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Abstract

Free surfaces and fluid interfaces are encountered in a wide variety of gas-

liquid configurations. Although many numerical approaches exist to solve such

flows, there is still a need for improved simulation methods. Recently, a new

efficient geometric VoF method for general meshes, called isoAdvector, was

implemented in OpenFOAM R©. More recently, the isoAdvector method was

significantly improved by introducing a variant using a reconstructed distance

function (RDF) in the interface reconstruction step. Elementary quantitative

benchmarks are essential for validation and comparison of interfacial solvers.

We present here three benchmarks results that were used for validation of the

original and new variant of the isoAdvector method. Comparisons are made

with reference data and OpenFOAM R© VoF original solver, interFoam, employ-

ing the MULES limiter. The first case is the static bubble under zero gravity.

The RDF reconstruction method demonstrates better prediction of the inter-

face curvature, pressure jump between the phases and strong reduction of the

spurious currents. The second and third validation cases are single rising bub-

bles in a quiescent liquid, with a spiraling path for the third case. Either on

hexahedral or tetrahedral grids, the RDF reconstruction method demonstrates

a better behavior.
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1. Introduction

Gas-liquid interfacial flow systems are often encountered in a wide variety of

configurations, in science, engineering or industry. In ocean engineering, floating

wind turbines, oil and gas platforms, or more generally coastal and offshore

structures are subject to violent waves, which is a paramount concern for their5

correct dimensioning. In the chemical process industry, various scales of gas-

liquid flows are encountered ranging from large bubble columns, plate columns,

agitated vessels, surface aerators, jets, static mixers or micro-reactors. Their

applications are generally reactive flow systems, mixing, stripping or saturation

systems. Complex phenomena of turbulent hydrodynamics involving breakup10

and coalescence, coupled with gas-liquid mass and heat transfers, appear in such

systems. Many other applications of interfacial flows can be found such as inkjet

printing, automotive applications (liquid films, fuel injection, aquaplaning, etc),

ship maneuvering, tank sloshing, hydraulic pumps, metal casting, fire sprinklers,

atomizers and aerosols, etc. The list of domains that may benefit from improved15

solution methods to the interface advection problem is thus extremely long.

Thanks to the increase of computing resources, highly resolved simulations

gain more and more interest as a tool for detailed analysis of the physics of

such multiphase flows. Many numerical methods have emerged to attempt to

simulate gas-liquid flows. Among these, implicit interface capturing approaches20

like volume of fluid (VoF) [1], level set (LS) [2] or phase-field [3, 4] have proven

to be efficient in simulating multiphase flows. Many different flow solvers, both

commercial and open source, implement the VoF approach. Among them, the

open source library OpenFOAM R© [5] is one of the major actors. This library

and its numerous solvers and utilities is widely used both in the industry and25

in academia.

Roenby et al. [6] have recently developed a new geometric VoF method, called
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isoAdvector, for advecting the interface between two incompressible fluids. This

method was included in the official release from OpenFOAM-v1706 in the new

solver interIsoFoam. More recently, Scheufler and Roenby [7] introduced a30

novel computational interface reconstruction scheme based on the calculation of

a reconstructed distance function (RDF). This new scheme has been combined

with the interface advection step of the isoAdvector algorithm [7]. Second order

convergence with reduced absolute errors is obtained for simple test cases on

all mesh types. The computational cost of both isoAdvector variants remains35

lower [6, 7] than the standard OpenFOAM R©’s algebraic interfacial flow solver,

called interFoam, which was originally developed by Weller [8]. Numerical

methods are detailed in section 2.

Before running into complex physics and geometries for gas-liquid flows,

elementary quantitative benchmark configurations are essential for validation40

and comparison of interfacial flow solvers. Although isoAdvector gives a sharper

interface than interFoam [6, 7], validation data for this new method are still

sparse, especially for surface tension dominated flows. The objective of this

paper is thus to perform quantitative comparisons of the isoAdvector solvers

against benchmark data.45

The first benchmark case we consider is the classical static bubble [9, 10].

This case allows to quantify the curvature error and the spurious currents gen-

erated by VoF solvers. Results are presented in section 3.

Hysing et al. [11] have proposed a 2D benchmark with a single rising bubble

in a quiescent liquid. Two different cases are described in [11], corresponding50

to different density, viscosity and surface tension ratios. Many authors have

used this benchmark for the validation of their solvers. We cite here only some

recent works. For level-set (LS) based methods, we can cite for instance the

work of Zuzio and Estivalezes [12]. The benchmark of Hysing has also been

used to validate coupled LS with VoF solvers [13, 14]. Patel et al. [15] have used55

the same benchmark for validation of a novel algorithm combining VoF with

a staggered/non-staggered method. Manik et al. [16] have applied that bench-

mark to validate an algebraic VoF algorithm. Febres and Legendre [17] have
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validated a new front-tracking algorithm implemented in the JADIM code with

the same benchmark [17]. Recently, Castello Branco et al. [18] have discussed60

2D results on the same benchmark with an improved curvature computation

in isoAdvector. Adelsberger et al. [19] have published a 3D equivalent of the

same benchmark, except that lateral no-slip walls have been used in their work,

instead of slip walls. For both 2D and 3D benchmarks [11, 19], result data were

made available online by the authors at the URLs mentioned in the bibliogra-65

phy. In this paper, we consider only the case 2, where fluid physical parameters

are more challenging to predict and closer to real applications. Results are

discussed in section 4.

Finally, a freely deforming bubble rising benchmark in a still liquid is studied.

We consider the bubble number 26 taken from Cano-Lozano [20]. The path of70

this bubble is helicoidal, describing a spiraling path. This benchmark assesses

the ability of the solvers to capture the transition towards path instability in a

three-dimensional context. Results are discussed in section 5.

