conservation [15].  110 

Blondel and Cathelain [15] developed a model to overcome the violation of the conservation 111 
equations by replacing the Gaussian shape with a super-Gaussian shape, which tends towards a 112 

top-hat shape for high values of the super-Gaussian order 𝑛 (near-wake conditions), and towards 113 
the traditional Gaussian shape for 𝑛 = 2 (far-wake conditions). As a result, it was reported that 114 
the wake velocity profiles were more consistent with observations, the velocity deficit had the 115 
expected form, and mass and momentum conservation equations were preserved [15]. However, 116 
the model required further calibration and validation, and therefore, a newer and more accurate 117 
version of the model was later proposed in Cathelain et al. [37], which is used in this paper, (see 118 
Appendix A for the comparison between both versions).  119 

The aforementioned wake models address the wake of a single WT. However, to describe the 120 
wake within a wind farm where turbines operate in the wake of each other, these wake models 121 
should be coupled with superposition methods to account for the interaction among multiple 122 
wakes [5]. Different superposition methods have been proposed, and new ones are being 123 
developed actively. Lissaman [36] method is based on the principle of linear superposition of 124 
velocity deficit defined with respect to the incoming boundary layer flow speed. Afterwards, 125 
Katić et al. [38] followed referring the velocity deficit to the incoming boundary layer flow speed 126 
similar to Lissaman [36], however, with a different superposition principle that involved the linear 127 
superposition of energy deficit. This superposition principle was also adopted later by Voutsinas 128 
et al. [39], yet the velocity deficit was defined with respect to the incoming flow velocity for the 129 
turbine under study. Subsequently, Niayifar and Porté-Agel [40] proposed a method with a 130 
superposition principle similar to Lissaman’s [36], and a velocity deficit reference similar to 131 
Voutsinas et al. [39]. Later, Zong and Porté-Agel [41] developed an iterative method relying on 132 
mass and momentum conservation considerations. Recently, Bastankhah et al. [42] developed a 133 
new analytical model that provides an explicit wind farm solution also based on mass and 134 
momentum conservation considerations.  135 

The present study is considered as a continuation to the work done in Torres-Garcia et al. [1]. 136 
They processed experimental field wake measurements obtained during a 7-month ground-based 137 
scanning LiDAR measurement campaign, with a set-up that enables to capture two WT wakes up 138 

to 10𝐷𝑟 downstream and for a wind sector of 40°. Depending on the wind direction, WT wakes 139 
experienced different interaction levels ranging from full interaction till zero interaction. This 140 
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long measurement campaign ensured the satisfaction of statistical convergence, which led to 141 
obtaining exploitable ensemble-averaged results on wake properties. After the processing of 142 
measurements, different wake characteristics were investigated such as wake centre-line position, 143 
velocity deficit and the wake meandering associated with large-scale turbulent structures in the 144 
incoming atmospheric flow. The associated effective operational WT conditions were not 145 
considered. Supervisory Control and Data Acquisition (SCADA) data processing is therefore 146 
performed following the procedures proposed in [1]. The processed SCADA data is first 147 
analysed, then used as an input for the analytical wake models with the objective of checking their 148 
validity and accuracy when compared to field measurements, and at the same time holding a clear 149 
comparison between these models. 150 

In the following, section 2 provides a description of the equipment and experimental set-up. 151 
In section 3, the measurement processing and classification methods are described. In section 4, 152 
the main results, and observations of both studies; data analysis and wake modelling, are 153 
discussed. Finally, in section 5, a summary and recommendations for future research are 154 
provided.  155 

 156 
2. Experimental set-up 157 

The field measurement campaign took place in the Sole du Moulin Vieux (SMV) onshore 158 
wind farm, owned by Engie Green, located in Ablaincourt-Pressoir municipality in the north of 159 
France in Picardy region. The wind farm consists of seven WTs, as shown in Fig. 1, sited from 160 

north to south with approximate spacing of around 3.5𝐷𝑟 apart. The WTs are SENVION 161 
MM82, with a diameter of 𝐷𝑟 = 82 𝑚, a hub height of 𝑧ℎ = 80 𝑚; and a nominal power of 162 

2050 𝑘𝑊 for a nominal wind speed of 14.5 𝑚. 𝑠−1, in addition to a cut-in wind speed of 163 

3.5 𝑚. 𝑠−1. At the hub height 𝑧ℎ of WTs SMV6 and SMV5, a wind vane and an anemometer 164 
registered the conditions at WT locations using SCADA system [1,25]. 165 

A pulsed scanning LiDAR (Windcube 200S) developed by Leosphere, with a speed accuracy 166 
of 0.1 𝑚. 𝑠−1, was positioned 1320 𝑚 east from WT-SMV4 at ground level. The LiDAR was 167 
programmed to hold scans covering azimuth angles ranging between 243° and 273° 168 
(meteorological coordinates), as shown in Fig. 1.  169 

 170 

 171 
Figure 1: The wind farm composed of seven WTs marked with red dots. A meteorological mast (A) is 172 
located in the surrounding area. The location of the LiDAR is marked with B. The shadowed area, C, is 173 

the top view of the area scanned by the LiDAR [1].  174 

3. Methods 175 
As previously mentioned, the data handling procedure of Torres-Garcia et al. [1] is followed 176 

in this study. They considered LiDAR and the Modern-Era Retrospective analysis for Research 177 
and Applications version 2 (MERRA-2) datasets. SCADA data is added to the group to have a 178 
broader description of the overall situation and be able to hold comparisons. Full details about 179 
the LiDAR data processing can be found in [1].   180 

North 



5 
 

Before categorising the SCADA data, an hourly-averaging is performed to match the hourly 181 
MERRA-2 dataset, since SCADA data is provided as 10-minute average by default. Afterwards, 182 
the categorisation process is held according to specific environmental wind flow conditions 183 
obtained from MERRA-2. These conditions include: 1) Atmospheric stability (near-neutral), 2) 184 
Environmental wind speed (13 ± 1.95 𝑚. 𝑠−1 at 50 𝑚 height), and 3) Wind direction (four 185 
directions; 207°, 220°, 233° and 246° ±6.4°). An additional filter based on grid availability 186 
ensures that only fully operating WTs are post-processed. Only 0.2% of the data was rejected due 187 
to this filter.  188 

The ABL stability is described by Monin-Obukhov Length (𝐿) obtained from MERRA-2. 189 

The near-neutral stability range considered for this study is |𝐿| ≥ 300 𝑚 and is based on the 190 
atmospheric stability classifications defined in Wharton et al. [43].  191 

The wind speed (WS) used for the categorisation process is the one obtained from MERRA-2 192 
at 50 𝑚 above the ground. A reference WS 𝑢 = 13 𝑚. 𝑠−1 was considered. In such a 193 
configuration, stronger wake effects will occur because the WT will be working close to its 194 
nominal WS [1].  195 

Four WDs were used in the study to consider different levels of interaction; starting from full 196 
interaction in case of 207°, where a wake is generated downstream of WT-SMV6 and goes all the 197 
way through WT-SMV5 whose wake includes the superimposed effects of both WT-SMV6 and 198 
WT-SMV5. As for the other three WDs, the level of interaction decreases gradually till reaching 199 
the case of zero interaction when wind flows from a direction of 246°.  200 

