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1 Introduction

Numericalmodellingis a major toolin applied geoscienctor optimizing prapect exploitation at
minimal risks and costvhile accounting for morand morestrict environmental constrain(Suslick

and Schiozer, 2004kfficient and accurate modelling of immiscible flows in heterogeneous porous
media is important in many fields of application including oil recowenste storagéNuclear or CQ),
hydrogeologyfor contaminantremedial purposesgeothermal eneygrecovery and other energy
related processe®©ne of the main challengeslated toflow modelling in porous medi is the
heterogeneity otherock properties whiclbanvary over several orders of magnitietedmanylength
scalesfrom pore to reservoir scalk is well-known that he finescale heterogeneitimplying strong
localizationor channding of the flowcan change fieldcale processgeleading toearly breakthrough

or poor recovery that can hinder the global profitability of an EDdgect(Tayari et al., 2018)To
capture thénfluenceof the mediumheterogeneitythegeologicalmodelswhich describe theeservoir

rock properties, are generatatl high spatial resolutions.Statistical methods are implemented to
propagate the few measureismic/well/outcropdata to the whole domai resulting in high
uncertaintieghat must be quantified to@henthe engineer mugiropagate the uncertainties on the
output data of interest, such as hydrocarbons recawwergcommendhe best decisiong\bdul Hamid

and Mugyeridge, 2018)These mode]generally includeseveral equally probable realizations of the
same reservoilSolving multi-phaseflow equationson thesehigh-resolutiongrids of millions of cells

is not computationally efficientEven with high compiing power it is necessaryto run several
simulations on differentndependentealizations as carrying oua single simulation on a highly
detailed geological modéd not sufficient Thusupscaling, the process of propagating the properties
from a highresolution model to a model with less resoluti@mainsnecessarwhatever the available
computing resourcesre Theimportantaim of any upscaling methodtis capture the effect afmalt

scale heterogeneities in an averaged senseyweltfcontrolledloss of informationWhile additive rock
properties, like porosity, may be upscaled using ttdirect arithmetic averagingupscaling the
permeability and transmissibility is not straightfordidue to the notinear dependence on tfiae-
scale propertieS he situation is far more complex when considering multiphase flows, due to the strong
coupling between pressure and saturation equations that are the basis of the viscous fingering
mechanim (GanjeRGhazvini, 2019) Coarsescaleequations may be differeftom their fine-scale
counterpartleading to major changes in the simulation workflow.

In singlephase flow, here exst different criteria for the classification of upscaling methods, from
analytical averaging metlds versus numerical flovbased method$p local versusxtended locaand
global methods. For example, in local methdbe upscaled permeability in each coarse grid block is
solely restricted to the effect ttie underlying permeability within the griblock. In extended local
upscaling methods, the computation region is extended to include a buffer zone, and in global] methods
afine-scale solution is used to compute the upscaled propdtkiEsisive reviewsnay be found ithe
worksof Durlofsky (1991) Renard and Marsily1997) Wu et al.(2002) Farmer(2002) Mourlanette

et al.(2020) andColecchioet al.(2020) There is nanathematicafoundationto analyse the quality
and accuracyf the upscaling method, and thebosest asses@nt we can reach is to compare the
upscaled solutions with a refereruzse finesolution(Correia et al.2018 Darban et al., 202@Preux,
2016 Preux et al., 2016)The challenge in upscaling becomes even more critical in -hatse
processesThe upscaling of absolute permeability singlephase upscalingglone cannomodela
multi-phaseprocess and may lead to incorrect oil recovery and water breakthroughrtinessrvoir
simulationsUpscaling of relative permeabilitpr multiphase upscalingas been the subject of many
articles but there are practical difficulties this type ofupscaling, no matter what methodused
(Barker and Dupouy, 199®Barker and Thibeau, 199Thristie, 1996 Darman et al., 2002)The
difficulty with the classical methods of mufthase upscaling, like pseuflinctions, is that they mix
averaging witmumerical discretization issué&rtus et al., 2004Noetinger et al., 2004The net result

is an uncleamix of techniqueghatis overamplified by the nonlinear character of the underlying
equations, typically the stalled pressure equation coupled with the saturation transport equation
Thesessues are extensively discussed in the mentioned articles
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Another challenge in multiphase flow simulatioassesfrom the discretization othe governing
equations A desirable discretization method should be accurate, stable, and locally conservative to
respect the physical process. Another important feature is the computational efficienegrdieow
methods such as finite volume methods (FV) amneently widely used for solving these equations.
They are stable, mass conservative, and computationally efficient. To improve the accuracy of the
approximating solution, especially in the presence of highly heterogeneous anisotropic media, there has
beena great interest in high order discontinuous Galerkin (DG) methods over the last two dEicades.
main idea of DG methods, firgitroduced byReed and Hill(1973) consists inapproximating the
solution using discontinuougolynomialslocalizedin each elemenand a weakly enforcement of
continuity between the element$ has gone through massive developments leadimglifferent
formulatiors of DG methodsThe mathematical aspects of DG methodsdatailedin the books of
Riviere (2008)andDi Pietro and Err§2011)