Validations of the isoAdvector methods are performed against the historical

OpenFOAM R© VoF solver interFoam, against the open source solver Basilisk [21]75

and against literature results concerning the benchmark of Hysing. Table 1 list

the solvers that were operated in the present study.

2. Numerical methods

We consider here an unsteady, laminar, isothermal and incompressible two-

phase flow. The flow is supposed without mass transfer across the gas-liquid80

interface. The governing equations are the continuity and momentum equations.

The incompressible mass conservation reads:

∇ · u = 0 (1)

where u denotes the velocity vector. The Navier-Stokes equations for the mo-

mentum evolution are written as:

ρ
∂u

∂t
+ ρ∇ · (uu) = ∇ ·

(
µ(∇u +∇Tu)

)
−∇p+ ρg + Fσ (2)
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where p, ρ, µ are respectively the pressure, density and viscosity. g is the gravity.85

Fσ represents the surface tension force, which is expressed as a source term per

unit of volume in the momentum equation.

In the VoF method, the volume fraction field α is introduced, which repre-

sents for each cell the fraction of its volume which is occupied by one of the

two fluids. Quantities are then defined as volume fraction weighted sums. If90

α denotes the first phase volume fraction, ρ1 the first phase density, ρ2 the

second phase density, then the density is defined by the mathematical average

ρ = αρ1 + (1 − α)ρ2. Other quantities like viscosity can be defined similarly.

The volume fraction α is obtained by solving the following transport equation:

∂α

∂t
+∇ · (αu) = 0 (3)

Special care must be taken in the numerics to prevent smearing of the α-field95

and at the same time keeping it bounded (0 ≤ α ≤ 1). In the interFoam

solver, sharpness is obtained by adding an artificial interface compression term

∇ · (α(1− α)uc) to the equation 3 (see Weller [8]). Boundedness is ensured by

employing the MULES limiter (Multidimensional Universal Limiter with Ex-

plicit Solution). More details can be found in Deshpande [22]. In the following,100

the interFoam solver will be used as a reference solver for comparisons and will

for the sake of brevity be denoted MULES.

The solver interFoam has been widely used and validated [23, 24, 25, 26], but

under some conditions the described method may fail in keeping the interface

sufficiently sharp. Furthermore, the heuristic nature of the added compression105

term can lead to inaccurate interface advection and undesirable features such

as unphysical ripples on the interface [27, 28]. This motivated the development

of the isoAdvector geometric VoF method, which was first presented by Roenby

et al. [6]. In the latter reference, isoAdvector was tested with a variety of pure

advection cases yielding very good results in terms of volume conservation, inter-110

face sharpness, boundedness and shape preservation. The isoAdvector method

implements new ideas in both the interface reconstruction step and the interface

advection step. The reconstruction step uses efficient isosurface calculations to
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compute the distribution of fluids in a grid cell. The interface advection step

uses a novel division of a physical time step into sub-time steps on which the115

volume fraction flux through a cell face can be calculated analytically under

the assumption that the interface is moving steadily across the face during the

interval. In the development of this procedure, no assumptions are made on

the shape of a cell face, which makes the advection step applicable on arbitrary

meshes. Except for the interface advection step, the interIsoFoam (isoAdvec-120

tor) solver is identical to the interFoam (MULES) solver. They both solve

the governing system of equations in a segregated manner using the PIMPLE

algorithm (a combination of the SIMPLE and PISO algorithms) for pressure-

velocity coupling. Strictly speaking, isoAdvector and MULES also differ in the

way rhoPhi (used in the momentum convection term) is calculated, which is125

described in [28].

With recent improvements, the isoAdvector method has been made consis-

tently second order for all mesh types (See Scheufler and Roenby [7]). Scheufler

and Roenby [7] have presented an iterative residual based interface reconstruc-

tion procedure utilizing a reconstructed distance function (RDF) to estimate the130

local interface position and orientation from the raw volume fraction data. This

new algorithm has been developed in two variants based on RDF isosurface

reconstruction and on piecewise linear interface construction (PLIC), respec-

tively. The latter reconstruction method, called plic-RDF, has been used in

the present work. Following the nomenclature in Scheufler and Roenby [7], we135

will refer to the original reconstruction algorithm of Roenby [6] as isoAdvector

isoAlpha or simply isoAlpha. In the present paper, we have used the reconstruc-

tion method plic-RDF with 5 iterations from [7]. Corresponding results will be

referred to as isoAdvector plicRDF-5 or simply plicRDF-5. Additionally, the

RDF of plicRDF-5 method is used to compute curvature [29] instead of using140

the volume fraction gradient.

In the next sections, comparisons between codes other than the OpenFOAM R©

flow solvers are exposed, either with the literature [11] or with the Basilisk code

(http://basilisk.fr). In the Basilisk code, equations 1 and 2 are solved us-
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ing the approach implemented by Popinet [21]. The corresponding finite volume145

spatial discretization makes use of a graded quadtree or octree partitioning de-

pending on the number of dimensions of the problem studied. All variables are

collocated at the cell centers. Time advancement of the viscous term in the

momentum equation is achieved with an implicit scheme, while the advection

equation is solved using the Bell-Colella-Glaz scheme [30]. A piecewise-linear150

geometrical VoF method is used to solve the advection equation of the volume

fraction [9]. Besides, a combination of the height-function curvature estimation

and a well balanced scheme for the estimation of the surface tension force is also

used [9, 31].

The table 1 summarizes the different solvers used in the present study.

Table 1: List of VoF solvers used in this benchmark study.

