
HAL Id: hal-03434988
https://ifp.hal.science/hal-03434988

Submitted on 18 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Toward the Assessment of Intrinsic Geometry of Implicit
Brain MRI Manifolds

Karim Makki, Ben Salem, Boulbaba Ben Amor

To cite this version:
Karim Makki, Ben Salem, Boulbaba Ben Amor. Toward the Assessment of Intrinsic Geome-
try of Implicit Brain MRI Manifolds. IEEE Access, 2021, 9, pp.131054-131071. �10.1109/AC-
CESS.2021.3113611�. �hal-03434988�

https://ifp.hal.science/hal-03434988
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier xxxxxxxxx

Toward the assessment of intrinsic
geometry of implicit brain MRI manifolds
KARIM MAKKI1,2, (Member, IEEE), DOURAIED BEN SALEM3, and BOULBABA BEN AMOR4,
(Senior Member, IEEE).
1IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil Malmaison, France
2INRIA Rennes Bretagne Atlantique, France
3Department of Neuroradiology , CHRU Brest, LaTIM U1101 INSERM, France (e-mail: douraied.bensalem@chu-brest.fr)
4Inception Institute of Artificial Intelligence (IIAI), Abu Dhabi, United Arab Emirates (e-mail: boulbaba.amor@inceptioniai.org)

Corresponding author: Karim Makki (e-mail: karim.makki@ifpen.fr).

ABSTRACT Principal and Gaussian curvatures are commonly used intrinsic metrics for geometric
morphometrics analysis: to assess morphometric changes in brain geometry (developmental neuroimaging
studies), to quantify shape deformation (organ motion assessment), or to analyze shape variability across
subjects in musculoskeletal studies (statistical shape analysis of bones). However, most of existing algo-
rithms for estimating curvatures act on explicit surfaces (triangle meshes), making them time consuming
and sensitive to parameterization and neighborhood size. In this paper, we present a suite of fast and
parameterization-free algorithms to estimate second order morphometric parameters given an implicit
representation for the surface and without any loss of accuracy. We first show results for direct comparisons
of our algorithms with a suite of popular algorithms for estimating curvatures of surfaces represented by
triangular meshes. Then, in the context of brain imaging, methods were validated against developmental
brain MRI data in which surface based analysis has very often failed. We also provided a modified version
of the algorithm that can deal with a Freesurfer output surface mesh, and which was evaluated using an adult
brain with more complicated folding patterns. Our algorithm provided a more realistic measures of intrinsic
curvature for the white matter (mostly ranged between ±0.07 mm−2) which confirms its robustness. As
compared to mesh-based algorithms, our algorithm reduces computation times from a few minutes to only
a few seconds, showing a decrease by a factor of up to 7.

INDEX TERMS Brain morphometry, Gaussian curvature, principal curvatures, implicit surface, parametric
surface, fast marching

I. INTRODUCTION

FOr most of existing algorithms for estimating curvatures
of 2D surfaces embedded in 3D space, the surface is

given by an explicit form 1 [1], [2]. And the mean and
Gaussian curvatures are given by the average (arithmetic
mean) and the product (geometric mean) of the two prin-
cipal curvatures, respectively. One of the major drawbacks
of these algorithms is their dependency on mesh quality
and neighborhood size. Moreover, they are in general time
consuming and may fail to deal effectively with some irreg-
ular situations such as singular vertices, irregular vertices, or
complicated topologies (i.e. surfaces of higher genus), which
can prohibit their use in clinical settings. In medical image
processing, and more precisely, to study motion, growth, and

1Throughout the manuscript, we mean by explicit surface, a triangular
surface mesh.

inter-subject variability in anatomical structures, the common
starting point is a ground truth binary segmentation (e.g. of
brain [3], organs [4], tumors [5], muscles [6], bones and
surrounding tissues [7], etc.). Under such circumstances,
implicit surface representations, such as level-sets, offer an
alternative solution to directly estimate curvature from binary
segmentations [8]–[11], thus allowing the computations to
be performed in a cartesian grid. Although the fact that
implicit models have already been successfully employed
in computer vision applications [12], [13], in particular in
medical imaging, see for instance the representation of blood
vessel surface implicitly in [14], see also the work of Mémoli
et al. introducing implicit brain imaging [15], we were sur-
prised to find that a little attention has been devoted to the
determination of intrinsic properties of thin brain structures
(notably the Gaussian and principal curvatures) without the
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need to parameterize the surface somewhere. Whereas only
the divergence formula (extrinsic) is often used in a more
general sense, especially for curvature-driven segmentation
tasks via the use of the Level set method [16], [17]. And even
more recently, a deep learning strategy was designed to esti-
mate only the mean curvature of 2D implicit interfaces [18].

One of the advantages of implicit methods compared to
explicit methods is that they can capture fine details describ-
ing the cortical folding, thus providing their second order
morphometric parameters (maximum and minimum curva-
tures). Such parameters are the key tools to assess early brain
development and to determine relevant biomarkers [19]–[22].

In the same context, and because of the complex ge-
ometry of the cortical surface, the cortical thickness was
also employed as a morphometric parameter: to establish a
biomechanical model of cortical folding patterns [23], or to
study neurodegenerative diseases such as Alzheimer [24]. A
detailed description of the major limitations and drawbacks
of existing parametric methods for determining metrics such
as cortical curvature or thickness, in particular for develop-
mental data, is available in [25]. Whereas, cerebral cortex and
its reconstruction challenges such as partial volume effect
and excessive computation times have been identified in [26].

In this paper, we focus in particular on surface curvature
computation and we show the capacity of implicit methods
to overcome these limitations by comparing them directly to
four popular explicit methods [2], [27]–[29]. In [8], Goldman
has derived explicit curvature formulas for implicit surfaces
and proved their coherence with the classical curvature for-
mulas in differential geometry for parametric surfaces. In [9],
the authors showed the performances of such methods in
terms of accuracy and computation times. From a practical
point of view, a more faster implementation is still required
to handle very large data sets and the manner in which the
surface is defined need to be more refined regarding its high-
impact on the computational accuracy [30]. In this work, we
discuss the choice of the implicit scalar function that should
be continuously differentiable (smooth) in particular near the
shape surface [31].