DG methods are like finite element methods but with discontinuities in test fundiGsethodsan

also be viewedike finite volume methodsn terms ofelementwise approximatingunctions But, in

DG methodsthe solution iggenerallyapproximated by a polynomial of degrgesater than onand

not by piecewise constant functianlike in finite volume methodsWwe may say thabG method
incorporate thefavourable features of finite volume and finite element methddsy are highly
parallelizable, flexible in using variable polynomial degrees in different elements, and locally
conservative. These important properties made them populaaniy fields of applications including
flow and transport in porous mediglany researchers have applied discontinuous Galerkin methods
for single andnultiphase flow problems of reservoir simulatipfrem the early work oRiviere et al.
(2000) where theDG methodwas appliedo a singlephase problem in porous media the works of
Riviere and Wheelgt2002) Bastian and Rivieré2004) Ern et al.(2010) Bastian(2014) Cappanera

and Rivierg2019) andFabien et al2020)for multiphase flows, taamea few.However DG methods
suffer from one main drawbackyhich is the increase in the number of degrees of freedom, and
ultimately the increase in comational timecomparedo other numerical methods.

Besidesadoptinghigherorder discretization methodsgaptiveuseof higher resolution griglin some
parts of the domaiis anotherapproach to improve the accuracy of solutiofise ideaof adaptive
gridding throughocal spatial refinemergoes back tdéhe 1980s in reservoir simulationdan et al.,
1987 Quandalle, 1983 Schmidt and Jacobs, 198&onversely nonuniform coarsening methods can
also be adaptively applied toeduce spatial resolution according to specific flow features. The
agglomeration approachesvieamany advantageousspecially compared to local mesh refinement
thanksto the availability of the fine geological modeidhavebeen addresdén several workgAshjari

et al., 2007 Durlofsky et al., 1997Hauge et al., 2012.i, 1995)

Thepurpose of this studig to propose mefficientand accuratapproactthatavoids the challeges of
multiphase upscaling and maintains a high order of accuracy in the whole ddma@ach thisim,
we havedeveloped a scheme to treat different flow regions separately. Considénnephaseflow
processlike a waterflood in an oil reservoir, there ia mterface between the bulk of water and oil
Nearthefront, the interaction of viscous fingering andémgeneity of porous medium is important to
be capturedor industrial applicationgAbdul Hamid and Muggeridge, 2018)ike in Hauge et al.
(2012) we use adaptive coarsenimgitsidethe twoephase flow regiorio concentrate the calculation
efforts within the front areas a resultthe use ofiny multiphase upscaling technigaeavoided The
finite volume method in thikigh-resolutionregion gives saisfactory resultan a computationally
efficient way Far fromthefront, in singlephaseareasthe grid is coarsenednd a linear DG scheme
is used to get more accurate total fluxies be able to apply different strategies in different regians,
estmation of the location dhe saturation discontinuitis neededThere are differerflastapproaches
for interface modellingStreamlinemethodsare developed as an alternatteecommon simulation
techniques andiork based orthereduction of themain transport problem into a series of 1D problems
along streamlinefDattaGupta and King, 2007Another approacto track the evolution of interfaces
is the FastMarching Method (FMM) an approachto sohing the Eikonalequationvery close to
'L M N Viétddi(Bethian, 1996)n this studywe present a new technigteeestimatethe position of



103 thesaturation discontinuityThe objective of this methdd to approximately track the position of the
104  front, without solving thdully -coupledpressure andaturation equati@on the whole grid

105 The paper is organized as follaw&'e deail the formulation and implementation of the proposed
106 algorithm in the first sectionand thendiscuss its advantages and bations through numerical
107 examples

108 2 Driving equations
109 In this paperwe consideran immiscible twephase flow modelfor example water and oil in a
110 waterflood problemn a porous medium. When modelling the behaviour of fluids flowing in porous

1117 PHGLD PDVV FRQVHUYDWLRQ D Q Ghée&ystdm fidguatiorsCondiderXytieG WR GH
112 fluids to beincompressible, the conservation equation for each phase is,

00 .
6spE@C L Ma  ULKS Eq.1

113 where O is the phasesaturation, C is the phasevelocity, M is the source termand 6 is the rock
114 porosity 'DUF\ TV O DphakBrélodityKikithe absence of gravitational and capillary fonessds

:0;
C LFG%TQL Eqg.2

115 with Lthe lccal pressure which is equal to water and oil pressure incase, Gthe absolute
116 permeability, & the viscosity of each phasand G, the relative permeability of each phassually
117 definedas a function of saturatioln the numerical examplehrbughouthls paperwe useaquadratic

118 relationship that eads in terms of reduced water saturatigh,L ———2 5w ”B@Y G L: @;6and G, L