VoF solver Type References

MULES Algebraic VoF [8, 22]

isoAdvector isoAlpha Geometric VoF [27, 28]

isoAdvector plicRDF-5 Geometric VoF [7]

Basilisk Geometric VoF with height-function [9, 21]

155

For all OpenFOAM R© computations, second order schemes were chosen. The

Crank-Nicolson second order time scheme with blending coefficient 0.9 has been

used. The Gauss linear scheme was used for gradient terms on hexahedral grids,

while a least squares gradient scheme (namely pointCellsLeastSquares) was

used for prismatic or tetrahedral meshes. Laplace operators were discretized160

with the Gauss linear corrected scheme. The convective term in the momentum

equation was treated with a limited Gauss linear scheme specialised for vector

fields (Gauss limitedlinearV 1). This scheme reduces to an upwind scheme

in regions of strong velocity gradient. A single limiter is applied to all compo-

nents of the vector simultaneously. A Gauss Van Leer scheme was used for the165

α convection term. In the MULES simulations, the artificial interface compres-

7



sion term is discretized with the Gauss interfaceCompression method that

ensures the boundedness of the volume fraction. The reader is referred to the

OpenFOAM R© user’s guide [5] for more details on numerical schemes.

The generalised Geometric-Algebraic Multi-Grid (GAMG) linear solver [5]170

was used for pressure terms, while the smooth solver was used for the veloc-

ity. Constant time steps have been used with OpenFOAM R© computations.

Small time steps combined with a Crank-Nicolson second order scheme ensure

that discretization errors due to time scheme are kept at a very low level.

The PIMPLE algorithm [5] was run with 3 PISO correctors (nCorrectors175

set to 3), which means that the pressure field is corrected three times per

PISO corrector loop. The overall PIMPLE algorithm was repeated 3 times

per timestep (nOuterCorrectors set to 3), which means that the calculation

of the pressure-momentum coupling was iterated 3 times in a single time step.

Setting momentumPredictor to true was necessary for accuracy with isoAd-180

vector. The momentumPredictor is a switch enabling activation/deactivation

of the predictor step in the PISO algorithm. The number of non-orthogonal

correctors (nNonOrthogonalCorrectors) was set to 1 on tetrahedral/prismatic

grids and 0 on hexahedral grids.

The initialisation of bubble shapes in the different configurations examined185

in the next sections has been done using the setAlphaField utility. This tool

guarantees an accurate initial value for the volume fraction field that respects

the percentage of each phase present in a cell crossed by an analytical interface,

like for example a cylinder in 2D or a sphere in 3D.

3. The static bubble case190

3.1. Definition of test case

The first case we consider is the static bubble [9] under zero gravity. As

illustrated on figure 1 in 2D, a cylindrical interface of gas (fluid 2) is initialized

inside a continuous liquid phase (fluid 1). Both fluids have the same viscosity µ

and density ρ. The density ρ and the surface tension σ between the two fluids195
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Figure 1: Configuration and boundary conditions for 2D static bubble case under zero gravity.

are both taken as unitary constant values. The bubble has an initial diameter

D0 = 2R0 = 0.8 m. Only a quarter of the 2D geometry is simulated in a domain

of size 1 × 1 m. The bubble is placed in the bottom left corner of the domain.

All boundary conditions are symmetries. This test case can easily be extended

to 3D, where 1/8th of an initially spherical bubble is then simulated.200

This test case is ideally not supposed to generate any velocity field and the

pressure field should follow the Laplace pressure jump at the interface. In such

a static configuration, the Navier-Stokes momentum equations 2 simplify to a

balance between pressure gradient and surface tension force. Spurious currents

can occur from a numerical imbalance between the discretization errors of those205

two terms. This numerical imbalance creates a source term in the vorticity

production equation, which in turn generates velocities. In our attempt to

quantify the spurious currents generated by the OpenFOAM R© VoF methods

studied here, this elementary case provides a fundamental base of comparison.

Besides, the static bubble test case has been widely used in the literature [32,210

9, 21, 10] and is mentioned as a reference test case for Laplace equilibrium and

spurious currents in the review of Popinet [31].

Following previous references on the static bubble [9, 10], we studied the

influence of the grid size. For 2D square (resp. 3D cubic) grids, the number

of grid cells along x and y (resp. x, y and z) directions are identical. In 2D,215

triangular grids have also been considered with the OpenFOAM R© solvers. A

standard Delaunay algorithm was then used to generate grid cells of mean edge
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lengths identical to that of the square grids. The grids were created with the

software Pointwise R©.

The Laplace number defined as La =
ρD0 σ

µ2
was also varied during this220

study. As the density ρ and the surface tension σ are constant, an increase of

the Laplace number thus corresponds to a decrease of the viscosity.

Different time and velocity characteristic scales can be defined for the static

bubble [9, 10]. We have chosen to follow Abadie [10] by defining a capillary

time scale as tσ =
√
ρD3

0/σ and a capillary-viscous velocity scale as uσ = σ/µ.225

These values will be used in the following to present dimensionless data.

VoF methods have the advantage to be mass conservative. This property was

firstly verified in the OpenFOAM R© computations of the static bubble, where

mass conservation relative errors were found inferior to 10−5%. This point will

thus not be developed in the rest of the article. Next sections quantify curvature230

and spurious currents errors.

3.2. Pressure jump and curvature error

The Young-Laplace law for the pressure discontinuity due to surface tension

can be expressed as:

∆pth = σ κth = σ

(
1

R1
+

1

R2

)
(4)

where κth is the curvature [32]. R1 and R2 are curvature radii along two per-235

pendicular directions. For the 2D cylindrical bubble which has infinite length

in the z direction, one of the curvature radii can be taken as infinite. The sec-

ond curvature radius in the perpendicular direction is the bubble radius. The

theoretical curvature is thus κth = 2.5 m−1 and the pressure jump across the

2D bubble is ∆pth = 2.5 Pa. In the case of the 3D spherical bubble, R1 and R2240

are equal and the exact pressure jump is ∆pth = 5 Pa.