 201 
3.1. Velocity deficit 202 

There are many suggestions on how to calculate the velocity deficit (VD). Here, VD is 203 
defined as in [1]: 204 

 205 

𝑉𝐷𝐿𝑖𝐷𝐴𝑅(𝑥𝑊𝐷 , 𝑧𝑊𝐷) =
𝑢ℎ𝑢𝑏 − 𝑢𝑚𝑖𝑛(𝑥𝑊𝐷 , 𝑧𝑊𝐷)

𝑢ℎ𝑢𝑏
  (1) 

where 𝑢ℎ𝑢𝑏 is the reference velocity at hub height extracted from the undisturbed environmental 206 

vertical velocity profile, while 𝑢𝑚𝑖𝑛 is the minimum velocity at a distance (𝑥𝑊𝐷) downstream of 207 

the wind turbine and at an altitude 𝑧𝑊𝐷 where the LiDAR measurements were obtained. To 208 
compare the LiDAR VD evolution with the VD obtained from the engineering wake models, this 209 
formula is adapted as follows: 210 

𝑉𝐷𝑀𝑜𝑑𝑒𝑙(𝑥𝑊𝐷 , 𝑧𝑊𝐷) =
𝑢𝑆𝑀𝑉6 − 𝑢𝑚𝑖𝑛(𝑥𝑊𝐷 , 𝑧𝑊𝐷)

𝑢𝑆𝑀𝑉6
 211 

where 𝑢𝑆𝑀𝑉6 is the WS measured by the anemometer on WT-SMV6. 212 
 213 
Another definition of VD is also employed, in the data processing part of the results. It is 214 

different to Eq. (1) because it uses the spatially resolved LiDAR classified data, thus, evolves with 215 

the downstream distance (𝑥𝑊𝐷). Here, 𝑉𝐷𝑆𝐶𝐴𝐷𝐴 is calculated from the categorised SCADA data 216 
at the fixed locations of both WTs SMV6 and SMV5: 217 

 218 

𝑉𝐷𝑆𝐶𝐴𝐷𝐴 =  
𝑢∞ − 𝑢𝑤

𝑢∞
=

𝑢𝑆𝑀𝑉6 − 𝑢𝑆𝑀𝑉5

𝑢𝑆𝑀𝑉6
 219 

where 𝑢∞ is the undisturbed upstream velocity, while 𝑢𝑤 is the downstream velocity in the wake 220 

of the undisturbed WT. 𝑢∞ was taken equal to 𝑢𝑆𝑀𝑉6, and 𝑢𝑤 was taken equal to 𝑢𝑆𝑀𝑉5, which 221 

is the WS measured by the anemometer on WT-SMV5. 𝑉𝐷𝑆𝐶𝐴𝐷𝐴 depends on the position 222 

vector, 𝑋 = (𝑥𝑊𝐷, 𝑦𝑊𝐷 , 𝑧𝑊𝐷), although it is not explicitly shown in Eq. (3). 223 

 224 
3.2. Power deficit 225 

The power deficit (PD) between the two WTs SMV5 and SMV6 is calculated similarly: 226 

(2) 

(3) 
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𝑃𝐷𝑆𝐶𝐴𝐷𝐴 =
𝑃𝑆𝑀𝑉6 − 𝑃𝑆𝑀𝑉5

𝑃𝑆𝑀𝑉6
 227 

where 𝑃𝑆𝑀𝑉6 is the power generated by WT-SMV6, while is the power generated by WT-SMV5. 228 
 229 

3.3. Turbulence intensity and wake added turbulence 230 
The turbulence intensity (𝐼𝑢) defines the level of velocity fluctuations due to turbulence 231 

within the flow. It is the ratio between the standard deviation of the streamwise WS (𝜎𝑢), which 232 
refers to the fluctuations around the mean value, and the mean value of streamwise WS (𝑢) as 233 
follows for both WTs SMV6 and SMV5: 234 

𝐼𝑢𝑆𝑀𝑉6
= 𝜎𝑢𝑆𝑀𝑉6

𝑢𝑆𝑀𝑉6⁄  
(5) 

𝐼𝑢𝑆𝑀𝑉5
= 𝜎𝑢𝑆𝑀𝑉5

𝑢𝑆𝑀𝑉5⁄  

Meanwhile, the wake added turbulence intensity is the additional turbulence induced by 235 
the WT wake, and is obtained from [5] as follows: 236 

∆𝐼 = √𝐼𝑤𝑎𝑘𝑒
2 − 𝐼∞

2 = √𝐼𝑢𝑆𝑀𝑉5

2 − 𝐼𝑢𝑆𝑀𝑉6

2 237 

where 𝐼𝑤𝑎𝑘𝑒 is the streamwise turbulence intensity in the wake measured by WT-SMV5, while 238 
𝐼𝑢𝑆𝑀𝑉6

 is the streamwise turbulence intensity measured by WT-SMV6 and considered as the free-239 

stream turbulence intensity (𝐼∞). 240 
 241 

3.4. Wake modelling 242 
A mix of empirical and analytical models was used for the study. It included Aitken et al. 243 

[25], Jensen [9], Frandsen et al. [12], Bastankhah and Porté-Agel [13] because they were the ones 244 
that attracted the most attention according to [4]. That is in addition to the newly proposed 245 
model from Blondel and Cathelain [15, 37], (see Appendix A). 246 

To analytically model wind farm flows, the aforementioned wake models are coupled with 247 
wake superposition methods to account for the wake interaction. Different techniques are 248 
available to estimate the velocity, 𝑢(𝑋), at a given position 𝑋 = (𝑥, 𝑦, 𝑧) in a wind farm. The ones 249 
employed in this paper are Lissaman [36], Katić et al. [38], Voutsinas et al. [39], and Niayifar and 250 
Porté-Agel [40], (see Appendix B). The recent method from Zong and Porté-Agel [41] was not 251 
used in the current study because it is not represented in an explicit form and follows an iterative 252 
process to be incorporated, which is not computationally friendly [42]. The novel method from 253 
Bastankhah et al. [42] was not employed since it was mainly developed for the Gaussian model, 254 
and therefore, it would need to be adapted to the other wake models, which is not 255 
straightforward and is still under investigation.  256 

 257 
3.5. Performance measures 258 

A group of statistical metrics are used to measure a model performance by comparing 259 
model predictions and measurements, then quantifying the errors [44]. The ones included in the 260 
study are Fractional Bias (FB), Geometric Mean Bias (MG), Normalised Mean Squared Error 261 
(NMSE), Geometric Variance (VG), Correlation Coefficient (R), and the fraction of predictions 262 
within a factor of two of observations (FAC2), see Appendix C. A perfect model would have 263 
MG, VG, R, and FAC2 = 1; and FB and NMSE = 0. However, there is no such thing as a 264 
perfect model, because of the influence of random processes involved in the system [44,45].  265 
 266 
4. Results 267 
4.1. Data processing 268 

Table 1 illustrates the ensemble-average of the WD values obtained from LiDAR 269 
measurements depicted in [1], in addition to MERRA-2, and post-processed SCADA datasets in 270 
the four WD cases. At the same time, it ensures the validity of the categorisation process held by 271 
comparing the average WD values from both SCADA and LiDAR. There is only a slight 272 

(4) 