Furthermore, we show the high-dependency of methods
for measuring cortical thickness [32] on the geometry of
surrounding tissues. For example, the method of Yezzi et
al. [32] is commonly used as it can ensure a notion of
correspendences to provide thickness values between two
non-intersecting boundaries. However, it is not guaranteed
that the thin cortical area will be perfectly bounded, and
consequently, the estimated thickness values may increase
drastically for some cortex regions inwhere both inner and
outer boundaries intersect.

To summarize, the main aim of the present study is to
provide simple, robust, and fast algorithms which will help
the medical imaging community to describe efficiently the
geometry of very thin structures in the human body and the
study of brain geometry and morphometry represents a good
example of its application.

II. CONTRIBUTIONS
The main contributions of this incremental research are:

• In [30], it has been empirically shown that implicit
methods apply various boundary conditions, thus af-
fecting the curvature measurement near the boundary,
independently of the estimator itself. The curvature
estimators proposed in [33] were employed in gray-
value volumes. Here, and since we would like to extract
curvature information from already segmented volumes,
we confine ourselves to the case of binary volumes (seg-
mentations) in order to overcome these limitations. We
hereby present a generic implicit function that allows a
smooth transition of velocities across the shape bound-
ary, and thereby makes the implicit methods faster, and
more accurate than explicit ones especially for very thin
structures (see Section III-A).

• As compared to the work of Mémoli et al. [15], we
pay more attention to the intrinsic surface properties in
implicit brain imaging, that have been shown to be more
relevant to brain morphometry studies [34].

• We perform multileaved comparisons between implicit
and explicit methods, in particular for curvature estima-
tion tasks. Their robustness is evaluated using neonatal
brain MRI data2 from the Developing Human Connec-
tome Project3 (dHCP) [35], [36].

• We provide an open access code (to estimate curvatures,
cortical thickness and sulcal depth), dataset and visual-
ization tools.

III. METHODS
In real-world computer graphics applications, there are many
ways to digitally encode geometry. These different ways can
be divided into two principal categories: explicit and implicit
surface representations [37]. While explicit representations
allow shape-encoding by providing a complete information
about the location of surface points (e.g. pointclouds) and
their connectivity (e.g. meshes), implicit ones just provide
a kind of test to decide whether a point is on the surface
or not (e.g. Level sets, algebraic surfaces, blobby surfaces,
etc.). In short, each category is best suited to a different
type of geometry and application. For curvature estimation
tasks, it is difficult to decide whether explicit or implicit
representation is the best-suited option to encode surface and
there is a disagreement about this fundamental choice. In [9],
it has been shown that the implicit approaches outperform
explicit ones in terms of robustness, accuracy, and runtime
to measure curvatures of surfaces. In contrast, Kronenberger
et al. concluded that mesh-based methods allowed for more
accurate curvature estimations, and that the runtimes for
both representations were similar for geometries with larger
surface densities [30]. In this respect, we investigate more
the uncertainty in the representation of the surface and we

2Subject recruitment and acquisition protocols were approved by the UK
Health Research Authority.

3http://www.developingconnectome.org
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compare between the two approaches in a more general sense
with an application to brain MRI manifolds.

A. IMPLICIT REPRESENTATION OF CURVES AND
SURFACES
To represent the shape boundary implicitly, the main idea is
to start from the initialization step of the Level set method,
commonly used in computational geometry and fluid me-
chanics for tracking planar curves and curved surfaces [31],
[38], [39]. In this setup, the evolving curve/surface is de-
fined by an implicit level-set representation φ, whose spatio-
temporal dynamics are governed by an advection partial
differential equation (PDE):

∂φ

∂t
= v|∇φ|. (1)

where the implicit interface is defined as the isosurface
φ(x) = φ0 = cste, v denotes the interface velocity, ∇φ
is the gradient vector field of the scalar function φ, and |.| is
the Euclidean norm. If we consider only the static phase (the
initialization step), the binary step function (BSF) represents
the first trivial example for the initialization of the Level set
method. It is simply defined by:

φ(x) =

{
c, if x ∈ Ω+

−c, otherwise,
(2)

where c is a positive real constant, Ω+ ⊂ Ω is the region
outside the shape segmentation, and Ω ⊂ Rn stands for
the image spatial domain. For c = 0.5, such a function is
expected to satisfy,

|∇φ| = 1, (3)

but exclusively at the shape boundaries ∂Ω. Let us note
that step functions are not differentiable in the usual sense,
but in the sense of distributions (the derivative of φ is the
Dirac delta function δ(t)). Note also that the equation (3) is
true only in a general sense [31].

Because of its irregularity, the BSF has been employed to
validate the robustness of the methods introduced in [40].
The BSF is simple to implement, but is spatially restricted
to the shape boundary and it must be reinitialized as long
as the surface evolves with time, similarly to the Heaviside
function and its smoothed version [41]. Note that the BSF
is just defined to introduce concepts. Otherwise, it cannot be
employed in the present work to estimate curvature for im-
plicit surfaces since it is usually contaminated by inaccurate
interface normal vectors (i.e. it exhibits a non-conservative
gradient vector field) [41].

In another study [42], the implicit shape boundary was
represented as the zero level set of a signed distance scalar
function φ : Rn → R, also known as oriented distance
function which can be defined for some distance metric d
over Ω by:

φ(x) =

{
d(x, ∂Ω) if x ∈ Ω+

−d(x, ∂Ω) if x ∈ Ω−,
(4)

where d(x, ∂Ω) = inf
y∈∂Ω

d(x, y), ∂Ω denotes the boundary

of Ω, and Ω− and Ω+ denote the domains inside and outside
the shape, respectively. The metric d defines the way in which
the distance will be quantified (e.g. the standard Euclidean
metric/the scalar product is used to measure the length of the
straight-line connecting two points) .In this case, the implicit
manifold M0 is the set of points that belong to the boundary
∂Ω, according to:

M0 = ∂Ω = {x ∈ Ω | φ(x) = 0}. (5)

The conventional signed Euclidean distance (SED) func-
tion was used to approximate the true distance function in
order to provide a complete information about the velocity
vector field not only for the interface points, but over the
entire spatial domain to establish point correspondences.
Which can be thought of as an extension of the velocities
defined at the zero level of φ, in the normal direction,
to the rest of the domain. While it is clear that the SED
function is more flexible and stable than the BSF function,
Fig. 1 shows its higher sensitivity to pixelization/voxelization
effects. More precisely, the Eq. (3) is not satisfied for points
that are equidistant from at least two points on the inter-
face (i.e. sharp edges and/or corners). Such problems have
been studied in [43], showing also that an approximation of
the true distance function may only be continuous but not
continuously differentiable because of small errors related to
numerical discretization. Assuming that only the zero level
set of the function φ is physically meaningful, the fact that the
equation (3) may be largely violated, at least in a vicinity of
the zero surface, has prevented us from using SED functions
for two major reasons:

• The gradient ∇φ and its norm |∇φ| are implicated in
all curvature formulas for implicit surfaces [28]. There-
fore, the numerical accuracy and stability of curvature
measures will strongly depend on maintaining precision
in the gradient of the employed scalar function near the
boundary, in terms of both direction and magnitude.

