Skip to Main content Skip to Navigation
Journal articles

Nonlocal-Interaction Equation on Graphs: Gradient Flow Structure and Continuum Limit

Abstract : We consider dynamics driven by interaction energies on graphs. We introduce graph analogues of the continuum nonlocal-interaction equation and interpret them as gradient flows with respect to a graph Wasserstein distance. The particular Wasserstein distance we consider arises from the graph analogue of the Benamou–Brenier formulation where the graph continuity equation uses an upwind interpolation to define the density along the edges. While this approach has both theoretical and computational advantages, the resulting distance is only a quasi-metric. We investigate this quasi-metric both on graphs and on more general structures where the set of “vertices” is an arbitrary positive measure. We call the resulting gradient flow of the nonlocal-interaction energy the nonlocal nonlocal-interaction equation (NL $$^2$$ 2 IE). We develop the existence theory for the solutions of the NL $$^2$$ 2 IE as curves of maximal slope with respect to the upwind Wasserstein quasi-metric. Furthermore, we show that the solutions of the NL $$^2$$ 2 IE on graphs converge as the empirical measures of the set of vertices converge weakly, which establishes a valuable discrete-to-continuum convergence result.
Document type :
Journal articles
Complete list of metadata
Contributor : Nadine Couëdel <>
Submitted on : Monday, May 17, 2021 - 2:46:36 PM
Last modification on : Tuesday, May 18, 2021 - 3:03:09 AM


Publisher files allowed on an open archive


Distributed under a Creative Commons Attribution 4.0 International License




Antonio Esposito, Francesco Patacchini, André Schlichting, Dejan Slepčev. Nonlocal-Interaction Equation on Graphs: Gradient Flow Structure and Continuum Limit. Archive for Rational Mechanics and Analysis, Springer Verlag, 2021, 240 (2), pp.699-760. ⟨10.1007/s00205-021-01631-w⟩. ⟨hal-03227655⟩



Record views


Files downloads