(6) 
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difference between the SCADA values shown in this table and their corresponding LiDAR 273 
values, which confirms the validity of the process. This insignificant difference might result from 274 
the application of the grid availability condition during categorisation of the SCADA dataset. 275 
However, there is a very good agreement between the results that are within a range of about 276 
±2°, similarly as it was mentioned in [1]. The statistical convergence of SCADA data was ensured 277 
in a similar way that was reported in [1] for LiDAR data. 278 

Table 1: Summary of characteristics of the four cases after categorisation. The cases were 279 
extracted from periods when the atmosphere was neutral according to the MERRA-2 dataset.  280 

 Wind Direction (WD) [°] 

Case 
Interaction level 

LiDAR MERRA-2 
SCADA  

SMV6     SMV5 

207° Full 208° 209° 210.3° 210.2° 
220° Partial 219° 220° 217.8° 218° 
233° Weak 233° 235° 231° 229.9° 
246° Zero 246° 245° 243.4° 241.7° 

 281 
Table 2 shows the ensemble-averaged values for different variables after categorisation. 282 

Some of these variables such as the average streamwise WS and 𝐼𝑢, are fed into the analytical 283 
wake models as inputs to obtain the VD in the streamwise direction within the wake. Some 284 
variables could be obtained from both MERRA-2 and SCADA datasets, while others were only 285 
obtained from either of them. There is an expected difference between the average WS values 286 
obtained from MERRA-2 and SCADA for WT-SMV6. That is because both datasets have 287 
different sources of uncertainty, and because the altitude at which the WS is given is different 288 

(50 𝑚 for MERRA-2 and 80 𝑚 for SCADA). There is a significant difference between the values 289 
obtained from WT-SMV6 and WT-SMV5, which demonstrates the wake interaction effect. Also, 290 
in the case of WS and power, there is a significant decrease between values for the two WTs 291 
when wakes fully interact (𝑊𝐷 = 207°), and this decrease reduces as the degree of interaction 292 

decreases. Regarding 𝐼𝑢, there is an increase in case of full interaction, which fades away as the 293 

interaction level decreases. The average value of 𝐿 in the four WD cases shows that they lie in 294 
near-neutral ABL. 295 

 296 
Table 2: Ensemble-averaged values of variables of interest after categorisation. 297 

Wind Speed (WS) [m.s-1] Power [kW] 𝑰𝒖 𝑳 [m] 

Case MERRA-2 
SCADA  

SMV6     SMV5 

SCADA SCADA 
MERRA-2 

SMV6 SMV5 SMV6 SMV5 

207° 12.88 11.79 9.63  1683.55 1202.72 0.129 0.183 887.43 

220° 12.74 11.80  10.12  1709.82 1343.66 0.125 0.163 1195.46 

233° 12.48 11.84  11.41  1787.20 1721.89 0.107 0.114 1774.96 

246° 12.61 11.45  11.16  1721.72 1723.61 0.103 0.104 1025.11 

 298 
The average streamwise WS values shown in Table 2 are used to calculate the thrust 299 

coefficient (𝐶𝑇) of the WTs, which is an important parameter in the analytical wake models. 𝐶𝑇 is 300 

computed using linear interpolation with the help of the 𝐶𝑇 table provided in the WT 301 

manufacturer's data sheet. Table 3 shows the calculated 𝐶𝑇 values to be fed into the wake models 302 

together with the values of WS and 𝐼𝑢 from Table 2. 303 

 304 

Table 3: Thrust coefficient (𝐶𝑇) of both wind turbines in each wind direction case. 305 

CT 
Case 

207° 220° 233° 246° 
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SMV6 0.5345 0.5342 0.5291 0.5765 
SMV5 0.7419 0.7094 0.5811 0.6111 

 306 
 307 

4.2. Relationship between atmospheric stability and turbulence intensity 308 

To study the relationship between the atmospheric stability, described by 𝐿, and the free-309 

stream turbulence intensity (𝐼𝑢), three atmospheric stability cases are included with their 310 

corresponding 𝐿 ranges: 1) Near-neutral (|𝐿| ≥ 300 𝑚), 2) Stable (0 ≤ 𝐿 < 300 𝑚), 3) 311 
Convective (−300 𝑚 < 𝐿 < 0). Configurations with wake interaction are neglected in this 312 

specific study, thus, the 4 WDs for WT-SMV6, and 𝑊𝐷 = 246° for WT-SMV5 are only 313 
considered. Five WSs are considered; 5 𝑚. 𝑠−1, 7 𝑚. 𝑠−1, 9 𝑚. 𝑠−1, 11 𝑚. 𝑠−1and 13 𝑚. 𝑠−1, with 314 
a tolerance of ±1.95. By including the different WSs, different degrees of flow advection are 315 
considered. Generally, in strong winds, atmospheric stability conditions tend to near-neutral, 316 
whereas stable and unstable winds occur more in case of lighter winds.  317 

 318 
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 Figure 4: Relationship between atmospheric stability (𝐿) and free-stream turbulence intensity 319 

(𝐼𝑢) at different wind speeds for zero-wake interaction cases, where each stability range is 320 
bounded by a light blue vertical line, and the numbers 1, 2 and 3 correspond to the near-neutral, 321 

stable and convective stability ranges respectively. (a) 𝑊𝑆 = 5 𝑚. 𝑠−1, (b) 𝑊𝑆 = 7 𝑚. 𝑠−1, (c) 322 
𝑊𝑆 = 9 𝑚. 𝑠−1, (d) 𝑊𝑆 = 11 𝑚. 𝑠−1, (e) 𝑊𝑆 =  13 𝑚. 𝑠−1 323 

Fig. 4 illustrates the relationship between 𝐿 and 𝐼𝑢 measured by the WTs, at different WS 324 
ranges for zero-wake interaction cases. It is obvious in the figure that, as expected, the data 325 
points, migrate from near-neutral atmospheric stability at strong winds (higher WSs), towards 326 

stable and unstable stability configurations as the WS decreases. Furthermore, a trend between 𝐼𝑢 327 

and 𝐿, can be detected when the WS changes from 5 m. s−1 to 13 𝑚. 𝑠−1. 𝐼𝑢 tends towards a 328 
consistent value and presents less scatter as the atmospheric stability goes towards the neutral 329 
stability configurations. This analysis gives confidence on the strategy, which was applied in the 330 
previous [1] and the present paper, of filtering the database according to the Monin-Obukhov 331 

Length (𝐿) deduced from MERRA-2 to extract near-neutral configurations, since the actual 332 
turbulence intensity measured onsite for the selected periods presents a homogenous and 333 
coherent level. 334 

 335 
 336 

4.3. Wake added turbulence intensity 337 

The effect of the wake added turbulence intensity (∆𝐼) on the velocity deficit (VD) and 338 
the power deficit (PD) was investigated. The VD and PD are obtained from the categorised 339 
SCADA data in near-neutral atmospheric stability conditions. 340 

 341 
4.3.1.  Wake added turbulence intensity and velocity deficit 342 

The relationship between the VD, obtained from Eq. (3), and ∆𝐼, calculated using Eq. (6), 343 
was investigated (Fig. 5). Fig. 5 comprises all the four cases of the wake interaction presented in 344 
this study to have a global view of the evolution between the two variables. The distribution of 345 

VD with respect to ∆𝐼 is in line with the fact that for the case of full-wake interaction (WD207°), 346 