119 :sF Q’ G ©a is called the phase mobilitgnd is denoted byl Adding both conservation
120 equatios and considering tha@Q E @Q L sgives,

ECL M Eq.3

121  with Cthetotal velocity or the sum of water and oil velocitiesnd Mhe total source termWriting
122 'DUF\YV ODZ IRU Wdivds WRWDO YHORFLW\

CLFGHOL Eq.4

123  where & is the total mobility, the sum of water and oil mobilities:

& Q& Eq.5
de 9

g L& EgL

124 A substitutiorof WRWDO 'DUF\{V O hdsdRRQF AMKYD RLRQPDO®Z JLYHV WKH e

FaG QA LM Eq.6

125 To close the model, boundary conditions are imposed

LL h/zé K J(\)Xyz

\(;éi’ Lra KJc‘)xC Eq.7
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which correspond to Dirichlet arftbmogeneousleumann boundary conditions on the boundaries of
the reservoir domain’. is the outward unit normal on theboundaies

Writing the conservation equation of water in terms of total veloGiandwaterfractional flow B
OHDGYV WR WKH pVDWXUDWLRQ HTXDWLRQT

0Q .
0= LEBBIQIGLM Eq.8

to be solvedvith the initial and boundary conditisn

QL('g‘a E X
'\QL Q4 EBT Or KJox Eq.9

The system of equations described throEgh6 to Eq. 9 is nonlinearly coupled. The coupliragises

viathe saturation dependant molid# in the pressure equation and pressure dependent velocities in the
saturation equationOne common approach for solvitlgis coupled system of equations the
sequential approach. This approach siat solving the pressure and saturaticeparately and
sequentially The main advantage lies in the reduction of the size of the linear systems to be solved.
Anotherbenefit of this approadl that we camix different discretization methodsthe same system.

3 Numerical solution methods

3.1 Finite Volume discretization for the pressure equation

We assume the reservoir domaywith boundary¥s 3s partitioned intccells 3 The standardinite-
volumetwo-point flux approximatiorto discretiz the pressure equation gives:

I &P LT 65KE°F LI 0L M54 Exybx
. Eq.10

Y Y

Where the superscripts) and J E s represent the time ste,2>° L [ij>5_is the new cell-wise

constanapproximated pressurd&@”’is the volume average of the total source tdviover the cellEat

timestepJ E s and 67 is thefacetransmissibilitygiven bythedistanceweightedharmonic average of

G&! values in théwo neighbouring cells<gand xg

?5

6% L 4eU\+m%— E—ur GP%Y Eq.11

€ ¢is the area of the facéy L ¥38;€é Y8y @ and @ denotethe distance from respective cell
centres to theentre of the fac&;.Jhetransmissibilitydepends on time through its implicit dependence
onthelocal saturatiorat time P

3.2 Finite Volume discretization for the saturation equation

The implicitscheme for solvinthe saturation equatiois,

" FFG_ 5 2455 4>5
OuXo——7p E:,( ud% k@3 047 gL N Eq.12
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where §gjs the porosity of cellE x(;is the volume of cellE -is the time stepé{}?sis thetotal flux

coming from the solution of the pressure equation, amt&?f’odenotes the fractiondllow function
associated with the fac&;.y B kC&?S ois choserusingthe upwindscheme

4. Bk@ a4 EByRra
%-C@y,LJ%k@>5oé EByOré Eq.13

3.3 Discontinuous Galerkindiscretization for the pressure equation

To obtain the DG discretization of the pressure equakgn6 andEq. 7, wefirst re-write theelliptic
pressure equatian a mixed fornthrough theéntroduction ofan auxiliary variable < FI L(Frank et
al., 2015)

L Fdla E Xka

ANEG L Ma EXa Ea14
LL L,a K JOxy,4 q.
gLra KJOxgé

By multiplying the first and second equations by smooth tesicfions Yand fi, respectively, and
integrating by part on eell 3gwe get,

+ YAF+ |&LE+ VY&LLTra& Eqg.15

o) o) ko)

Fxr 0ieGy ;E+x G & L+ iAM Eq.16
o I o o '

For the numericalesolution ofEq. 15 andEg. 16, we useFESTUNG, the Finite ElementSimulation

Toolbox for Unstructured Gridsan opersource MATLAB/GNU Octave toolbox, developed a
package fordiscontinuous Galerkin methods. For more details a6 DG method and its
implementation the reader camefer to the seeis of papesy that the authors of this toolbdxave

published Frank et al(2015) Reuter et al(2016) Jaust et al(2018), Reuter et al(2018) andReuter
et al.(2020) Let us denotdy 6¢: 3; the space of polynomials of degree at mdsh 33D 3and by
67:3; L <xga%/0\ 9531I§39E)3é>(g 33D 67:3g=the space ofdiscontinuouspolynomials onthe

partitioned domain3. The DG methods used to solvéhe following systemo obtain LS>5 D2::x;

and §7° D>2::x;B for E3;D3 E!yD>2::3;%F and EX,D 2::3;

| ' [L§~° aKaY
o 6 vy 00 L§™%a KJI%

1 https://github.com/festung/FESTUNG
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F BRAGH, {70