• An extraction of smooth mesh surface (iso-surface,
φ(x) = 0) is required to perform objective comparisons
between implicit and explicit methods. This surface
extraction can be performed using the marching cubes
algorithm [44], for which the computations are also
based on the gradient of the scalar field ∇φ.

Although the fact that the standard SED functions are
much faster to compute, we instead used the fast marching
algorithm [45], [46] to estimate maps that we will call, by
slightly abusing the notation, signed geodesic distance (SGD)
maps for which the property |∇φ| = 1 holds almost every-
where in the image. Thus allowing to avoid the occasional
kink where a derivative may fail to exist.

B. SIGNED GEODESIC DISTANCE FUNCTION
As indicated previously, the implicit twice continuously dif-
ferentiable mapping φ ∈ C2(Ω) is represented by an SGD
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(a) BSF: ∇φ (b) SED function: ∇φ (c) SGD function: ∇φ

(d) BSF: |∇φ| (e) SED function: |∇φ| (f) SGD function: |∇φ|

FIGURE 1: The gradient ∇φ and its magnitude |∇φ| for the different functions. In the first raw, color indicates the gradient
direction in radians on a narrow band of ±4 pixels around the disk boundary. Colorbar goes from −π (blue), to π (red). The
second raw shows that the SGD function satisfy the Eikonal equation over the image (in particular, near the boundary and if we
expect the central zone characterized by massive vector condensation), which will lead to the most accurate estimates of mesh
surface and curvatures, for which, all computations will depend on the gradient itself.

map. The goal is to simultaneously control the direction
along which, and the amount by which distance is increas-
ing/decreasing, as we move away from the interface. A nice
description of geodesic distance maps and their geometric
properties can be founded in [43], [47]. Please keep in mind
that the unique difference between what we call SED map
and the SGD map is that the value of the scalar function
is "explicitly" specified at the boundary for the latter. To
estimate φ numerically, we use the fast marching (FM)
method to approximate solutions to the stationary boundary
value problems of the Eikonal PDE:

|∇φ(x)| = 1/v(x), x ∈ Ω (6)

subject to the initial Dirichlet boundary condition φ|∂Ω = 0,
where Ω is an open set of Rn, and v(x) > 0 is the speed on
the interface. For a constant unit speed v(x) = 1, the solution
of this PDE represents an SGD from the boundary ∂Ω (i.e.
the shape surface). One can also interpret the Eikonal equa-
tion as a particular case of Eq. (1). Intuitively, for ∂φ

∂t = 1,
the Eikonal equation simply says that the distance function
φ must change with time at a rate of "one millimeter per
millimeter." A simple example for a disk of radius r = 15
is depicted in Fig. 2.

We show in Fig. 1, for the disk example that the SGD
function is characterized by a smooth transition of its gradient
from the inside Ω− to the outside Ω+ of the shape (and vice

FIGURE 2: 2D example of an SGD function. The theoretical
expression of these signed distance functions is: φr(x) =
|x| − r, ∀x ∈ Ω, ∀r ∈ R∗

+.

versa). It can be thus differentiated across the interface with
significantly higher confidence.

To speed up computations, a minimum bounding box of
the shape point set (mask pixels or voxels) is used to avoid
much unuseful computations, in particular, for the image
regions very far away from the shape boundaries.

To avoid any kind of confusion, let us emphasize that the
FM method was not used to compute shortest path lengths
on triangulated surfaces as performed in [35], but rather to
compute them for the implicit surface (i.e. the Cartesian
version) as performed in [15]. Being non-linear (hyperbolic),
the Eikonal PDE is just easy to state but not at all easy to
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solve. Another advantage of using implicit representations is
that the FM algorithm can be easily parallelized for regular
grids, but unstructured meshes have proven difficult to handle
efficiently.

C. NUMERICAL COMPUTATION OF MEAN CURVATURE
Mean curvature is an extrinsic measure of curvature which
corresponds to layman’s understanding of curvature before
we were ever introduced to differential geometry. Indeed,
having the outward unit normal vector field associated to the
scalar function φ, n⃗(x) = ∇φ(x)

|∇φ(x)| , ∀x ∈ Ω, the mean curva-
ture can be easily calculated using the divergence formula:

KM =
1

2
∇ · ( ∇φ

|∇φ|
) =

1

2
div(n⃗) (7)

Let us recall that for a continuously differentiable vector field
defined in Cartesian coordinates by n⃗ = nxi + nyj + nzk,
the divergence is defined as the scalar-valued function:

div(n⃗) =
∂nx

∂x
+

∂ny

∂y
+

∂nz

∂z
(8)

To have a smooth unit-length normal vector field along
the surface, we perform Gaussian smoothing of n⃗ in all
directions when using the divergence formula. A smoothing
of the scalar function φ is also recommended to extract a
smooth surface later.

If φ has negative values outside the shape and positive
values inside, the mean curvature is simply given by inverting
the sign such that KM = − 1

2div(n⃗), where n⃗ is the inward
unit normal vector field this time. The last equality can
be considered as to the "second fundamental form" of an
implicit surface.

Although of theoretical interest, Goldman showed in [28]
that the divergence formula is less practical than other for-
mulas, that depend not only on the trace of the Hessian, but
also on its non-diagonal elements. Instead, he proposed the
following implicit form of mean curvature:

KM =
1

2|∇φ|3
(∇φ∇2φ∇φT − |∇φ|2trace(∇2φ)) (9)

The equation above can be also rewritten as:

KM =
1

2|∇φ|
(∆φ− 1

|∇φ|2
∇φT∇2φ∇φ) (10)

where ∇ : Rn → Rn, ∆ : Rn → R, and ∇2 : Rn →
Rn×n denote the standard differential operators used in vec-
tor/matrix calculus, namely the gradient, the Laplacian and
the Hessian (second-order gradient) operators, respectively.
∇φT is the transpose of the gradient vector. Throughout this
paper, |∇φ| and denotes the L2 norm of the gradient vector.
For the signed distance function φ, the Hessian ∇2φ gives
the Weingarten map (shape operator) on the boundary ∂Ω.