Example pressure profiles along two sampling directions across a 3D static

bubble are shown on figure 2, for the OpenFOAM R© solvers. It is clearly visible

that plicRDF-5 provides the best fit to the theoretical rectangular function of

pressure jump. MULES and isoAlpha solvers underestimate the pressure jump.245
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Figure 2: Pressure jump across the static bubble at time t∗ = 100. Left: pressure along y

axis, right: pressure along the domain diagonal at spherical coordinate angles θ = φ = 45o.

3D configuration with 1283 cubic grid cells, La = 12000, OpenFOAM R© solvers.

isoAlpha presents over or undershoot near the pressure discontinuity at the

interface, while MULES smears out the pressure jump.

In a well-balanced solver, this difference between the exact and numerical

pressure jumps arises only from errors in the estimation of the curvature. This

assumption can easily be verified by imposing the exact curvature κth inside the250

solvers source code, as a substitute for the computed curvature. 2D results are

shown on figure 3, in terms of time-averaged maximum capillary number (see

section 3.3 for capillary number definition and for definition of time averaging),

for different grid densities and versus Laplace number. Same trends are observed

in 3D. When exact curvature is used, maximum capillary numbers become of255

the order of numerical precision, slightly vary with grid size and decrease when

Laplace number increases. Data for the three solvers are superimposed, which

is an expected result as all three solvers use the same pressure-velocity coupling

algorithm.

Pressure jump errors, as can be seen in the sample curve of figure 2, can be260

characterized by comparing the maximum of pressure to the theoretical pressure

jump. This was translated to a pressure relative error norm written as:

Lp∞ =
|pmax −∆pth|

∆pth
(5)

with pmax computed as the maximum of pressure field over all the computa-

tional domain and averaged over the last third of the computation time (see
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Figure 3: Static bubble on 2D square grids: Mean maximum capillary number versus Laplace

number when curvature is imposed to exact curvature. Comparison of OpenFOAM R© solvers.

section 3.3 for averaging details). This pressure relative error norm is shown on265

figure 4, versus Laplace number on the top, and versus density on the bottom,

for three 2D grid sizes. We notice the lower errors of plicRDF-5, over MULES

and isoAlpha. Note also that changing the density of the fluids has no influence

on pressure jump, and more generally on generated spurious currents.

In order to quantify the curvature error, the following curvature relative270

error norms are introduced:

L2 :
1

κth

√
1

N

∑
i=1,N

(κi − κth)
2

L∞ :
1

κth
max
i=1,N

|κi − κth|
(6)

where N is the number of elements in a series of curvature data κi.

The evolution of curvature L2 and L∞ relative error norms is plotted versus

grid size on figure 5 for the three OpenFOAM R© solvers and at La = 1200.

The curvature was extracted at the interface and the resulting data array was275

processed through the error norms of equations 6. We note that the curvature

error is increasing with grid refinement, however it does so to a lesser extent

for the plicRDF-5 solver L2 norm. The RDF curvature method (plicRDF-

5 curves) generates errors that are around two orders of magnitude smaller
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Figure 4: Pressure relative error norms versus Laplace number (top, unitary density) and

versus fluid density (bottom, La = 120) for the 2D static bubble and for all OpenFOAM R©

solvers.

than the curvature based on volume fraction gradient used by MULES and280

isoAlpha. On triangular grids, curvature errors are higher for all solvers. The

difference between plicRDF-5 solver and the other methods becomes inferior

than on square grids.

3.3. Spurious currents quantification

Figure 6 shows a qualitative view of the spurious currents generated by the285

different OpenFOAM R© solvers used here. Note that the scaling factors applied

to make velocity vectors visible are in the same order as the ratios of curvature

relative errors between the solvers, as can be seen from figure 5.
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Figure 5: Curvature relative error norms at the interface versus grid size in 2D for the static

bubble at time t∗ = 100. Left: square grids, Right: triangular. Configuration at La = 1200,

OpenFOAM R© solvers.
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Figure 6: Static bubble in 2D: Visualization of spurious currents at time t∗ = 100 on 64×64

square grid and for La = 120. Vectors on the r.h.s. plicRDF-5 image are scaled by a factor

1000 with respect to isoAlpha. The red line materializes the isoline α = 0.5.

In order to quantify spurious velocities, we monitor the maximum of velocity

magnitude Umax over the computational domain. Umax is recorded at each time290

step. Spurious currents magnitude can then be made dimensionless in terms of

a capillary number as Camax = (µUmax)/σ = Umax/uσ. Time is normalized by

scaling with tσ. The resulting maximum capillary number is plotted on figures 7

and 8, for, respectively, 2D and 3D hexahedral grids and for different Laplace

numbers. The noticeable point is that plicRDF-5 generates spurious vectors295

that are two orders of magnitude smaller than the other OpenFOAM R© solvers.