“[kGﬂq"‘Uo S a g E— DLJB L3> 5w & K JY
EI + (R )
v 00 nkQﬁ?LP”Sd’qu DLJS °F Lya K J¥, Eq.18
Ora K Y%
L+ AgM™>
o

where Ris a penalty coefficient, anfl); is thediameterof theface &;.vY,, ¥, and \?q;denote theset of
interior faces Dirichlet and Neumann boundes, respectively(Frank et al., 2015)For anyinterior
face &;andanyfunction i L i : T, thejumpof fiis defined as,

&gy vl Ay uE AV’ vd- kigF v gy Eq.19
and the weighted avera@é fi as
N3k ASuE Ayis F Syia Eq.20

Taking Sy yL r &leads to the simple arithmetic averagiBgsed orErn et al.(2008) to better take the
heterogeneit of the porous mdum into accountve here take

SS\;LE% Eq.21

where =% L G&. (is the harmonic average ef valuesin the two neighburing celkfor the interior
faces &; P Y. (Jamei and Ghafouri, 2016)

 tHUEE
Ul FEm FEG Eq.22

This value reduces tef} in Dirichlet boundariesTo reconstruct conservative fluxes frame DG
solutionwe compute:

ot [ka? 35 &y [;JBSLS>SV\H’ A KJY &

Eq.23
Lﬁ SF Ly, & K JY,&

7L
»e KGA p 758 0
O o0 @ DJ
which corresponds tBq. 18 with thetest functionfi L s
3.4 Fast front tracking technique
We havedevelgpeda fast front trackingtechnique(FFrT) to estimatethe position of thesaturation

discontinuitywithout solvingthetransporequationin each cell othe domainConsidering a twgphase
flow problemlike a waterfloodwe suppose that the saturation takely two values corresponding to
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the saturation aheadf the front (typically Q) and behind the fronftypically @), the saturation
corresponding to the Buckldyeverett shock front. The mobility ratio between both #uddrresponds
to the mobility ratio at the frorfHagoort, 1974King and Dunayevski, 198Woetinger et al., 2004
Spesivtsev and Teodorovich, 200&odorovich et al., 2011The idea is that the velocity of the front
is mainly controlled by the interplay between theterogeneity ofibsolute permeability and the
mobility jump at the front, and not by the rarefaction wave lkhine front that is continuously
spreading duringhetime. This methods anextreme simplificatiorof the initial problento compte

a fast estimation ahe location of the watewil interfacebased on someoncepts from pore network
modellingand Buckley Leverett equatioihe FFrT method is an initial value problem, meaning that
it computeghe position ofthe interfacefrom the giveninitial position of the frontor the saturation
discontinuity Accordingto themethod of characteristieppliedto the BuckleylLeverett equation, the
velocity of the slice of the porous mediumth a saturation® Aq is:

CoR

In other words, ifat the pointZyand at timeRthe saturation is equal t§ it is still equal to this value

S (o3 NV .
attheposition z;; E P;A)!—aeza@ﬁand attimeR E P

3.4.1Formulation

We define bfasthe set of all face®y where the front crosses the segmeni@y; Ziand Zyrepresent
the cellcentresof thecells Eand F Zyrepresents thdownstreantell depending on the direction of the
flow (seeFigurel). I:fis initialized depending on the initial conditions of thensportproblem.Now,
consider that we are at time stdpf the simulationAfter solving the pressure equatitmnobtain new
pressure ad fluxes,usingthe DG schemeHg. 17 - Eq. 18), we advance the front, in the following
detailed steps:

(1) The Welge tangent metlibis used to construct the saturation at the fr@gtanalytically
(Welge, 1952)

oR | BKQoF B:Qy
0 Cugm QF Q, Eq.25

For the case of quadratic relative permeabilities,equatiorabovegivesthe saturation at the froras
a function of the viscosity ratid, L &; 28, as follows

QL so¥sE/ Eq.26

(2) We compute the velocity at the frorﬁJBE,é, using the discretized form &fq. 24 and the total

fluxes 833>

aJEs o
oJEs 9EF OB
L e 00, Eq.27

(3) Considering that only the normal component of velocity accounts for the local velocity at the

front, the discretizefront is advanceeccording tdhe ordinary interface evolution equation:
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2Sé>ﬂ5 F ZSM oé>5n
— @5 L day oy Eq.28

Al>5denotes the sutimestep for the update of the front position.

(4) We define thesubtimestep by posing conditionthat measures themallesttime to reach the

cell centre

20 F 28

UPSL IEJF¥c Eq.29
68 . Aax

Zﬁwrepresents theurrentposition of the front between two adjacent cdBsd HseeFigurel)

We repeathe step3) andO until the sum oéll AP>5will be equal tathe time step in the mastheme
P>5 Doingso, dl the blocks where the front moves to are marked to remaihigher resolution.