Finally, we use the marching squares/cubes to extract the
shape surface (iso curve/surface, φ = 0). In the 3D case,
a smooth simplicial mesh (triangular mesh) is generated

and a curvature value is associated to each vertex (i.e. the
value KM (x), assuming the coordinates of mesh vertices to
be expressed in the image coordinate system). To affect a
curvature value to each vertex, we map the real-valued vertex
coordinates to new coordinates in the image by nearest neigh-
bour interpolation. Note that any other kind of interpolation
can be used here.

D. GAUSSIAN CURVATURE FOR IMPLICIT SURFACES
In differential geometry, the intrinsic curvature at any point
of a given surface is proportional to the angle by which
a vector rotates when it travels around a local area of the
surface, divided by the size of the area as the size of the
area approaches zero. In other words, the intrinsic curvature
can be defined based on how much a tangent vector rotates
when it travels around a local area and then returns to its
original position. Gaussian curvature is the major result of
Gauss’s Theorema Egregium. It is a well known intrinsic
measure of curvature that does not depend on how the surface
is located/embedded in its ambient space. For a point with
positive Gaussian curvature, the surface is said to have an
elliptic point. For a point with negative Gaussian curvature,
the surface is said to have a saddle or hyperbolic point.
In [8], Goldman has derived Gaussian curvature formulas
for implicitly defined curves and surfaces from the classical
curvature formulas in differential geometry for parametric
surfaces. Based on these formulas, we estimate Gaussian
curvature for the implicit surface φ(x) = 0, by:

KG =
∇φ∇2

∗φ∇φT

|∇φ|4
= −

∣∣∣∣∇2φ ∇φT

∇φ 0

∣∣∣∣
|∇φ|4

(11)

where ∇2
∗φ is the adjoint of the Hessian ∇2φ, such that

(∇2φ)mn ≡ ∂2f
∂xm∂xn

, for m,n ∈ (i, j, k)2. Denoting the
3× 3 Hessian matrix by:

∇2φ =

φii φij φik

φji φjj φjk

φki φkj φkk

 for x = (i, j, k), (12)

the adjoint of ∇2φ is defined by:

∇2
∗φ =

φjjφkk − φjkφkj φjkφki − φjiφkk φjiφkj − φjjφki

φikφkj − φijφkk φiiφkk − φikφki φijφki − φiiφkj

φijφjk − φikφjj φjiφik − φiiφjk φiiφjj − φijφji


(13)

For more mathematical details and proofs for the definition
of ∇2

∗φ, the reader is referred to [8].
Once we have the results for mean and Gaussian curvatures

KM and KG, the principal curvatures k1 (maximum) and k2
(minimum) can be deduced by solving the system:{

KM = 1
2 (k1 + k2)

KG = k1.k2,
(14)

which gives:
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k1, k2 = KM ±
√
|K2

M −KG|. (15)

These principal curvatures describe the biggest/smallest rate
of curvature changes over a surface.

In addition to the explicit formulas for computing mean
and Gaussian curvatures for implicitly defined surfaces,
Goldman proposed an alternative definition for the curvature,
called the adjoint Hessian formula which can be directly de-
rived from the above defined Gaussian curvature as follows:

κ = −|∇φ|.KG. (16)

Also, for any 2D surface embedded in 3D Euclidean
space, the scalar curvature (or the Ricci scalar) can also be
determined from the Gaussian curvature by R = 2KG.

E. EIGENVALUES OF THE HESSIAN MATRIX
In the case of parametric surfaces, the second fundamental
tensor II defined in the tangent plane to the surface (also
known as the Weingarten map or the shape operator) is given
by the following 2× 2 real symmetric matrix:

II =

∂n
∂u · u ∂n

∂v · u
∂n
∂u · v ∂n

∂v · v

 , (17)

where (u, v) are the directions of an orthonormal coordi-
nate system in the tangent frame, and n is the outward-facing
normal. The eigenvalues and eigenvectors of II provide a
complete description of surface intrinsic properties such as:
principal curvatures (its eigenvalues), Gaussian curvature (its
determinant), and the principal directions (its eigenvectors)
which are orthogonal in the sense of the scalar product. In
contrast, the mean curvature (extrinsic) is proportional to its
trace (the average of its eigenvalues). In practice, solving a
2 × 2 matrix for eigenvalues defined in the tangent plane
leads to a quadratic equation. However, the explicit formula
for the real symmetric 3× 3 matrix is more complicated due
to cubic polynomials. And there are no standard geometric
(intrinsic) interpretations of the Hessian eigenvalues in any
arbitrary basis (i, j, k) if we expect the property telling us
that their sum gives the extrinsic Laplacian operator [48] (the
divergence formula).

In this work, we start design to investigate experimentally
the geometrical properties of the Hessian eigenvalues and
some combinations of them when the surface is represented
implicitly. To this end, we provide the numerical solutions of
the eigenvalue problem ∇2φ(v) = λv:

∇2φ = P.diag(λ1, λ2, λ3).P
−1 (18)

where the columns of P are the eigenvectors vi ∈ R3,
which correspond to the eigenvalues {λi}i∈1...3 of the Hes-
sian matrix. As detailed in Section IV-E, an exhaustive list
of surface geometric features can be derived from these
eigenvalues.

F. PROPOSED ALGORITHM

In this section, we summarize the different steps of our
algorithm illustrated in Fig. 3. It allows to perform the
necessary computations (first and second derivatives) of a
scalar function over a regular grid to finally obtain intrinsic
curvature and extrinsic features of the surface without having
to estimate curvature tensor while being as robust as possible
to singularities within the domain.

• To minimize user intervention as much as possible, it is
only needed to provide a binary segmentation as input.

• A fast C++ implementation of the FM algorithm is
used (i.e. we use the scikit-fmm Python package which
transforms a BSF function into an SGD scalar function
with a conservative gradient vector field). Since the
complexity of the FM algorithm is O(nlog(n)), where
n is the number of grid points, we use a bounding
box around the shape to reduce the grid size (i.e. the
cardinal of the domain Ω) and thus to decrease the
overall computational complexity (see Section III-B).