Basilisk results were obtained without adaptive mesh refinement. Except in

the 3D case at La = 120 which would require a finer mesh, Basilisk maximum
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Figure 8: Static bubble in 3D: Maximum capillary number over the computational domain

for a hexahedral grid of size 323 versus nondimensional time, for different Laplace numbers.

capillary numbers converge to machine precision, which suggests that in that

case the measured velocities cannot be considered as actual parasitic currents300

but rather as the result of a convergence process from an initial solution to a

numerical steady state. The imposed initial solution, which does not guarantee

the exact balance between the surface tension and pressure gradient, generates
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capillary waves at the interface, which are then damped by viscosity towards

the exact solution [9]. The Basilik convergence is slower in 3D than in 2D.305

OpenFOAM R© spurious velocities remain rather constant and do not converge

to machine precision, even for the long simulated times (almost double com-

pared to Abadie [10]). This means that the OpenFOAM R© parasitic currents

are continuously fed by an imbalance between pressure gradient and surface

tension force.310
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Figure 9: Static bubble in 2D: Mean maximum capillary number versus Laplace number.

Comparison of OpenFOAM R© solvers.

The effect of Laplace number is shown in figures 9 and 10 for respectively 2D

and 3D static bubbles. The time average <Camax> of spurious current intensity

has been computed over the last third of the time interval of the computations,

i.e. between t∗ = 66.66 and t∗ = 100. For both 2D and 3D cases, the plicRDF-5

solver produces parasitic currents which are orders of magnitude lower than the315

other solvers. A general trend of slowly decreasing <Camax > with Laplace is

observed, particularly in 3D. However, this is not true for plicRDF-5 data in

2D.

The effect of grid size for La = 1200 is shown in figure 11 for 2D grids.

We can again confirm that the plicRDF-5 solver produces orders of magnitude320
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Comparison of OpenFOAM R© solvers.
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Figure 11: Static bubble in 2D: Mean maximum capillary number versus grid size at La =

1200. Comparison of OpenFOAM R© solvers on both square and triangle grids.

lower intensities than other solvers. Parasitic currents are around one order of

magnitude larger on triangular grids compared to square grids, except for the

isoAlpha solver which gives identical levels for both types of grids.

Spurious velocities can have an influence on the shape of the bubble. In the

present case with zero gravity, the bubble should remain perfectly cylindrical (or325
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Figure 12: Static bubble in 2D: Error on bubble radius versus angular position for square

grids. Left: Effect of grid size at La = 120. Right: Effect of Laplace number for 64×64 cells.

spherical in 3D). The graph of figure 12 shows the relative error of the radius

in percent on 2D square grids of increasing sizes (left) or when the Laplace

number is varied (right). R0 denotes the bubble radius at time t = 0. MULES

and isoAlpha show maximal errors along the coordinate axes directions (at 0

and 90 degrees) and also along median directions at 45 degrees. plicRDF-5330

errors are smaller and are rather independent of coordinate directions. When

the Laplace number is varied, MULES and plicRDF-5 show identical errors,

while isoAlpha maximal errors oscillate along axial directions.

4. Single rising bubble benchmark

4.1. Definition of test case335

The test case number 2 as described by Hysing et al. [11] has been used here.

We have used only this second test case as it was judged more representative

of final industrial applications. The 2D case setup is schematized in figure 13.
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Figure 13: Configuration and boundary conditions for 2D bubble benchmark.

The computational domain of size 1 × 2 m is in the plane xy. First phase

(liquid) properties are ρ1 = 1000 kg m−3, µ1 = 10 kg m−1 s−1, while second340

phase (gas) takes ρ2 = 1 kg m−3, µ2 = 0.1 kg m−1 s−1, as physical parameters.

The surface tension is σ = 1.96 kg s−2. The density ratio is thus 1000 and the

dynamic viscosity ratio is 100. Gravity is taken as g = 0.98 m s−2 along the

−y direction. The bubble thus rises along the positive y direction. Lateral

boundary conditions are slip walls, while top and bottom boundaries are no-345

slip walls. Extension to 3D of this benchmark case along the z direction is

straightforward. The bubble is initialised as a cylinder in 2D (or a sphere in

3D) of diameter D0 = 0.5 m.

The Bond/Eötvös number Bo = ρ1 g D
2
0/σ = 125 and the Galilei number

Ga = ρ1 g
1/2D

3/2
0 /µ1 = 35 classify the current bubble in the peripheral breakup350

regime, where inertial forces are dominant [33].

2D square (resp. 3D cubic) or 2D triangular (resp. 3D tetrahedral) grids

of different sizes have been created for the simulations. Hexahedral uniform

grids were generated with the structured grid generator blockMesh from the
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OpenFOAM R© distribution. Using the software Pointwise R©, triangular and355

tetrahedral grids were generated by a standard Delaunay algorithm, by impos-

ing mean edge lengths identical to that of the square grids of same resolution.

For 2D cases, the cell sizes along the non-significant z direction were taken equal

to the cell sizes along x or y. We note that OpenFOAM R© grids are always three-

dimensional. For 2D computations, six grid resolutions have been used, with360

20, 40, 80, 160, 320 and 640 cells along the x direction. The number of cells in

the y direction is the double of that in the x direction. For 3D computations,

the number of cells is identical along x and z, and ranges only up to 320.

Constant time steps have been used, starting at ∆t = 0.002 s for the coarsest

level, and reducing by a factor 2 at the next finer grid level. This method kept365

the maximum CFL number below 0.05 for all grids.

4.2. Post-processing

Post-processing quantities of interest are described in details in [11, 19].