Uij

L ¥y J

Figurel the twocellsand thefront position used to define the algorithm
3.4.2Test case validation

To verify the proposed FFrT method, we consider-tivoensional wateflood problems, where oil is
displacedby thewater of the same or different viscosity. Both fluids are incompres3ibéereservoir
is initially filled with oil. Water is injected fronthe left boundary of the domain.

The Buckley Leverett problem:

We create a simple example to comptre proposed fast front tracking methaith the Buckley
Leverett (BL)solution. We choose ar Ht | 8domain, discretised by &r r Hw ICartesian gridThe
permeability and porosity are spatially homogeneous and equal to 0.01 Darcy and 1.0, respectively.
Water is injected from the lefioundarywith a constant rate o§ r’* | “aQ vauAF uPV/day). The
viscosity of oil is set tosr? L The viscosity of water varies between three different values of
s&id wf « tsr? Lin different casedrigure2 shows some comparisonstbe FFrT methodvith the

BL sdution for differentviscosity ratiocases and alifferent time steps.
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232  Figure2 Thecomparisorof the proposed FFrinethod with the analytical solution tife BL equation
233 for (a)a viscosity ratio of/ L 8,98, L y at three different timesnd (b)for two different viscosity
234 ratio M=1 & 10, after 0.39 pore volume injected

235 Random generated isotropianedium:

236 To increas the complexity othe validationcaseswe test the method ti asmoothly heterogeneous
237 random permeabilityield generatedvith a lognormal distributiona correlation length of 0,landa
238 DykstraParsons coefficient of 0.8hown inFigure3. We set Dirichlet conditions on theft andright
239 boundaries, and a fftow condition on thetop and bottom boundariesWe consider the previously
240 described twephase flow problem. We set the viscosity of oildo ? land consider differentiscosity
241 ratios The original computational grid contairsr r Hs r rcells. Figure 4 shows water saturation
242  contour maps computed using a standard FV IMPES (implicit pressxicit saturation) scheme
243 and the FFrT method for four viscosity ratios. The analytical saturation ofahigsfralso showrior
244  each case of the viscosity ratig computed usingq. 26. In the case of a unit viscosity ratio with a
245  relatively sharp front, # prediction of the FFrT method iis good accordance witthe saturation
246 profile computed usinghe standard F\écheme. When the viscosity rafib increases and the front
247 becomes more distorted, a small difference between the predicted front positide &\d solution
248 can be observed. Due to numerical errors inherent to both methods and lack of an exact solution it may
249  Dbe difficult to interpret the differencé is worth noting thathe proposed fast front tracking method
250 cannot predict the rarefactiomave behind the front and thmumericaldiffusion of the front The
251 essential fact is that the frontal zone is captured correctly. This allowsup setrectly the adaptive
252  coarsening strategy with the FFrT method as a criteidnch is our main goain the proposed
253  workflow.
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255  Figure3 Isotropic randomly generated permeability model waitfimensionless correlation length of
256 0.1 and DikstraéParson coefficient of 0.2 itmelogarithmic scale
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257  Figure4 Water saturation contour maps for the randomly generated permeability domainistiogn
258 previous figure with differentases of viscosity ratio, computed by the propdded method and a
259 standard FV scheme.

260 SPE 10 benchmark test:
261 We consider a twalimensional Cartesian model with permeability values tédoenthe secon&PE10
262  benchmark teqiChristie and Blunt, 2001 his modelcontainsxr Httr H z veells, n which the top

263 35 layers represent Tarbert formation and the bottom 50 layers represent Upper Ness formation. We
264  consider thesameimmiscible twoephase flow (wateoil) problemwith the same initial and boundary
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conditions as in the previous example, athbthe original fine and coarsened gridée generate the
coarse grid via a uniform agglomeration of the base fine grid, with an agglomeration ratio of 10. We
use a flowbased upscaling method to compute the upsqedadeabilitiegChen et al., 2003Wwhere a

set of representative boundary conditions are imposed at the coarse grid blocks to solve the flow
equation and use the fiseale pressure and fluxes to compute the upscaled permeabiihie fine

scale and upscaled permeability maps for the layers 22 and 70 of the SPE10 dataset ard-&en in

5. In Figure6 we compare the FFrT method with a standard finite volume scheme at two resolutions,
for a waterflood problem with a viscosity ratio L srin layer 22 of SPE 10 modeAt the coarse

scale the results of FFr'T methate very close to the FV solution thie same resolution. Ithefine-

scale simulationthe FFrT methogbredicts the flow patterns very well, and thain difference with
thefine-scale simulation is close to the right boundary, where the front becomes diffusive. For a more
detailed comparison, the superimposed contour maps for the original resoluticeareaksewn in
Figure7. This figure shows that the predicted front position is very close to the saturation contour line
of r& computed using the FV scheme on the original grid.