• We use Goldman’s formulas to estimate both extrinsic
and intrinsic curvatures from the smooth SGD map (see
Sections III-C, and III-D). We also perform a voxel-wise
eigendecomposition of the Hessian matrix of the SGD
map to derive extrinsic feature maps in function of its
eigenvalues (see Section III-E). Since we compute each
feature map overall the domain Ω, the use of a bounding
box reduces also the computation times of this crucial
step at the cost of changing the image origin which can
be easily recovered by a simple coordinate shifting.

• We use classical methods for surface extraction (march-
ing cubes) to obtain a surface mesh which corresponds
to the isosurface φ = 0.

• We preserve only meaningful information from volu-
metric feature maps by affecting a feature value T (x) to
each mesh vertex x. To address the problem of texture
mapping for implicit surfaces, we use two kinds of
interpolation: a simple nearest-neighbour interpolation,
that significantly reduces the blurring effect by placing
a mesh vertex x with (real-valued coordinates) on the
grid, such that x ≈ (i, j, k), or a nearest-neighbour
interpolation, followed by neighborhood-averaging in-
terpolation strategy, which gives a scalar field repre-
senting the curvature of each vertex (e.g. 1/6 of the
total curvature of all directly-connected grid points.),
according to,

T (x) =
1

6
[T (i− 1, j, k) + T (i+ 1, j, k)

+T (i, j − 1, k) + T (i, j + 1, k)

+T (i, j, k − 1) + T (i, j, k + 1)].

IV. RESULTS AND DISCUSSION
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1. Input: Binary mask
(NIFTI file)

2. Bounding Box
(Optional)

3. Compute scalar function
(SGD map )

5. Texture Mapping
(By interpolation)

4.b. Compute 
feature map
(curvature, 

Weingarten map, 
etc.) 

Isosurface: =0

Isocurve: =0

(Marching cubes)

(Marching squares)

3D

2D

4.a. Curve/Surface 
extraction

FIGURE 3: Proposed technique for curvature estimation: (1) Input binary segmentation. (2) Define a subimage inside the
bounding box surrounding the shape to speed up computations (optional). (3) Compute SGD function using the Fast marching
algorithm. (4.a) Exctract isosurface (a triangular surface mesh in the 3D case). (4.b) Estimate a grid feature map (using
Goldman’s formulas to calculate curvature or matrix eigendecomposition to compute the eigenvalues of the Hessian matrix
∇2φ). (5) Interpolate feature values along the isosurface φ = 0, extracted using the marching cubes algorithm (per-vertex
texture mapping).

A. IMPLEMENTATION TOOLS AND COMPUTATIONAL
ASSESSMENT
The NIfTI (Neuroimaging Informatics Technology Initiative)
file format is used very commonly in imaging informatics
for neuroscience [49], neuroradiology research, and even
musculoskeletal [7] and organ motion investigation [4], [50].
In this context, and to avoid duplication of efforts such
as mesh post-processing steps (tessellation and refinement),
usually required to perform brain feature extraction with
Freesurfer (see Section IV-C), we provide an algorithm acting
directly on segmented volumes (encoded as NIfTI files),
and generating a smooth surface mesh (triangular but not
necessarily regular), together with its texture feature maps
(per-vertex curvature).

A fast implementation of parameterization-free curvature
estimators for manifolds represented as implicit surfaces is
then performed in Python. The algorithm described in Fig. 3
takes only a few seconds to calculate curvatures for both
synthetic and realistic 3D shapes. We also provide tools
to display the computed surfaces and features in an object
oriented way through the use of the Visvis Python library. The
source code and data files used in this work are open source
and available on GitHub at: https://github.com/k16makki/
Medima_tools.

A smooth (twice-continuously differentiable) SGD map
is used for surface representation in all experiments which
allowed smooth surface mesh extraction using the march-
ing cubes algorithm. It is important to note that a high-

quality reconstruction of surface mesh is required to perform
objective comparisons between implicit methods and other
algorithms for estimating curvature on triangular meshes. We
discuss this in more detail in Section IV-C. We further assume
that the SGD function should replace the SED function to
initialize the dynamical Level set method since the SED may
typically develops irregularities, leading thus to serious error
propagation during surface evolution.

To construct a texture map for the extracted triangular
meshes, we first mapped vertex coordinates to new coordi-
nates in the grid by nearest neighbour interpolation. Second,
we associated to each vertex the average texture value of its
neighborhood to ensure smooth transitions between concave
and convex regions in the surface.

For a variety of shapes including both synthetic that are
easy to simulate (e.g. deformed sphere, torus, ellipsoid) and
realistic (ankle joint manual segmentation from MRI data,
neonatal brain), the corresponding mean curvature maps cal-
culated using the equation (9) are presented in Fig. 4, while
the corresponding Gaussian curvature maps are depicted in
Fig. 5. The example of the the ankle joint complex shows
the potential of the algorithm to deal with a set of interactive
components (an articulated system) simultaneously. More-
over, the results obtained for a variety of 3D shapes illustrate
the robustness of the algorithm under different distributions
of triangle sizes and shapes.

The developmental brain MRI data used in this work
are from the dHCP project [35]. The white matter and
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cortex volumetric segmentations used in the results section
are the outputs of the iterative multi-atlas patch-based ap-
proach (IMAPA) [51]. Whereas, the hemisphere segmen-
tations shown in Appendix A are generated by the dHCP
structural pipeline 4, described in detail in [35]. In contrast,
the FLAIR atlas segmentation is available online5. For the
dHCP subject, the brain second order morphometric parame-
ters (principal curvatures) deduced from mean and Gaussian
curvatures according to the equation (15) are provided in
Fig. 6.

Having a triangular mesh for which all vertices belong to
the zero iso-surface, it would be possible to compare curva-
tures estimated from implicit surfaces with those produced by
existing algorithms acting on triangle meshes [2], [27], [28],
[52].

B. COMPARISON BETWEEN IMPLICIT AND EXPLICIT
CURVATURE ESTIMATION METHODS
In this section, we perform comparisons between explicit
and implicit methods in terms of numerical accuracy, com-
putation times, and robustness, using the surface meshes
generated by our algorithm.