∆𝐼 is the largest, which reflects on the data scatter also, as the degree of scatter is high. Then it 347 

decreases gradually with the reduction in the degree of wake interaction. As there is less ∆𝐼 and 348 
scatter in case of the partial-wake interaction (WD220°) than the full interaction case. This is 349 
followed by the weak interaction case (WD233°), and finally, the zero interaction case (WD246°) 350 

with the lowest ∆𝐼 and data scatter. 351 

 352 
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 353 
Figure 5: Curve fitting of the evolution of 𝑉𝐷𝑆𝐶𝐴𝐷𝐴 with ∆𝐼 at different wake interaction degrees 354 

in near-neutral stability conditions 355 
 356 

It is noticed that there is a trend between both variables. So, curve fitting was performed to 357 
check the best fit for the data as shown in Fig. 5. It was found that the data follows an 358 
exponential trend: 359 

𝑉𝐷𝑆𝐶𝐴𝐷𝐴 = 𝑎(𝑒𝑏∆I2
− 1) 360 

where 𝑎 and 𝑏 are two fitted coefficients (with 95% confidence bounds); with 𝑎 = 526.2 and 361 

𝑏 = 0.0207. Furthermore, the statistical measures of the goodness of fit are 𝑆𝑆𝐸 = 0.8336, 𝑅 −362 
𝑠𝑞𝑢𝑎𝑟𝑒 = 0.6081, 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅 − 𝑠𝑞𝑢𝑎𝑟𝑒 = 0.6066, and 𝑅𝑀𝑆𝐸 = 0.05695. More details about 363 
those statistical measures can be found in [46]. 364 

The fit assessment metrics are not the best, especially, the confidence bounds and SSE 365 
because of the data scatter.  366 
 367 
4.3.2. Wake added turbulence intensity and power deficit 368 

The relationship between the PD, obtained from Eq. (4), and ∆𝐼, calculated using Eq. (6), 369 
was investigated (Fig. 6).  370 

 371 

 372 
Figure 6: Curve fitting of the evolution of 𝑃𝐷𝑆𝐶𝐴𝐷𝐴 with ∆𝐼 at different wake interaction degrees 373 

in near-neutral stability conditions 374 
 375 

(5) 
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The trend in Fig. 6 looks similar to the one in Fig. 5, which is expected since the 376 
generated power is a function of the cube of the WS. Consequently, the same process was held 377 
for PD, and a curve fitting was performed. It was found that the data follows an exponential 378 
trend like in VD case: 379 

𝑃𝐷𝑆𝐶𝐴𝐷𝐴 = 𝑐(𝑒𝑑∆I3
− 1) 380 

where 𝑐 and 𝑑 are two fitted coefficients (with 95% confidence bounds); with 𝑐 = 999.4 381 
and 𝑑 = 0.1275. Moreover, the statistical measures of the goodness of fit are 𝑆𝑆𝐸 = 5.147, 𝑅 −382 

𝑠𝑞𝑢𝑎𝑟𝑒 = 0.4885, 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅 − 𝑠𝑞𝑢𝑎𝑟𝑒 = 0.4865, and 𝑅𝑀𝑆𝐸 = 0.1415.  383 
Like in the case of VD, the fit assessment metrics are not good, which is expected with 384 

such scatter.  385 
Both laws in Eq. (5) and Eq. (6) are not universal since they will change with other 386 

parameters that have not been considered here. Mainly, the relative position of wind turbines, 387 
their operating point, and the atmospheric stability conditions. However, it is shown that a clear 388 
trend can be extracted, giving confidence in the present handling of categorised SCADA data. 389 
Additionally, this feature could be used to better predict the added turbulence within the wakes, 390 
or to calibrate the added turbulence intensity models used in combination with wake 391 
superposition models. These aspects are out of the scope of the present paper but require further 392 
investigation in this direction. 393 
 394 
4.4. Comparison of wake models  395 

In this part, a distinct study of the wakes, applying the categorisation process in section 3, 396 
is held where a comparison between the different engineering wake models is conducted. 397 

 398 
4.4.1. Wake contours 399 

Some wake contours are shown for visualisation purposes to replicate what was done in 400 
[1] but using the analytical wake models. For this matter, the normalised velocity contours for the 401 
different wake models are shown in the following figures, showing the wake evolution in the 402 
horizontal streamwise and crosswise directions at hub height.  403 

  

(6) 
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Figure 7: Normalised velocity contours at 𝑊𝐷 = 207° produced using different wake models, 404 

(a) Jensen, (b) Frandsen et al., (c) Bastankhah and Porté-Agel, (d) Blondel and Cathelain. 405 

4.4.2.  Velocity deficit from analytical wake models and field measurements 406 
In this part, the VDs obtained from the analytical wake models are compared with the one 407 

obtained from the field measurements (LiDAR). This was realised by extracting the velocity at 408 

the wake centre assumed at 𝑦 = 0 from the wake contours in Section 4.4.1. The objective is to 409 
have a global overview on the performance of the different wake models and superposition 410 
methods. 411 

  

  

 412 
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Figure 8: Comparison between the evolution of the normalised velocity deficits (𝑉𝐷) calculated 413 

at 𝑦 = 0 and the measurement altitude (𝑧), and obtained from the different engineering wake 414 

models superimposed by Lissaman method (𝑉𝐷𝑀𝑜𝑑𝑒𝑙) with the one obtained experimentally 415 
(𝑉𝐷𝐿𝑖𝐷𝐴𝑅) in the four WDs depicted from  Torres-Garcia et al. [1], with respect to the 416 

normalised downstream distance (𝑥/𝐷𝑟). (a) 𝑊𝐷 = 207°, (b) 𝑊𝐷 = 220°, (c) 𝑊𝐷 = 233°, (d) 417 
𝑊𝐷 = 246°. 418 

Fig. 8 shows the comparison between the VD obtained from the different analytical wake 419 
models, with respect to the VD presenting the field (LiDAR) measurements, calculated using Eq. 420 

(1) for different 𝑥/𝐷𝑟 in each of the four WD configurations. The variation in the altitude of 421 
each LiDAR data point, (see Appendix D), was considered when applying the wake models to 422 
have a reliable comparison [1]. The grey rectangles in the figure mark the area of influence of the 423 
WTs where the LiDAR measurements were contaminated by reflection on the rotor [1]. The 424 
VDs obtained from the analytical wake models were calculated at the wake centre assumed at 425 

𝑦 = 0 in the horizontal crosswise direction, which is the location of maximal velocity deficit. The 426 
VDs extracted from the scanning LiDAR measurements also represent the maximum VD within 427 
the wake, but its y-coordinate can be slightly different than 0 [1]. However, it is considered that 428 
this does not play an important role in the comparison.  429 

The sudden increase in VD noticed at WT-SMV5 location in Fig. 8a and 8b corresponds to 430 

wake interaction with full-wake overlapping for 𝑊𝐷 = 207° and partial one for 𝑊𝐷 = 220°. 431 
Even though there is a small interaction in case of 𝑊𝐷 = 233° shown in Fig. 8c, there is no 432 
obvious increase in the VD like the ones occurring in the overlapping cases, yet there is an 433 
interaction which can be detected far downstream as the wake evolves for further distance.  434 