Fine Permeability, Layer 22  Upscaled Permeability, Layer 22 Fine Permeability, Laver 70  Upscaled Permeability, Layer 70
= st

L5
/
gl
A
I
i
&

A .. Fw -

A 10 1000 A 10 1000 A 10 1000 A 10 1000

Figure5 Permeabilitymaps of the layers 22 and 70 of SPE10 model in the logarithmic scale, before
and after upscaling

FFrT Method _ FV Selution FFrT Method FV Solution

Figure6 Water saturation maps for layer 22 of SPE 10 mfudtel waterflood problerwith theviscosity
ratio of 10 at the original and a coarsened resolution, computé ByFrTand FV methos
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Figure7 Water saturation contour maps for layer 22 of SPE 10 model, for the same time step as the
previous figure, at the minal fine resolution.

4  The solution flow chart

We nowdetail thecomplete solutiomprocedureat each time stepsingthe previous schemes atite
FFrT technique

(1) Thepressure equation is solved using the DG scheittnea linear approximatioon the base
coarse gricbver the whole domain

(2) DG conservative fluxes areconstructeénd then the front is movesingthe FFrT method.
This step includes solvingg. 28in some parts of the domainhe position ofhefrontis then
used to(1) partition the domain into singl@nd multiphasghase flow regions an@) use a
higher resolution grid equal to the resolution of the original fine grid aw intermediate
resolutionwhere the fronmoves One immediate advantagédomain partitioning is to solve
the saturation equation only in the mydtiase flow regioms a result, nonultiphase upscaling
method is needede use thelynamiccoarsening approach éfauge et al(2012)to use a
higher-resolution gridwvhere the criterion is met.

(3) Flow and transport problems are sohiedthe multiphase flow part of the domain, on an
adaptivelycoarsenedyrid generated at the previous st&epending on the type of faces,
boundaryor interior onesbetween singlphase and twphase flow regions, the boundary
pressure or the DG conservatifluxes are set as boundary conditions. These boundary
conditions are used to solve the pressure and transport problems ugivgrntie¢hod Except
for the DG andthe FFrT our methodology use tools for the upscaling, diggamic mesh
coarseningand theFV resolutions that are available in the MATLAB Reservoir Simulation
Toolbox, MRS (Lie, 2019 Lie et al., 2012) A flowchart of theproposedapproach is
illustrated inFigure8.

2 https://www.sintef.no/projectweb/mrst/
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Figure8 The flow chart of the proposed sequengipbroach for each time step
4.1 Complexity analysis

We use the number of unknowns solved at each step as the main indicator of the complexity of the
solution approach so that this analysis does not depend on the actual implementation of the method. In
the following, we detail the computational cost of each step separately.

(1) DG pressure solver on the base coarse grid: The number of unknowns at this step is equal to
the number of coarse grid blocks times the number of local degrees of freedom which is equal
to:

OL:2Es;® Eq.30

where P is the polynomial degree.

(2) The FFrT method: In this stefag.28, is solved in parts of the domain where the front is prtese
and the number of unknowns here depends on the shape of the front. Thanks to these two
important features, being local to cells where the front is present, and the explicitness of the
equation to be solved, this step is computationally very fast.

(3) Adaptve coarseningin the agglomerationased coarsening approachas;oarse grid is
generated from the agglomeration of the fine grid using a partition vector to relate coarse block
to their underlying fine cellsThanks to this preserved oteone mappig between fine and
coarse grids, adding or removing local resolution is simple to carrfEeen if the cost of the
grid adaptations is difficult to quantify precisgiy test cases we performed, this step was less
than about five per cent of our overabmputational time. It is also worth noting that this
dynamic coarsening reduces the number of unknowns in the computationally demanding
transport solver.

(4) FV pressure and transport solver in the refined areas: The number of unknowns in this step is
twice the number of cells in the twghase flow region
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331 As an illustrative example, we test the method withrémelom permeabilitfield of Figure3. Water

332 and oil viscositieare equal td..0 and 0.2.., respectively. The reservoir is initially filled with ol

333 coarse grid is generated by uniform agglomeration of the original grid with a coarsening ratio of 10.
334  This simple example with sharp and sniofybnts shows how the proposed approach workigure9

335 shows the resulting saturation maps along with the fine solution taken as reference. Thelsgcond
336 from left, shows a pseudo saturation map that indicates the presence or absence of water given by the
337  FFrT method. The third plot shows the results of the domain partitioning scheme tléhsa¢uration

338 equation is solved using the FV mettardy in the identified twephase regiomith a highresolution

339 grid. The green lines show the boundaries of thelvase regionThis domainis only defined from

340 itswest and east boundaries. The north and south boundaries coincide with the main boundaries of th
341 reservoir.The east boundary is determined thanks to the pseudo saturatiorSmee this criterion

342 cannot be used to determine thest boundaryf the domain the saturations calculated from the

343 previous time stepare usedinstead The last plot in tts figure shows the results obtained with our

344  procedure, where both domain partitioning and dynamic nonuniform coarsening ar€igsesl10

345 shows theatio of the total number of global degrees of freedom in the proposed approach compared to
346 the reference solution for this example.