These are the vertical position of the bubble centroid, the bubble rise velocity,

the bubble circularity (in 2D) or sphericity (in 3D), area and volume. The370

volume of the bubble Vb is computed by a integral of the gas volume fraction

over the entire domain Ω as:

Vb =

∫
Ω

(1− α) dv (7)

The centroid of mass xG is computed through:

xG =
1

Vb

∫
Ω

(1− α)x dv (8)

where x represents the cell center coordinates. Similarly, the bubble velocity is

calculated with:375

Ub =
1

Vb

∫
Ω

(1− α)u dv (9)

where u denotes the velocity. In practice, the integrals are computed by sum-

mations of the cell-centered values of α, x and u, while dv is taken as the cell

volume.
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Thanks to the calculation of a triangulated isosurface at α = 0.5, the bubble

area Ab can be determined by summation of the elementary triangles areas of380

this isosurface. The circularity C in 2D (resp. sphericity Φ in 3D) is then defined

as the (resp. squared) ratio of the equivalent radius of the bubble based on its

volume rV over the equivalent radius of the bubble based on its surface rA as:

In 2D : C =
rV
rA

=

√
Vb/(π∆z)

Ab/(2π∆z)
In 3D : Φ =

(
rV
rA

)2

=
(3Vb/(4π))2/3

Ab/(4π)
(10)

where ∆z denotes the size of the grid cells in the non-significant direction z for

2D calculations. C and Φ take the value 1 at the beginning of the computation385

and decrease as the bubble deforms.

4.3. Rising velocity

The figures 14 and 15 show results for the rise velocity in 2D for MULES,

isoAdvector isoAlpha and plicRDF-5 on respectively square and triangular grids

compared to the highest resolution reference data available in the literature and390

Basilisk. TP2D, FreeLIFE and MooNMD data are taken from the published

results of Hysing [11]. The TP2D code (short for Transport Phenomena in 2D)

is a Level Set solver treating immiscible fluids [2, 34]. The FreeLIFE (Free-

Surface Library of Finite Element) code is an incompressible flow solver for

solving free-surface two-fluid systems by a Level Set method [35]. MooNMD395

(Mathematics and object-oriented Numerics in MagDeburg) is a solver based on

mapped finite-element methods that has been extended to two-phase flows with

capillary forces by using the arbitrary Lagrangian-Eulerian approach[36, 37].

The objective of figures 14 and 15 is to discuss grid convergence of all three

OpenFOAM R© solvers with respect to the literature results (TP2D, FreeLIFE400

and MooNMD) or to the Basilisk solver. On square grids, MULES and plicRDF-

5 results converge similarly to the literature solvers or to Basilik when increasing

the number of cells. isoAlpha results converge to a slightly different solution

since a lower rising velocity can be observed on the middle plots of figure 14.

The figure 15 shows results on triangular grids. At higher grid resolutions, we405
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Figure 14: Time evolution of rise velocity on 2D hexahedral grids for solvers MULES (top),

isoAdvector with isoAlpha (middle) and plicRDF-5 (bottom) reconstruction schemes.

clearly notice that plicRDF-5 correctly converge towards literature and Basilisk

results, but neither MULES nor isoAlpha reach a grid convergence, showing

overestimated bubble velocities (see red curve). This behavior can be explained

by an increase of spurious currents at highest grid resolutions for these methods.

The integral procedure to compute bubble velocity of equation 9 inherently410

accounts for spurious currents in the solution. As discussed in more details

in section 3, parasitic currents are indeed increasing with grid refinement on

triangular grids (see also figure 11).

In 3D on a hexahedral 160×320×160 grid (see figure 16), plicRDF-5 bubble
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Figure 15: Time evolution of rise velocity on 2D triangular grids for solvers MULES (top),

isoAdvector with isoAlpha (middle) and plicRDF5 (bottom) reconstruction schemes.

velocity results are the closest to the Basilisk reference. Literature data are415

not available with slip walls [19]. On tetrahedral grids, the velocities of all

OpenFOAM R© solvers are similar, but underestimate the rise velocity compared

to their hexahedral equivalent.

4.4. Bubble shape

Figure 17 shows the bubble shape in 2D at time t = 3 obtained by reference420

solvers of the literature and by Basilisk. It can first be noted that each code

gives a different solution, particularly in the chain of detached bubbles. As a
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Figure 16: Time evolution of rise velocity on 3D hexahedral and tetrahedral grids of interme-

diate size. Comparison of Basilisk with MULES, isoAdvector with isoAlpha and plicRDF-5

reconstruction schemes.
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Figure 17: Single rising bubble shape in 2D at time t=3 for TP2D, FreeLIFE, MoonNMD

and Basilisk solvers.

matter of fact, the test case number 2 of the benchmark of Hysing [11] is more

challenging to simulate than test case 1. Figures 18, 19 and 20 compare the 2D

bubble shapes for respectively MULES, isoAlpha and plicRDF-5, for the finest425
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Figure 18: Single rising bubble shape in 2D at time t=3 for MULES. Left: square grids, Right:

triangular.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

iso-Alpha 640x1280

Square grid

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

iso-Alpha 640x1280

Triangular grid

Figure 19: Single rising bubble shape in 2D at time t=3 for isoAdvector isoAlpha. Left:

square grids, Right: triangular.

grid resolution, either on square or triangular meshes. All bubble shapes for all

solvers are rather coherent in terms of global positions of the main leading and

trailing fronts. For each solver of figures 18, 19 and 20, the trains of detached

bubbles are different between square and triangular grids. The OpenFOAM R©

finest grids results are close to MooNMD and Basilik shapes, as plotted on430

figure 17.

For completeness about the bubble shape at time t = 3, we show on fig-

ures 21, 22 and 23 a comparison of the bubble shape in 2D on increasing size

triangular grids with respect to the finest Cartesian grid shape made with the

same solver. MULES and plicRDF-5 show a correct grid convergence. At the435
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Figure 20: Single rising bubble shape in 2D at time t=3 for isoAdvector plicRDF-5. Left:

square grids, Right: triangular.
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Figure 21: Comparison of 2D bubble shape obtained on different resolution triangular grids

(red) against the finest Cartesian grid at 640×1280 (black). Plots for MULES at time t = 3.

finest levels (320×640 and 640×1280), square and triangular grids are almost

identical, particularly in their main fronts. One should however notice a small

discrepancy in the upper front for the MULES solver at 640×1280 (see bottom
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Figure 22: Comparison of 2D bubble shape obtained on different resolution triangular grids

(red) against the finest Cartesian grid at 640×1280 (black). Plots for isoAdvector isoAlpha

at time t = 3.

right of figure 21). For the isoAlpha solver, the difference between square and

triangular grids remains for all levels, and even increases slightly at the highest440

resolution. This is correlated with the difference in bubble velocities observed

on triangular grids as was noticed on figure 15.