Jensen model neither accounts for the induction zone, nor the near-wake zone. This is not 435 
realistic as its VD is always decreasing downstream for a single WT case. In case of a single wake 436 
(WT-SMV6), there is always an underestimation of the VD because of the top-hat distribution 437 
assumption for wake VD profiles. As it seems to depend on the wake interaction level between 438 
WT-SMV6 and WT-SMV5, ranging between 10% - 20% for full interaction (𝑊𝐷 = 207°). 439 
However, this range decreases as the wake interaction level decreases. This is because it is 440 
affected by the weakening of the induction zone of WT-SMV5. In case of the wake downstream 441 
of WT-SMV5, it depends on the wake interaction level. If there is wake interaction, there is an 442 
overestimation, otherwise the underestimation continues like in case of WT-SMV6. 443 

Frandsen model does not consider the induction and near-wake zones like Jensen model, yet 444 
nothing was mentioned in the literature about the correct starting downstream position of its 445 
application. It also underestimates VD for single wake (WT-SMV6), also because of the top-hat 446 
assumption like in case of Jensen, but in this case, the degree of underestimation is even greater 447 
than that of Jensen's. Even for the wake of WT-SMV5, underestimation continues, but in this 448 
case the wake interaction has the opposite effect on the degree of underestimation, as it is the 449 
smallest in case of full interaction, then increases as the interaction level decreases. 450 

Bastankhah and Porté-Agel model is developed to be applicable only in the far-wake. That is 451 

why its starting point of application is at a downstream distance of 2𝐷𝑟 from the WT according 452 
to [13]. Overall, this model seems to perform well, and better than Jensen and Frandsen models. 453 
Its overall performance is good either for a single wake (WT-SMV6), or for the superimposed 454 
wake (WT-SMV5). It seems that for a single wake, it underestimates the VD with a smaller 455 
percentage than that from Jensen and Frandsen et al. models, then this percentage decreases as 456 
wake interaction decreases. The underestimation continues decreasing as long as there is an 457 
interaction of wakes. Once the wake interaction disappears, the model overestimates the VD. On 458 
the other hand, for the superimposed wake of WT-SMV5, there is always an overestimation of 459 
VD. In some cases of interaction like partial and weak interaction cases, the model performs very 460 
well compared to the full and zero interaction cases. 461 
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Blondel and Cathelain model accounts for the near-wake in addition to the far-wake zone as 462 
shown in Fig. 8. Generally, it performs in a similar manner as Bastankhah and Porté-Agel but 463 
produces closer values to the LiDAR measurements. It underestimates the VD for single wake 464 
(WT-SMV6) looking at the full-wake interaction, but the underestimation decreases as the wake 465 
interaction decreases, then overestimation occurs when interaction vanishes. For the 466 
superimposed wake, the model does very well in case of partial and weak interaction compared to 467 
the full and zero interaction cases where there is an overestimation. Overall, the model performs 468 
significantly well in the cases of partial and weak-wake interaction compared to the other two 469 
cases.  470 

Additionally, Aitken et al. model performs very well generally in the single wake cases (WT-471 
SMV6), and in the superimposed wake (WT-SMV5) in some configurations.  472 

 473 
4.4.3. Performance assessment of analytical wake models 474 

The performances of the analytical wake models and the wake superposition methods are 475 
investigated by applying the performance metrics to find out which model returns the closest 476 
results to the field measurements.  477 

Since the purpose of the analytical wake models is to describe the wake of a single wind 478 
turbine, the performance metrics for the zero-wake interaction case were firstly computed, to 479 
specify which wake model works the best when compared to the field measurements. The case of 480 
zero-wake interaction comprises WT-SMV6 in the four WD configurations, in addition to WT-481 
SMV5 for the 𝑊𝐷 = 246° configuration as shown in Table 4. Afterwards, the metrics for the 482 
cases with wake interaction were calculated to specify the wake superposition method that works 483 
best with the specified wake model as shown in Table 5. 484 

During calculating the performance metrics for the different wake models for WT-SMV6, the 485 
points lying in the induction zone upstream of WT-SMV5 (which starts with the sudden increase 486 
in VD of the single wake (WT-SMV6)) were disregarded. So, they should not be considered while 487 
checking the figures. However, for superimposed wake (WT-SMV5), the performance of the 488 
different superposition methods becomes important.  489 

 490 
Table 4: Performance metrics for the best wake model specification. The model with the 491 
optimum values is shown together with its absolute values of the maximum and minimum 492 

deviations from the ideal value of each metric. 493 
Case SMV6 (4WDs) & SMV5 (WD246°) 
Interaction level Zero interaction 

FB (-2 < FB < 2) Blondel and Cathelain (0.03 - 0.23) 
MG (0.75 < MG < 1.25) Blondel and Cathelain (0.79 - 1.11) 
NMSE (NMSE ≤ 0.5) Blondel and Cathelain (0.005 - 0.05) 
VG (0.75 < VG < 1.25) Blondel and Cathelain (1.004 - 1.06) 
R (Ideal = 1) Jensen (0.9 - 0.93) 
Mean FAC2 (Ideal =1) Blondel and Cathelain (0.9 - 1.3) 

 494 
Table 4 summarises the performance metrics calculated for all the wake models used in the 495 

study. For each metric, the wake model with the best results was chosen. According to Table 4, 496 
Blondel and Cathelain model dominates significantly in almost all the metrics. It returns the 497 
closest result to the ideal value of each metric. Therefore, Blondel and Cathelain model is 498 
considered as the best performing wake model. Consequently, the wake superposition method 499 
which works best with Blondel and Cathelain model is specified afterwards in Table 5. 500 

 501 
Table 5: Performance measures for the best wake superposition method specification with 502 

Blondel and Cathelain wake model. The method with the optimum value in each case is shown 503 
together with the value of the metric.  504 
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Case SMV5 (WD207°) SMV5 (WD220°) SMV5 (WD233°) 
Interaction level Full interaction Partial interaction Weak interaction 

FB (-2 < FB < 2) Katić et al. (0.14) Lissaman (0.01) Lissaman (0.001) 
MG (0.75 < MG < 1.25) Lissaman (0.82) Lissaman (1.02) Lissaman (1.003) 
NMSE (NMSE ≤ 0.5) Lissaman (0.03) Lissaman (0.001) Lissaman (0.002) 
VG (0.75 < VG < 1.25) Lissaman (1.042) Lissaman (1.002) Lissaman (1.002) 
R (Ideal = 1) Lissaman (0.96) Lissaman (0.96) Katić et al. (0.96) 
Mean FAC2 (Ideal =1) Katić et al. (0.91) Lissaman (0.982) Lissaman (0.997) 

 505 
Therefore, according to Tables 4 and 5, Blondel and Cathelain model coupled with Lissaman 506 

wake superposition method was concluded to perform the best. The same procedure used to 507 
generate Table 5, was used for Jensen, Frandsen et al. and Bastankhah and Porté-Agel models to 508 
have the comparison figures with each wake model coupled with the wake superposition method 509 
that works best with it. It was found that Lissaman method works best with Jensen, Frandsen et 510 
al. and Bastankhah and Porté-Agel models too.  511 

 512 
5. Conclusions and future work 513 

A scanning LiDAR measurement campaign was conducted for a 7-month duration in 514 
SMARTEOLE project to study the wake behaviour and characteristics. The campaign was set up 515 
such that the wakes of two WTs were measured. Four WDs were selected (207°, 220°, 233° and 516 
246°) corresponding to different wake interaction levels. Only near-neutral atmospheric 517 
boundary layer was considered in the wake models comparison study.  518 