Since it is extremely difficult to compare our algorithm to
mesh-based curvature estimators in terms of numerical accu-
racy directly on realistic brain structures, we performed quan-
titative (numerical) comparisons using a simulated sphere
where an analytical solution is available, and qualitative
(visual) comparisons using a deformed sphere (for Gaussian
curvature) and the Stanford Bunny test model (for mean
curvature). For quantitative comparisons, we have employed
the different methods to estimate curvatures of a sphere with
radius R = 41, characterized by a constant mean curvature
KM = 1

R , and a constant Gaussian curvature KG = 1
R2 , in

theory. To quantify the vertex-wise differences between the
analytical and the estimated curvatures, we have computed
the related Root Mean Square (RMS) errors that we have
reported in Table 1. The obtained results show clearly that
the proposed algorithm outperforms the mesh-based methods
in terms of numerical accuracy, at least for this first trivial
example. A number of qualitative comparisons of experimen-
tal results on curvature in triangular meshes are presented in
Figures 7 and 8. Fig. 7 depicts the mean curvature results
obtained for the Stanford Bunny (downsampled version, with
a vertex count of ≈ 85.5 k). Our algorithm is compared to
four different methods: the adjacent-normal cubic approxi-
mation method (cubic order method) [28], the iterative fitting
method [27] (a modified version using only the one ring
but including the vertex normals in the fitting process), the
Trimesh method for measuring curvature of a sphere centered
at a vertex as detailed in [29], and the Rusinkiewicz method
for estimating curvature tensor [2]. For the last method,
which has been shown to possess a high level of accuracy,
in particular for highly resolved regular meshes [23], we

4https://github.com/BioMedIA/dhcp-structural-pipeline
5https://figshare.com/s/13926af9a272fe26eeb0

employed two different versions of its implementation (both
available on GitHub6 ,7).

For both mean (see Fig. 7) and Gaussian (see Fig. 8) cur-
vatures, the performed comparisons show that the proposed
algorithm is largely the fastest. In general, the computation
time (indicated in each figure caption) decreases by a factor
of up to 20 when using a bounding-box around the shape
mask. It can often be used to handle large datasets in med-
ical studies. Furthermore, the implicit and explicit curvature
methods are numerically and visually distinguishable. Unlike
existing mesh-based methods, our algorithm can generate
smooth and accurate curvature maps. This suggests that
performing the computations in the ambient space leads to
less sensitivity to noise and irregularities.

Let us recall that all the comparisons were performed
on the surface meshes (simplicial surfaces) extracted using
the marching cubes methods, which can ensure topological
consistency [53] but do not always generate regular meshes.
And that the goal of this section is to evaluate method
robustness to poor-quality triangulations. Fig. 9 illustrates
for example the robustness of implicit methods in the face
of such complex irregular vertices for the torus example
(genus-1), which is just a natural consequence of their full
non-parametric nature. On the other hand, the robustness of
the different methods is evaluated using a realistic neonatal
brain segmentation. Despite being able to deal with synthetic
surfaces at different levels of precision, all the "explicit"
algorithms listed previously failed to estimate curvatures
for the cortex and the white matter. More experiments and
discussions about the limitations of explicit methods are
provided in Appendix B.

C. CURVATURE ESTIMATION FOR FREESURFER
OUTPUT: AN ADULT BRAIN CASE
As mentioned in Section IV-A, the marching cubes algorithm
generates a topologically correct meshes, but without guaran-
teeing their regularity which reduces the quality of geometric
approximation for mesh-based algorithms. To address this
issue, we modified our algorithm (used for method com-
parisons in Section IV-B) inorder to compare it with mesh-
based curvature methods on a quasi-regular mesh generated
by Freesurfer. A second aim of this experiment is to evaluate
the flexibility of the proposed algorithm on a mesh which was
not directly extracted from the scalar signed distance function
from which the feature maps were obtained.
FreeSurfer is an open source software platform providing
powerful tools which are commonly used in neuroimaging to
process and visualize structural and functional neuroimaging
data from cross-sectional or longitudinal studies [55]–[57].
It provides methods for the construction of cortical surface
models by tessellating topologically correct white matter
tissue segmentations. As illustrated in Fig. 10a, a Freesurfer
output surface consists of a 3D triangulated mesh placed at

6https://github.com/brain-slam/slam
7https://github.com/AbhilashReddyM/curvpack

8 VOLUME xx, 2021

https://github.com/BioMedIA/dhcp-structural-pipeline
https://figshare.com/s/13926af9a272fe26eeb0
https://github.com/brain-slam/slam
https://github.com/AbhilashReddyM/curvpack


TABLE 1: RMS errors associated with curvature estimation using the different methods: sphere example.

Methods Cubic order Iterative fitting Rusinkiewicz Trimesh Proposed
Gaussian curvature 13 ∗ 10−3 0.145 6 ∗ 10−3 7 ∗ 10−3 1.4 ∗ 10−3

Mean curvature 0.06 0.05 22 ∗ 10−3 18 ∗ 10−3 15 ∗ 10−3

(a) Stanford bunny (b) Bumpy sphere (outward) (c) Cropped sphere (d) Ellipsoid

(e) Torus (f) Bumpy sphere (inward) (g) Hemisphere (h) Ankle joint

(i) Neonatal cortex (j) Neonatal white matter (wm) (k) Neonatal brain (cortex+wm) (l) Asymmetric FLAIR atlas

FIGURE 4: Mean curvature results for synthetic and realistic 3D shapes.

the boundary of the gray and white matter of the brain. This
refined mesh is then used to assist with estimating curvatures
on the boundary using the different methods. Experimentally,
we perform our comparisons using a Freesurfer segmented
output data for a human adult brain8 (a 3D isotropic 1mm3

MRI volume). This choice was motivated by the fact that
mature brains have more complicated folding patterns, as
compared to the neonatal brain. Such an increase in the
degree of cortical folding would increase the complexity of
curvature map to be estimated and its variability across the
interface.

Three methods were used to calculate extrinsic/intrinsic
curvature per vertex of the right hemisphere surface (a locally
refined triangle mesh composed of a set of n = 144k
vertices). The corresponding results are presented in Fig. 10.
In this figure, we show that implicit methods can deal more
robustly with Freesurfer outputs. Our algorithm provided a
more realistic measures of curvatures for the white matter:
the intrinsic curvature mostly ranged between −0.07 and

8Subject was selected from the Open Access Series of Imaging Studies
(OASIS) database (www.oasis-brains.org). Subject participated in accor-
dance with guidelines of the Washington University Human Studies Com-
mittee.