Fine Grid: 10000 cells FFrT: 100 blocks (coarse grid) Domain Partitioning: 5000 cells

347  Figure9 From left to rightthe water saturation map on the base finetgidn as the reference solution,
348 thepseudesaturation mapnthecoarse meshased or-FrT methodthe watesaturatiomrmapfor the
349 domain partitioning schem@&ithout adaptive coarseninggnd the results ¢dined withthe proposed
350 approactusingdomain partitioning anddaptivecoarseningThe greenline indicates the twgphase
351 partition of the domairiThe number of grid cells is shown above each plot.

Ratio of the total number of unknowns for the proposed
approach compared to the fine reference one

0.35
0.3
0.25
0.2
0.15
0.1
0.05

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time step

352
353 Figurel0 Theratio of thetotal number of unknowns to be solved at efiitie step in the proposed

354 solution approachompaedto thefine reference solutio.
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5 Numerical Examples

In the following examples, we test the approach in-tivoensional waterflood problems with
favourable and unfavourable viscosity ratios. The initial and boundary conditions remain the same as
in the previous examples. In the first two examples, the identified coarse blocks are replaced with their
underlying fine grid cells. In the third examplee present cases where the resolution of the identified
coarse blocks are increased to an intermediate level.

5.1 Example 1: Favourabledisplacement

We test theproposed solution strategg a favourabledisplacement procesa a twodimensional
Cartesian moel with permeability values taken frotayer 700f the secondSPE10 benchmark test
[Figure 11]shows thewater saturation maps ttreedifferent timestepsin this channelizedeservoir
The viscosity of water i$.0 ? land theviscosity of oil is0.2 ? LWe can see that our proposed approach
captures the channelized flow detail which is challengprgetwhena low-resolution grids usedver

the whole domainn this figure we alsocomparehe propose&FrTtechnique with a classic criterion,
where thesaturation equation is solved on a coarse grid and the satwhtagefrom the previous
time stepis used to locallyincrease the mesh resolutionthre blockswhere this change exceeds a
defined toleranceThe FV solution on the original fine grislalso shown aareferenceTo evaluate
the accuracy of DG conservative fluxes, the results of the finite volume transport solution using DG
computed total fluxes on the coarse grid are compitiedcan see in this exampleat FFrT method
gives a better dication of where t@dda higher spatial resolutiohe proposed FFrT methaolves

an explicit equation on some parts of the domain, whiile saturation gradient criterion needs the
solution ofthe transport equation over the whole domain. evaluatethe accuracyof the proposed
approach, wusethelL? relative erronormto compare the proposed solution strategy tigeference
fine solution computed using the equation below:

-QFQQUA-: :
A NN ‘ Eq.31
-QQU’&: :

where ¢, és the reference solutiowhere finite volume is used for solving both equations on the
original fine grid, ands; represent theaturation irthe chosen solution strategg. comparison of the
errors andvater cus obtained with different schemes are showjfriure 12| The proposedscheme
gives satisfactory results in terms of error, water breakthréogh and the water cut. In these plots,
the results of the finite volume solution on the coarse grid are shown as well. In terms of error, the DG
conservative fluxes give results close to the finite volume coarse resdRitione 13shows theatio

of thetotalnumber ofdegrees of freedoffor each timestep for the proposed approammparedo the
base fine solution. The number of unknevand subseaently thecomputationalefficiency of the
approach depends on thetensiorof themultiphase flowareaover the domaint also depends on the
spatial resolution atherefinedsubdomains. In this examplegater breakthrough happens eatiying
thesimuation and thenultiphasesubdomainsre replaced with their underlying fine grid cells.
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389 Figurell Saturation maps for the lay&0 of the SPE10 modelomputed by the proposed approach,
390 the adaptive approach with saturation gradient criteria, FV on the base fine grid, and BDG(flux)
391 FV(saturation) schemeatthreedifferent timesteps
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Figurel2Errors and \ater cut as &unction of time for the layer0 of the SPE10 modéh a favourable
displacement process

Figurel3 The ratio of the total number of unknowns for each time step in the proposed approach
compared to the base fine solution