MERRA-2 dataset was used for the categorisation of data, and the post-processing of the 519 
scanning LiDAR measurements was previously done by Torres-Garcia et al. [1].  520 

The aim of the present study was to validate the engineering wake models in comparison with 521 
full scale WTs wake evolution obtained with scanning LiDAR measurements. This required 522 
complementing the LiDAR measurements with WTs SCADA data. The main objective was to 523 
obtain the operational and environmental data acquired by SCADA during the LiDAR 524 
measurement campaign to feed the analytical wake models to mitigate the uncertainties on 525 
specific inputs as the turbulence intensity and the WT thrust coefficient. However, another 526 
secondary objective was to find or validate relationships between the specific data such as the 527 
atmospheric stability and the free-stream turbulence intensity, and velocity and power deficits 528 
with respect to the wake added turbulence intensity.  529 

The correlation between the atmospheric thermal stability and the free-stream turbulence 530 

intensity (𝐼𝑢)  was investigated. Different WSs were involved to consider different wind strengths, 531 
and, thus, different atmospheric stability conditions: neutral, stable, and convective atmospheric 532 

boundary layers, expressed with Monin-Obukhov Length (𝐿). As expected, a smaller scatter was 533 

noticed in 𝐼𝑢 in case of high winds, and the atmospheric stability conditions tended towards the 534 
neutral stability configuration. However, in case of light winds, there was much more scatter in 535 

𝐼𝑢, and the atmospheric stability conditions tended towards convective or stable configurations. 536 

While investigating the relationship between the wake added turbulence intensity (∆𝐼), a clear 537 

trend was detected between the velocity and power deficits with respect to ∆𝐼. Consequently, 538 
empirical equations relating those variables were obtained by curve fitting of the data. It was 539 

found that both velocity and power deficits follow an exponential trend with respect to ∆𝐼.  540 
Before applying the engineering wake models coupled with the wake superposition methods, 541 

a performance assessment of the different wake models was held first by calculating different 542 
statistical error metrics in case of zero-wake interaction, which showed how close the wake 543 
models predictions compared to the field LiDAR measurements. Blondel and Cathelain wake 544 
model was the one with the best results compared to the rest of the models. Afterwards, another 545 
performance assessment of the wake superposition methods in case of wake interaction, when 546 
coupled with Blondel and Cathelain model, was conducted. Based on the assessment results, 547 
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Lissaman superposition method was found to perform the best with Blondel and Cathelain 548 
model.  549 

Regarding future work, the usage of the more sophisticated ERA5 reanalysis would be better 550 
suited, as it has proven its superiority [47]. Indeed, the ERA5 reanalysis is based on a refined grid 551 
with higher spatial and temporal resolutions. Furthermore, the data is at 100 𝑚, which is closer 552 

to the hub height than the data from MERRA-2 at 50 𝑚. Also, it is important to study other 553 
atmospheric stability conditions as in Aubrun et al. [28] since atmospheric stability is not properly 554 
considered neither in experiments nor in analytical wake models [5].  555 

 556 
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- Appendix A: Engineering wake models  701 

 Aitken et al. model: 702 
An empirical wake model that assumes a power-law relationship of the VD with 703 

downstream distance 𝑥𝑊𝐷. The model was developed based on the fitting of a 704 
collection of measurements dated between 1981 and 2013 [1,25], and defined as: 705 

 706 

𝑉𝐷(𝑥𝑊𝐷) = 0.56 (
𝑥𝑊𝐷

𝐷𝑟
)

−0.57

 707 

 Jensen model: 708 
Jensen model is derived by applying the conservation of mass to a control volume 709 

downwind of the wind turbine, and then using Betz theory to relate the wind speed 710 

just behind the rotor to the turbine thrust coefficient 𝐶𝑇 [5,38]. It neglects the near-711 
wake region, and assumes a top-hat distribution, for the velocity deficit in the wake 712 
for the sake of simplicity [5,9]. The normalized velocity deficit based on this model is 713 
given by: 714 

∆𝑢

𝑢𝑜
=

1 − √1 − 𝐶𝑇

(1 + 2𝑘�̃�)2
 715 

where 𝑢𝑜 is the mean incoming wind speed, and obtained from SCADA for WT-716 

SMV6, and ∆𝑢 = 𝑢𝑜 − 𝑢𝑤, where 𝑢𝑤 is the wind speed within the wake region, and 717 

𝑘  is the wake growth rate, which is obtained from 𝑘 = 0.4𝐼𝑢, with 𝐼𝑢, provided in 718 
Table 2, corresponding to each WT in a certain WD, is utilised. While the wake 719 

diameter, 𝐷𝑤(𝑥) = 𝐷𝑟 + 2𝑘𝑥, is assumed to expand linearly as a function of the 720 

downstream distance at a rate 𝑘. 721 
 722 

 Frandsen et al. model: 723 
Frandsen et al. [12] applied both mass and momentum conservation equations 724 

over a control volume surrounding the turbine to derive their model. Similar to 725 
Jensen model, the top-hat shape was assumed for velocity-deficit profiles in the wake 726 
[5,12,13]. The model is defined as follows: 727 

 728 

∆𝑢

𝑢𝑜
= 0.5 (1 − √1 −

2𝐶𝑇

𝛽 + 𝛼�̃�
) 729 

 730 

where 𝛼 is the wake expansion factor, equal to 10𝑘, while 𝛽 is function of 𝐶𝑇, and it 731 

is meaningful for values of 𝐶𝑇 between 0 and 1 [5,12], which was ensured before 732 

using the model. Additionally, 𝐷𝑤(𝑥) = 𝐷𝑟(𝛽1.5 + 𝛼�̃�)
1
3, and 𝛽 is expressed by: 733 

 734 

𝛽 =
1 + √1 − 𝐶𝑇

√1 − 𝐶𝑇

 735 

 736 

 Bastankhah and Porté-Agel model: 737 
Bastankhah and Porté-Agel [13] developed an extension of Jensen model in which 738 

the linear wake expansion is retained, but the overly simplified top-hat profile is 739 
replaced with a Gaussian self-similar profile, which more closely approximates a 740 
classic far-wake profile [5,13]. It is described by: 741 

 742 

(A.1) 

(A.1) 

(A.2) 

(A.3) 

(A.4) 
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∆𝑢

𝑢𝑜
= (1 − √1 −

𝐶𝑇

8(𝜎 𝐷𝑟⁄ )2
) exp (−0.5 [

𝑦2

𝜎2
+

(𝑧 − 𝑧ℎ)2

𝜎2
]) 743 

 744 

with 𝜎 = 𝑘𝑤𝑥 + 0.2√𝛽𝐷𝑟 the standard deviation of the Gaussian-like velocity deficit 745 

profiles at each 𝑥 as stated in [13], and 𝑘𝑤 the wake growth rate for this model taken 746 

as  𝑘𝑤 ≈ 0.3837𝐼𝑢 + 0.0037 [5,32,40]. 𝐼𝑢 is provided in Table 2. 747 
 748 

 Blondel and Cathelain model: 749 
Blondel and Cathelain model [15] takes into account the near-wake zone, as the 750 

absolute Gaussian shape is replaced with a super-Gaussian shape, in addition to 751 
preserving the mass and momentum conservation. The super-Gaussian function 752 

tends towards a top-hat shape for high values of the super-Gaussian order 𝑛 in the 753 

near-wake conditions, and 𝑛 decreases gradually with the downstream distance 𝑥. 754 
This gradual decrease involves a gradual transition in the shape of the wake velocity 755 

profiles, from super-Gaussian to Gaussian. Once 𝑛 = 2, the traditional Gaussian 756 
shape is recovered, which signifies reaching the far-wake region. It is expressed by:  757 
 758 