0.07 mm−2 over the surface, while the estimated mean
curvature ranged over [−0.5, 0.6]mm−1 in average. In con-
trast, popular mesh-based methods such as the Rusinkiewicz
method which was recently used in [23], and the Trimesh
method, failed to deal with some irregular vertices, leading
to an undesirable out of range of curvature values.
Using our algorithm, the computation times for Gaussian
curvature estimation were reduced from 345s to estimate cur-
vature tensors (Rusinkiewicz method) to only 50s (without
using a bounding box window). The considerable differences
in computational times point to the efficiency of the proposed
algorithm.
Note that the proposed algorithm requires both the binary
mask (NIfTI file) and the the triangular mesh (GIFTI object:
the surface-file format complement to the NIfTI volume-
file) as inputs in this new setting. The NIfTI array was
used to perform numerical computations of curvature on
a 256 × 256 × 256 Cartesian grid and the NifTI header
was used to map array coordinates to vertex coordinates
expressed in subject-centered scanner coordinates (using the
inverse of the NIfTI affine matrix as a transformation for
texture mapping between spaces). A modified version of the
algorithm described in Fig. 3 is then used, as illustrated in
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(a) Stanford bunny (b) Bumpy sphere (outward) (c) Cropped sphere (d) Ellipsoid

(e) Torus (f) Bumpy sphere (inward) (g) Hemisphere (h) Ankle joint

(i) Neonatal cortex (j) Neonatal white matter (wm) (k) Neonatal brain (cortex+wm) (l) Asymmetric FLAIR atlas

FIGURE 5: Gaussian curvature results for synthetic and realistic 3D shapes.

(a) k1 (b) k2 (c) k1 (d) k2

FIGURE 6: Principal curvatures (maximum k1) and (minimum k2) for the cortex (a and b), and for the white matter (c and d).

Algorithm 1. The limitation in the present work is that we
are considering only isotropic metrics for now.

These results demonstrate improved quality of the geo-
metric approximation when using our algorithm, which will
increase the possibility of excellent integration of these tools
in Freesurfer.

D. CAPACITY TO DEAL WITH THIN STRUCTURES
One of the advantages of the proposed algorithm is that it can
be used to characterize the geometry of very thin structures
regardless of the complexity of their topologies. In this sec-
tion, we briefly evaluate the efficacy of the proposed methods
to study the geometry of the neonatal cortex. For the neonatal
brain, much of the interior volume is occupied by white
matter, but the neurons of the cortex only reside in a thin layer
of gray matter (only 2-4 mm thick). This makes it difficult
to deal with the cortex as an independent structure and to
characterize the evolution of its own geometry over a long

Algorithm 1 Estimate curvature for a Freesurfer output sur-
face

• Inputs: - FS output surface mesh (GIfTI object)
- Corresponding NIfTI volume file (binary mask)

• Curvature estimation:
- Compute SGD map φ for the binary mask
- Compute mean and Gaussian curvatures using Gold-
man’s formulas (grid feature map)

• Texture mapping between spaces:
- Establish correspondences between mesh vertex coor-
dinates expressed in scanner coordinate system and their
locations expressed in image coordinate system (real-
valued coordinates)
- Affect a curvature value per vertex by interpolation on
the grid feature map (e.g. nearest neighbour)

• Output: Per-vertex curvature vectors.
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(a) Cubic order method [28] (b) Iterative fitting method [27] (c) Rusinkiewicz’ method (i1) [2]

(d) Rusinkiewicz’ method (i2) (e) Trimesh method [29] (f) Our algorithm (implicit)

FIGURE 7: Mean curvature estimation using different methods (implicit VS explicit). In terms of computation times (provided
in seconds below), a modified version of the cubic order algorithm takes 31s; the iterative fitting method takes 383s; the first
implementation (i1) of the Rusinkiewicz algorithm takes 120s; the second implementation (i2) of the same algorithm takes 80s;
the Trimesh method takes 140s, while our algorithm takes less than 6s. To make the different methods visually comparable, all
results are shown with a unique (truncated) colorbar.

period of time. To overcome these limitations, the curvature
is often estimated at the interface delineating between the
gray and white matters. In the same context, some other
feature maps have been employed such as cortical thickness
and sulcal depth (see Appendix A).

Concerning the cortical thickness, Fig. 11 shows that the
technique proposed in [32] is very performant but can fail in
some situations since it provides accurate thickness measures
as long as the two boundaries do not intersect. A condi-
tion which is not always directly available as illustrated in
Fig. 11.a. The results presented in Figures 4.i, 6, and 12.a
show that we can deal with the cortex as an independent
structure while providing a very useful description of its
geometry via mean and Gaussian curvatures, regardless of
whether the geometry of its neighbouring structures is com-
plex or not. Based on these encouraging results, we intend
to quantify local cortical gyrification (i.e. the process of
forming the characteristic folds of the cerebral cortex) using
the estimated curvature maps as morphometrics.

E. PERSPECTIVE
The numerical results presented in Fig. 13 show clearly that
the three eigenvalues of the Hessian of the SGD function have
nice geometric properties which open the question if there
exist some combinations of them that may give the same
intrinsic properties as those provided by the shape operator
in the case of parametric surfaces. Of course in any arbitrary
basis (i, j, k) and without having to express the curvature

tensor in the normal frame as proposed in [58], and employed
in [9] to derivate formulas for principal directions of implicit
surfaces. To deduce the intrinsic geometrical properties of the
implicit surface from the Hessian eigenvalues and eigenvec-
tors, a good perspective would seek to learn the mappings
relating the two principal curvatures k1, k2 and directions
t1, t2, to the eigenvalues λi and eigenvectors vi of the 3 × 3
Hessian matrix, respectively. In other words, using a wide
variety of shapes as training data sets, we suggest to learn the
maps f , F , g, and G, such that:

k1 = f(λ1, λ2, λ3)

k2 = g(λ1, λ2, λ3)

t1 = F (v1, v2, v3)

t2 = G(v1, v2, v3).

(19)

with the help of the prior information (divergence formula)
that we have at hand: k1 + k2 = λ1 + λ2 + λ3.