5.2 Example 2: Unfavourabledisplacement

To test thegproposed solution strateggy unfavourableriscosityratios, we set the viscosities of water
and oil to 0.5 and 3 Lrespectively, to get an unstable viscous flow affitvet. All other conditions
remainthe same as in the previous cshowsthewater saturation maps titreedifferent
time steps for thesamelayer. Our proposed approach sessfully captures the diffusive flow pattern
in the channeWater saturation gradient works slightly better thiaFFrT in the early time steps but
tends to decline after the water breakthrough shows theerrors andwater cus for
different schemed/Ne notice thatn this case, the coarse DG conservative fluxes give slightly better
results tharthe coarse F\Mfluxes, in terms of the water cut¥he dynamic coarsening approaches with
FFrT method and the classical criterion of saturation gradient give similar riestdtsns of relative
error and water cut. However, the FFr'T meth®thuch faster than any transport solver. This figure
also shows the relatively large errors in coasale solutionshows thetotal number of
global degrees of freedom for the proposed approach relative to the reference fine sbhaion.
proposed approach has an accuracy close to the reference solution while decreasinténeof
global degrees of freedom.
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413  Figure 14 Water saturation maps fathe layer 70 ofthe SPE10 model, at three different tirageps
414  before (first row), at (second row), and after (third row)water breakthrougfor an unfavourable
415 displacement case
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Figure 15 Errors and water cut&s a function of time fothe layer 70 ofthe SPE10 modewith an
unfavourableviscosityratio.

Figure 16 The ratio of the total number of unknowns for each time step in the proposed approach
compared to the base fine solution for the unfavourable displacement in layer 70 of SPE10 benchmark
test

5.3 Example 3: Intermediate resolution

In the previousexamples, we replaced the coarse blagits thdr original fine resolution gridellsin

the adaptive coarsening st&ut we can alsmcrease the spatial resolutiontire indicated coarse grid
blocks to any intermediate resolutjde derease thewumber ofdegrees of freedom and ultimately
improve the computational efficiencylhis is especially more efficient in displacements with sharp
saturation fronts. IfEigure 17]you can see the results ibfe approachusing an intermediate spatial
resolution where the identified coarse blocks are replaced with a finer resolution of ratio 2 relative to
the original resolutionHere the permeabiitfield is taken from layer 22 of the SPE10 second model
andviscosiies of water and oil are set to 1.0 and 0.2 cp, respectiVidig.errors and water cuts are
represented |Rigurel8

Figurel7 Saturation maps for lay&?2 of the SPE1Qvith a favourableviscosityratio, for two different
fine resolutiors.
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436  Figure 18 Errorsand water cutsis a function of time for the lay@P of the SPE10 modend two
437  differentintermediataesolutions.

438 We revisit the example*k.l andp.Zand we increase the resolution of identified coarse blocks to
439  different intemediate levels with agglomeration ratios of 2 and 4 relative to the base fifEiguice]

440 shows the error, the water cut, and the total numberlafawns for both examples. In this figure,

441 the original resolution represents the solution where the coarse blocks are replaced with their original
442 fine cells. This figure shows that replacing the coarse blocks with an intermediate resolution of the
443 agglomeation ratio 2 gives suitable accuracy while decreasing the total degrees of freedom to a great
444  extent.

[Example 1: Favourablisplacement [Example 2: Unfavourabldisplacement
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Figurel9The errors, the water cuts, and the ratio of the total number of unknowns compared to the fine
reference solution for the previous examples with different intermediate resolution level.

6 Conclusions

In this paperan original methoccombiningdynamic noruniform coarseningind a discontinuous
Galerkin methodvas developed. The goal isitoprovethe efficiency of multiphase flowsimulations
in heterogeneous porous medi@hout losing accuracyThe proposedfast front tracking method
appears |1beinga promising methotb combine different resolution strategfesusing on different
flow areas This method can be used on a coarse scale to idahéfitwephase flow regiorwith
satisfying accuracy andsanall computational cost of solving @xlicit equation in some parts of the
domain This informationcan thus beised as input tdynamicmeshcoarseningandadaptive use of
DG and FV solvers for the pressure equatidris method has proved to be a powerful tool to predict
the position of the frontNearthe front, in the twephase region, we have shown th&igh-resolution
grid used along with &nite volumediscretizaiton leads tostable solutions witlmproved acuracy.
Far from the frontthe DG method,usedon a lower resolution grid, increathe accuracyf the total
velocity.

The efficiency of the approach depends on the overall spreading of the multiphase region, and the level
of resolution in the adaptiveoarsening. We have shown that the resolution level can be adjusted
depending on the required order of accuracy, the available computational cost, and the complexity of
the problem.

However, the proposed solution strategy can be extended to a more gansealork. Thefast front
tracking methodtan be improved to handlmore complex flowdike radial onesaround wellsn 3D
domains Other approaches coullso be followed For example working at acoarsescale using
classicalsinglephaseupscaling, coupled with ugcaledtwo-phase flow equationwith an effective
fractional flow function(Artus et al., 2004 Fayers et al., 1992Sorbie et al., 199%and a
macrodispersion term modelling the subgrid disardae effective fractional flow accounts for the
average local pressure saturation coupling. This could help s&fggtestimation of the front location
and its typical thicknesat thecoarse scaldirectly. If necessary, a mesh redinentwill then be set up
in that areadepending on gosteriori criterionquantifying the overall accuracy of the calculation

(Gratien et al., 2016)
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