In 3D, bubble shape results at the same grid resolutions as in figure 16 are

shown on figure 24. On the hexahedral grid, plicRDF-5 bubble shape is the

closest to the Basilisk reference. Due to a higher predicted bubble velocity,445

the Basilisk shape is slightly shifted upwards. All three OpenFOAM R© solvers

predict the same kind of bubble tail, shorter than the one obtained by Basilisk.

MULES and isoAlpha predicted a small detachment on the hexahedral grid. On

tetrahedral grids, the OpenFOAM R© bubbles are shifted downwards at rather

equivalent positions.450
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Figure 23: Comparison of 2D bubble shape obtained on different resolution triangular grids

(red) against the finest Cartesian grid at 640×1280 (black). Plots for isoAdvector plicRDF-5

at time t = 3.

2D circularity is shown on figure 25 at grid resolution 160×320. OpenFOAM R©

solvers compare well to reference data, except with the TP2D solver which ex-

periences a different bubble tail structure (see also top left plot in figure 17).

The difference between square (continuous lines) and triangular (dashed lines)

grids on MULES, isoAlpha or plicRDF-5 circularities is more visible for time455

t > 2 up to the end of the simulation. This is mainly due to the difference in the

bubble tail. Basilisk data are not available for circularity or sphericity. In 3D,

the figure 26 shows the equivalent results. Here again, more detached trailing

small bubbles on Cartesian grids conduct to a lower sphericity.

It can be concluded that both in 2D and 3D, and both on hexahedral and460

triangular/tetrahedral grids, the plicRDF-5 has shown better ability to obtain

bubble dynamics results that are more consistent and closer from the Basilisk
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Figure 24: Comparison of 3D bubble shape obtained at time t = 3. Grid resolution is

160×320×160 for OpenFOAM solvers and 256×512×256 for Basilisk.
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Figure 25: Bubble circularity at resolution 160×320. Comparison of MULES, isoAdvector

isoAlpha and plicRDF-5 with reference data for both Cartesian and triangular grids.
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Figure 26: Bubble sphericity at resolution 160×320×160. Comparison of MULES, isoAdvector

isoAlpha and plicRDF-5 for both Cartesian and tetrahedral grids.

reference.
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5. Bubble wake instability in spiraling regime

5.1. Definition of test case465

In the last case, we consider a single rising bubble which undergoes a spiraling

path. This case has been previously studied by Cano-Lozano [20]. The case is

also available as an example from the Basilisk website (http://basilisk.fr)

and is detailed in the article of Cano-Lozano [20].

The bubble rises along +z direction and is initialized as a sphere at z0/D0 =470

3.5, where D0 is the bubble initial diameter. The density ratio ρ1/ρ2 be-

tween the fluids is 1000 and the dynamic viscosity ratio µ1/µ2 is 100. Index

1 refers to the continuous liquid phase while index 2 refers to the gas phase.

The chosen Bond/Eötvös number Bo = ρ1 g D
2
0/σ = 10 and Galilei number

Ga = ρ1 g
1/2D

3/2
0 /µ1 = 100.25 classify the current bubble in the oscillatory475

dynamics regime, with dominant inertial forces [33]. In the simulations, the

gravity g and first phase density ρ1 are taken as unity, which gives a surface

tension σ = 0.1 Nm−1 and a rise velocity of the order of unity.

Basilisk simulations are realized inside a cubic tank of size 102.43D0 and

benefit from adaptive mesh refinement (AMR). Two different grids were used for480

Basilisk, at refinement levels 11 and 12. On the level 11 grid, the AMR method

is limited to a minimum cell size of 102.4D0/2
11 = 0.05D0, which represents

20 cells per bubble diameter. The Basilisk level 12 grid thus corresponds to 40

cells per bubble diameter.

For OpenFOAM R© simulations, we have chosen a fluid domain of size 32×32×485

128D0 in order to limit the computational cost of the simulations. OpenFOAM R©

computational grids were obtained by local refinements over a uniform back-

ground grid of 40×40×160 cells. The background grid defines the refinement

level 0, which thus corresponds to 1.25 cells per bubble diameter. A compu-

tational grid with refinement level up to 4 in regions where the bubble can be490

present was then created with the snappyHexMesh mesh generator. The level 4

corresponds to a division of cells by a factor 24, and so to 20 cells per bubble ini-

tial diameter in the refined regions. A finer grid with level 5 was also used, thus
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corresponding to 40 cells per bubble diameter. This grid refinement is identical

to Basilisk. In order to reduce the number of grid cells, the refinement at the495

maximum level has been limited to regions in the centerline of the fluid domain,

along the bubble rising direction. A refinement cylindrical region of diameter

2D0 is imposed for 2 ≤ z/D0 ≤ 32. Then a cone of diameter varying between

2 and 4D0 is used above for 32 ≤ z/D0 ≤ 64. The top of the fluid domain is

refined within a cylindrical region of diameter 4D0 for 64 ≤ z/D0 ≤ 126. The500

transition between levels is done through buffer layers of two cells (parameter

nCellsBetweenLevels equal to 2). For example, the grid visible in figure 27

shows that the size jump between one fine level and its coarser neighbouring

level is done with a transition layer of 2 cells. This method conducted to an

overall grid size of 9.6 million cells at level 4 and of 72.9 million cells at level 5.505