V. CONCLUSION
In this work, we conducted direct comparisons between
implicit and explicit approaches for characterizing brain in-
trinsic geometry that we believe have not yet appeared in the
literature. We show that rigorously defining the scalar func-
tion to implicitly represent shape surfaces allows to improve
robustness, and to reduce computation times for numerically
estimating both their extrinsic and intrinsic curvatures. Since
it is difficult to compare between implicit methods and the
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(a) Cubic order method [28] (b) Iterative fitting method [27] (c) Rusinkiewicz’ method (i1) [2]

(d) Rusinkiewicz’ method (i2) (e) Trimesh method [29] (f) Meyer’s method [54]

(g) Our algorithm

FIGURE 8: Gaussian curvature estimation using different methods. In terms of computation times (in seconds), a modified
version of the cubic order algorithm takes 5.7s; the iterative fitting method takes 80s; the first implementation (i1) of the
Rusinkiewicz algorithm takes 27s; the second implementation (i2) of the same algorithm takes 15s; the Trimesh method takes
0.2s; the method of Meyer takes 94s; and our algorithm takes 0.5s. Results are also shown with a unique colorbar (truncated).

(a) The algorithm described in [2] (b) Our algorithm

FIGURE 9: Sensitivity to irregular vertices.

most popular mesh-based methods for estimating curvatures
of brain structures in terms of accuracy, the accuracy of each
approach is evaluated both qualitatively and quantitatively

against artificial data. The obtained results for realistic brain
surfaces show also that implicit methods are much more ro-
bust and less time-consuming than methods acting on surface
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(a) Right hemisphere surface (b) Mesh quality

(c) Gaussian curvature (Rusinkiewicz) (d) Mean curvature (Rusinkiewicz)

(e) Gaussian curvature (Trimesh) (f) Mean curvature (Trimesh)

(g) Gaussian curvature (our algorithm) (h) Mean curvature (our algorithm)

FIGURE 10: Curvature results (explicit Versus implicit methods): for the right hemisphere surface mesh generated by
FreeSurfer for an adult brain.

.

meshes which were essentially sensitive to vertex irregularity.
In future works, the proposed tools will be used to quantify

sulcal, and gyral development of the brains of infants using a
large dataset.
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(a) (b) (c)

FIGURE 11: Cortical thickness (in mm) using the method described in [32]: (a) brain anatomy and initial boundaries, white
matter (inner boundary) in green, cortex segmentation in red, and outer boundary (the rest of the image space) in blue; (b)
cortical thickness without imposing constraints on thickness values; and (c) cortical thickness map after imposing a maximal
thickness value of 14 mm.

(a) Cerebral cortex (b) White matter

FIGURE 12: Per-slice mean curvature: anatomical T1-weighted neonatal MRI slice and estimated 2D mean curvature for cortex
and white matter, respectively.

.

APPENDIX A SULCAL DEPTH MAPS

In addition to the surface curvature and cortical thickness,
sulcal depth maps are also of of great interest to the neu-
roimaging community as they provide information about
folding amplitude and dynamic patterns of cortical expansion
during folding [35], [59]. In [35], the sulcal depth was
defined as the average convexity or concavity of cortical
surface points. In [60], the sulcal depth map was defined
as the shortest paths from the 3D convex hull to the ver-
tices of the cortical surface. And the shortest paths were
computed using the Dijkstra algorithm. A major drawback
of the Dijkstra algorithm is that the direction along which
distance increases, is partially ignored (i.e. only vertical and
horizontal displacements are allowed). One can imagine, for
instance, that this algorithm will overestimate the straight-
line Euclidean distance of any diagonal path, crossing a
regular grid. To surmount this issue in the suite of codes
that we share, we provided an adapted version of the al-

gorithm originally proposed in [32] for the estimation of
tissue thickness, to estimate sulcal depth maps. The second
definition of sulcal depth maps is considered and a notion of
anatomical correspondences is developed. In fact, the latter
method provides a way to split the non-linear shortest path
problem into two linear (elliptic) sub-problems that are easy
to solve subsequently. It involves three principal steps: the
first one consists of solving a two-point Dirichlet boundary
value problem. More explicitly, this step aims at finding the
harmonic scalar function u, which takes prescribed values at
the boundaries of a region Ω (u(∂0Ω) = 1 and u(∂1Ω) = 0)
while satisfying the elliptic Laplace PDE ∆u = 0 in-
betweens (inside Ω). The idea behind is to specify the di-
rection along which the distance will increase assuming that
the gradient vector field ∇u is parallel to the gradient vector
field of the true scalar distance function we are looking for.
The second step consists of a simple change of variable by
computing N = − ∇u

||∇u|| in order to control the magnitude
(the amount by which) distance will increase and thus to
indirectly satisfy the Eikonal PDE inside Ω thereafter. And
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(a) λ1 (b) λ2 (c) λ3

(d) 1
2
(λ1 + λ2 + λ3) (e) λ1.λ2.λ3 (f) λ2.λ3

FIGURE 13: Eigenvalues {λi}i∈1...3 of the Hessian of the SGD function and some of their combinations on the shape boundary.
The eigenvalues are sorted pointwise into ascending order: λ1 ≤ λ2 ≤ λ3.

the third step consists of recovering the true distance function
ϕ = L0+L1 from N , by minimizing

∑1
n=0

∫
Ω
|∇Ln −N |2,

or equivalently, by solving the linear (elliptic) Poisson PDE:
∆ϕ = ∇ · N . This last step aims at finding the geodesic
distance map whose gradient has unit length and points in the
right direction. For more details about these briefly described
steps, the reader is referred to the original paper [32]. An
example of its application to the neonatal brain is illustrated
in Fig. 14a.

APPENDIX B LIMITATIONS OF EXPLICIT METHODS
In this Appendix, we present the obtained curvature maps
for the right hemisphere of the dHCP subject, generated by
the dHCP structural pipeline. Despite the high quality of
the input mesh, the obtained results were unsatisfactory (see
Fig. 15). For most of explicit methods, a biased estimation
was manifested by an out-of-range of the curvature values.
This problem was caused by the presence of some irregular
vertices, at which the curvature increases/decreases drasti-
cally. Note that this problem can be solved by truncating the
range of values, but this requires a large amount of manual
intervention. Note also that all these methods were very time-
consuming.
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FIGURE 14: Obtained feature maps for the white matter of a dHCP subject. Left column (left hemisphere). Right column (right
hemisphere). The curvatures are calculated for the white matter.
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(a) Right hemisphere surface (b) Mesh quality
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pipeline.
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