∆𝑢

𝑢𝑜
= (2

2
𝑛

−1 − √2
4
𝑛

−2 −
𝑛𝐶𝑇

16Γ(2 𝑛⁄ )�̃�4 𝑛⁄
) exp (−

�̃�𝑛

2�̃�2
) 759 

 760 

where Γ is the Gamma function, while �̃� and �̃� are the standard deviation and the 761 
radial distance from the wake centre respectively. The tilde symbol denotes a 762 

normalisation by the wind turbine diameter,𝐷𝑟. The wake characteristic width is �̃� =763 

(0.17𝐼𝑢 + 0.005)�̃� + 0.2√𝛽 in the original version of the model in [15], but after 764 

the further calibration and validation performed in [37], it became �̃� = (0.18𝐼𝑢 +765 

0.0119)�̃� + (0.0564𝐶𝑇 + 0.13)√𝛽. Regarding 𝑛, it can be obtained using; 𝑛 ≈766 

𝑎𝑓𝑒𝑏𝑓�̃� + 𝑐𝑓, with 𝑎𝑓 = −3.11, 𝑏𝑓 = −0.68, and 𝑐𝑓 = 2.41 according to the 767 

original model [15], however, after calibration in [37], 𝑎𝑓 takes the value which 768 

ensures that the maximum normalised velocity deficit at the disk, 𝑉𝐷𝑚𝑎𝑥(0), equals 769 

the axial induction factor (𝑎 = 0.5[1 − √1 − 𝐶𝑇]), 𝑏𝑓 = 1.59𝑒−23.31𝐼𝑢 − 2.15, and 770 

𝑐𝑓 = 2.98. This development in the model is explained in both Figs. A.1 & A.2. It 771 

fair to say that 𝑛 differs from one wind farm to another depending on the operating 772 
conditions.  773 
 774 

Fig. A.1 shows the evolution of 𝑛 with respect to 𝑥/𝐷𝑟 for both versions. It appears 775 

that 𝑛 does not reach 2. Hence, the typical Gaussian shape of the far-wake is not 776 

imposed even at 𝑥/𝐷𝑟 = 8, which is confirmed in Fig. A.2.  This is only correct for 777 

the old model. For the new model, 𝑛 does not reach 2 either. However, it produces 778 
considerably improved results, and the Gaussian shape is imposed in the far-wake as 779 
shown in Fig. A.2. This demonstrates the improvement incorporated in the new 780 
model. 781 
 782 
 783 

(A.5) 
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Figure A.1: Evolution of the super-Gaussian order (𝑛) with the normalised downstream distance 784 
(𝑥/𝐷𝑟) for both the old and new versions of Blondel and Cathelain wake model, with (a) WT-SMV6, (b) 785 

WT-SMV5 786 

  

  

 787 
Figure A.2: Comparison between the evolution of the normalised velocity deficits (𝑉𝐷) 788 

calculated at 𝑦 = 0 and the measurement altitude (𝑧), and obtained from both the old and new 789 
versions of Blondel and Cathelain wake model superimposed by Lissaman method (𝑉𝐷𝑀𝑜𝑑𝑒𝑙), 790 

with the one obtained experimentally (𝑉𝐷𝐿𝑖𝐷𝐴𝑅) in the four WDs depicted from  Torres-Garcia et 791 
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al. [1], with respect to the normalised downstream distance (𝑥/𝐷𝑟). (a) 𝑊𝐷 = 207°, (b) 𝑊𝐷 =792 
220°, (c) 𝑊𝐷 = 233°, (d) 𝑊𝐷 = 246°. 793 

 794 
- Appendix B: Wake superposition methods 795 

 Lissaman method: 796 
Lissaman's technique is based on the linear superposition of velocity deficit, and is 797 

defined as in [36]: 798 

𝑢(𝑋) = 𝑢∞ − ∑ ∆𝑢𝑖(𝑋)

𝑛

𝑖=1

 799 

where ∆𝑢𝑖(𝑋) = 𝑢∞ − 𝑢𝑖(𝑋). 800 
 801 

 Katić et al. method: 802 
This technique is based on the linear superposition of energy deficit, and is expressed 803 

as in [38]: 804 
 805 

𝑢(𝑋) = 𝑢∞ − √∑ ∆𝑢𝑖
2(𝑋)

𝑛

𝑖=1

 806 

where ∆𝑢𝑖(𝑋) = 𝑢∞ − 𝑢𝑖(𝑋). 807 
 808 

 Voutsinas et al. method: 809 
Similar to Katić et al. method, this technique is based on the linear superposition of 810 

energy deficit, and is given as in [39]: 811 

𝑢(𝑋) = 𝑢∞ − √∑ ∆𝑢𝑖
2(𝑋)

𝑛

𝑖=1

 812 

where ∆𝑢𝑖(𝑋) = 𝑢𝑖𝑛,𝑖 − 𝑢𝑖(𝑋). 813 
 814 

 Niayifar and Porté-Agel method: 815 
Similar to Lissaman's method, this method is based on the linear superposition of 816 

velocity deficit, and is given as in [40]: 817 

𝑢(𝑋) = 𝑢∞ − ∑ ∆𝑢𝑖(𝑋)

𝑛

𝑖=1

 818 

where ∆𝑢𝑖(𝑋) = 𝑢𝑖𝑛,𝑖 − 𝑢𝑖(𝑋). 819 
Although, Lissaman, and Niayifar and Porté-Agel share the same approach, and the same 820 

case applies for Katić et al., and Voutsinas et al., however, there is a difference when it comes to 821 
calculating ∆𝑢𝑖(𝑋). As it is calculated based on the undisturbed incoming boundary-layer flow 822 
speed, 𝑢∞, in case of Lissaman and Katić et al., however, it is calculated using, 𝑢𝑖𝑛,𝑖 the incoming 823 
flow speed for that (ith) wind turbine [5] in case of Voutsinas et al. and Niayifar and Porté-Agel. 824 
So, the differences in the superposition methods arise from; 1) Different superposition principles; 825 
linear superposition of velocity deficit or energy deficit, 2) Different definitions of the velocity 826 
deficit caused by the ith turbine. 827 

 828 
- Appendix C: Performance measures 829 

(B.1) 

(B.2) 

(B.3) 

(B.4) 
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There are two types of errors: systematic error (e.g., uncalibrated sensor), which refers to the 830 
ratio of the model predictions (𝐶𝑝) to the observations (𝐶𝑜), and random error, which is due to 831 

unpredictable fluctuations [44]. Each one of the measures indicates one of them, or sometimes 832 
both. Those performance measures are given as follows [44,45]: 833 