5.2. Results and discussion

For all OpenFOAM R© solvers, the maximum CFL number was kept below

0.05 and the computations were run up to time 140 where the bubble reached

the end of the domain. The very first result we obtained was that the MULES

solver predicted bubble fragmentation. At time t = 15 s, the comparison of510

OpenFOAM R© solvers bubble shapes on the level 4 grid, displayed on figure 27,

clearly shows that the MULES bubble (in grey) is fragmented into one small

trailing bubble and a main body bubble. This behavior is not physical and has

not been observed with the other OpenFOAM R© solvers, shown on figure 27

by the red and green bubble interfaces corresponding respectively to isoAlpha515

and plicRDF-5. Considered as a reference solution, Basilisk results did not

show bubble breakup. Besides, more fragmentation with more trailing satellite

bubbles were generated in time with MULES. In the following results, MULES

data will thus not be discussed.

Bubble trajectories are displayed on figures 28, 29, 30 for both fine and520

coarse grids. Note that Basilisk transitioned earlier from a rectilinear path to a

spiraling regime in comparison to the other VoF solvers at both grid resolution.

The trajectory for iso-Alpha is 2D zigzag planar on the coarser grid, roughly
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Figure 27: Bubble 26 interface at t = 15 s for MULES (grey, showing fragmentation), isoAlpha

(red) and plicRDF-5 (green) on the level 4 grid.
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Figure 28: Bubble 26 trajectory for iso-Alpha.

in the plane y = 0. The trajectory for plicRDF-5 shows the development of

a correct 3D spiraling path at the same refinement level. The amplitude of525

bubble’s displacements is smaller with plicRDF-5 by a factor two. Basilisk

shows an off-centered bubble path for the coarse grid resolution. On the finest

grid level, the OpenFOAM R© solvers predict the expected spiraling path, which

leads to a circular trajectory in the xy plane. The diameter of the xy circle

is larger for iso-Alpha, while plicRDF-5 conducts to a diameter equivalent to530
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Figure 29: Bubble 26 trajectory for plicRDF-5.
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Figure 30: Bubble 26 trajectory for Basilisk.

Basilisk.

The frequency of the time signals of bubble centroid x and y coordinates

were translated to Strouhal numbers St = fD0/U0 shown on table 2. The

reference velocity U0 was taken as unitary. OpenFOAM R© solvers predict lower
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frequencies than Basilisk on the coarse grid. On the finer grid, all solvers give535

identical results.

Table 2: Strouhal number for bubble 26 case.

VoF solver Strouhal

isoAdvector isoAlpha 0.133 (20 cells/D0); 0.150 (40 cells/D0)

isoAdvector plicRDF-5 0.123 (20 cells/D0); 0.150 (40 cells/D0)

Basilisk 0.159 (20 cells/D0); 0.150 (40 cells/D0)

The bubble Reynolds number is shown in figure 31. The Reynolds number

is based on the z velocity component of the bubble. Reynolds numbers are

of the same order between the solvers, within a 12% range. On the coarse

grid, isoAlpha predicts a largely oscillating Reynolds after the bubble starts540

its spiraling path. plicRDF-5 results present similar trends of small amplitude

oscillating velocity as Basilisk. On the fine grid, we note that the bubble reaches

a stationary rising velocity that is very similar between Basilisk and plicRDF-5,

while isoAlpha predicts a smaller value.
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Figure 31: Bubble 26 Reynolds number as a function of time.
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6. Conclusion545

We have presented quantitative validations of the isoAdvector method (isoAl-

pha and plicRDF-5) against MULES and Basilisk, and against other solvers ref-

erence data of the literature. Three test cases have been used. The first test case

aims at quantifying the spurious currents obtained in the three OpenFOAM R©

VoF variants tested here (MULES, isoAlpha and plicRDF-5). This configu-550

ration consists in a stagnant single bubble in a quiescent liquid, under zero

gravity conditions. The new reconstruction method, plicRDF-5, significantly

reduces the spurious currents due to its more accurate interface curvature cal-

culation. Moreover, the plicRDF-5 reconstruction method demonstrates a bet-

ter prediction of the pressure jump across the bubble. The second test case555

is the Hysing benchmark, as originally published by Hysing [11]. This bench-

mark simulates a single rising bubble in an initially quiescent liquid. The case

has been extended to 3D using similar boundary conditions. isoAdvector has

been verified to work for rising bubble simulation with similar or greater ac-

curacy as MULES and with a sharper interface and slightly smaller calcula-560

tion times. These results demonstrate that isoAdvector can be used for sur-

face tension dominated flows. However, the sharper interface poses a challenge

to the surface tension model in some simulations, for example at high reso-

lutions or on unstructured triangular-prisms grids. The new reconstruction

method, plicRDF-5, rectifies these problems. The last test case of this paper565

is a single bubble rising in a large tank taken from case number 26 of Cano-

Lozano [20]. Two different grid resolutions are used and compared to Basilisk

reference. On the coarsest grid, plicRDF-5 method was the only OpenFOAM R©

solver able to capture the expected spiraling trajectory. On the finest grid,

both isoAdvector solvers demonstrated a better behavior, although the pre-570

diction of bubble trajectory and rising velocity goes in favour of plicRDF-5.

Materials and reference results for benchmark cases used in this study can be

downloaded from the OpenFOAM R© wiki tutorial website at the first author

URL https://wiki.openfoam.com/Collection_by_authors#Lionel_Gamet.
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