 Fractional Bias (FB): Measures only the mean relative bias indicating the systematic 834 
error of a model that refers to the arithmetic difference between 𝐶𝑝 and 𝐶𝑜, and is based 835 

on a linear scale. FB is expressed by: 836 

𝐹𝐵 =  
(𝐶𝑜

̅̅ ̅ − 𝐶𝑝
̅̅ ̅)

0.5(𝐶𝑜
̅̅ ̅ + 𝐶𝑝

̅̅ ̅)
 837 

 Geometric Mean Bias (MG): Does the same task as FB, however, the difference 838 
between them is that MG is based on a logarithmic scale, which is more suitable in case 839 
𝐶𝑝 and 𝐶𝑜 vary by many orders of magnitude, and it is described by: 840 

 𝑀𝐺 =  𝑒ln (C𝑜)̅̅ ̅̅ ̅̅ ̅̅ ̅−ln (C𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅
 841 

 842 

 Normalised Mean Squared Error (NMSE): A measure of the mean relative scatter 843 
and describes both systematic and random errors. It is based on a linear scale like FB, 844 
and is given by: 845 

𝑁𝑀𝑆𝐸 =
(𝐶𝑜 − 𝐶𝑝)

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐶𝑜
̅̅ ̅ 𝐶𝑝

̅̅ ̅
 846 

 Geometric Variance (VG): A measure of the mean relative scatter as well as NMSE, 847 
but based on a logarithmic scale, and is given by: 848 

𝑉𝐺 =  𝑒(ln (𝐶𝑜)−ln (𝐶𝑝))
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 849 

 Correlation Coefficient (R): Demonstrates the linear relationship between two 850 
variables, and expressed by: 851 

𝑅 =
(𝐶𝑜 − 𝐶𝑜

̅̅ ̅)(𝐶𝑝 − 𝐶𝑝
̅̅ ̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜎𝐶𝑜
𝜎𝐶𝑝

 852 

 The fraction of predictions within a factor of two of observations (FAC2): The 853 
most robust measure, because it is not overly influenced by high and low outlier, and it 854 
is described by: 855 

0.5 ≤ 𝐹𝐴𝐶2 =
𝐶𝑝

𝐶𝑜
≤ 2 856 

where the overbar 𝐶̅ denotes the average value all over the dataset, and 𝜎𝐶 expresses the standard 857 
deviation all over the dataset. 858 
  859 
- Appendix D: LiDAR measurements altitudes 860 

 861 

𝒛𝑺𝑴𝑽𝟔 𝒛𝑺𝑴𝑽𝟓 

207° 220° 233° 246° 207° 220° 233° 246° 

99.11 99.14 99.06 99.01 86.04 85.69 85.71 85.86 

98.63 98.58 98.44 98.37 85.63 85.19 85.12 85.23 

98.14 98.02 97.82 97.72 85.22 84.68 84.54 84.60 

97.67 97.47 97.20 97.08 84.82 84.18 83.96 83.96 

97.19 96.91 96.58 96.43 84.41 83.69 83.38 83.33 

96.71 96.36 95.97 95.79 84.01 83.20 82.79 82.70 

96.24 95.80 95.35 95.14 83.62 82.71 82.21 82.07 

95.77 95.25 94.73 94.50 83.23 82.22 81.63 81.44 

95.29 94.70 94.12 93.86 82.84 81.73 81.06 80.81 

94.83 94.15 93.50 93.21 82.45 81.25 80.48 80.18 

(C.1) 

(C.2) 

(C.3) 

(C.4) 

(C.5) 

(C.6) 
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94.36 93.59 92.89 92.57 82.06 80.76 79.91 79.55 

93.90 93.05 92.27 91.92 81.68 80.28 79.34 78.92 

93.44 92.50 91.65 91.28 81.31 79.81 78.77 78.29 

92.98 91.96 91.04 90.63 80.93 79.34 78.19 77.66 

92.52 91.42 90.42 89.99 80.56 78.87 77.62 77.03 

92.07 90.88 89.81 89.34 80.20 78.39 77.05 76.40 

91.61 90.33 89.19 88.70 79.84 77.92 76.48 75.78 

91.16 89.79 88.58 88.05 79.48 77.45 75.91 75.15 

90.72 89.25 87.97 87.41 79.12 76.99 75.35 74.52 

90.27 88.71 87.36 86.76 78.77 76.54 74.78 73.90 

89.83 88.18 86.75 86.12 78.42 76.08 74.22 73.27 

89.39 87.65 86.14 85.47 78.08 75.62 73.66 72.64 

88.95 87.12 85.53 84.83 77.74 75.17 73.10 72.02 

88.51 86.59 84.92 84.19 77.40 74.72 72.54 71.39 

88.08 86.06 84.31 83.54 77.07 74.28 71.98 70.77 

87.65 85.53 83.70 82.90 76.74 73.84 71.42 70.14 

87.23 85.00 83.09 82.25 76.42 73.40 70.87 69.52 

86.80 84.47 82.48 81.61 76.10 72.96 70.31 68.89 

86.38 83.95 81.88 80.96 75.79 72.52 69.76 68.27 

85.96 83.43 81.27 80.32 75.47 72.10 69.21 67.65 

85.55 82.91 80.66 79.67 75.17 71.67 68.66 67.02 

85.13 82.40 80.06 79.03 74.86 71.25 68.12 66.40 

84.72 81.88 79.45 78.39 74.56 70.83 67.57 65.78 

84.32 81.37 78.85 77.74 74.27 70.41 67.03 _ 

83.91 80.85 78.24 77.10 73.98 70.00 66.49 _ 

83.51 80.34 77.64 76.45 73.70 69.59 65.96 _ 

83.11 79.83 77.04 75.81 73.42 69.18 65.42 _ 

82.71 79.33 76.44 75.16 73.07 68.78 64.88 _ 

82.32 78.82 75.84 74.52 _ 68.38 64.35 _ 

81.93 78.32 75.24 73.88 _ 67.99 63.82 _ 

81.54 77.82 74.64 73.23 _ 67.54 _ _ 

81.16 77.32 74.04 72.59 _ 67.02 _ _ 

80.78 76.82 73.44 71.94 
    80.41 76.33 72.85 71.30 
    80.04 75.84 72.25 70.65 
    79.67 75.35 71.66 70.01 
    79.30 74.87 71.06 69.37 
    78.94 74.38 70.47 68.72 
    78.58 73.89 69.88 68.08 
    78.23 73.42 69.29 67.44 
    77.88 72.94 68.70 66.79 
    77.53 72.47 68.11 66.15 
    77.19 72.00 67.52 65.50 
    76.85 71.53 66.93 64.86 
    76.52 71.06 66.35 64.22 
    76.19 70.60 65.76 63.57 
    75.86 70.14 65.18 _ 
    75.54 69.68 64.60 _ 
    75.22 69.23 64.02 _ 
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74.91 68.77 63.44 _ 
    74.60 68.33 62.86 _ 
    74.29 67.89 62.28 _ 
    73.99 67.45 61.71 _ 
    73.69 67.01 61.13 _ 
    73.40 66.57 60.56 _ 
    73.12 66.14 59.99 _ 
    72.83 65.72 59.42 _ 
    72.56 65.29 _ _ 
    _ 64.87 _ _ 
    _ 64.45 _ _ 
    _ 64.04 _ _ 
    _ 63.64 _ _ 
    _ 63.23 _ _ 
    _ 62.83 _ _ 
     862 


