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Abstract

We study the retraction of a viscous liquid sheet of finite length with negligible effect of the

ambient medium. Using the long-wavelength model we derive the scaling laws and similarity

solution for the interface profile of the retracting sheet. Far from the tip, the similarity solution

for the interface profiles converges to an asymptotic value of 1/4. Direct numerical simulations are

performed to compare the theoretical results with the simulations. When the inertia is negligible,

the interface profiles remain flat during the retraction process which is in agreement with the self-

similar solution. Using this similarity solution we derive the expression for the temporal variation

of the tip speed for finite liquid sheets. We demonstrate that unlike an infinite sheet where the

sheet retracts with a steady speed (known as Taylor-Culick speed), the tip speed decreases as a

function of time for a finite liquid sheet. This is true when the viscous effects are larger than or

of the same order with the inertia effects. Otherwise, the sheet retracts with the formation of a

bulbous tip whose speed reaches a value closer to the Taylor-Culick speed.

I. Introduction

The retraction of liquid sheets has caught the attention of many researchers because of

its importance in a variety of applications such as atomization [1–3] and coating [4–6]. The

first theoretical investigation was performed by Dupré [7] where he reported that during

the rupture of an inviscid soap film, the hole expands at a constant speed. Using energy

balance, he derived the expression for the rim speed as U =
√

2γ/ρh0, where γ is the surface

tension coefficient, ρ is the density of the soap film and h0 is half of the initial thickness

of the soap film. However, the experimental results obtained by Ranz [8] showed that the

actual speed is less than that predicted by Dupré’s formula. Later on, Taylor [9] and Culick

[10] independently showed that the speed of the rim is 1/
√

2 smaller than that predicted

by Dupré’s formula which was confirmed experimentally by McEntree & Mysels [11]. By

balancing surface tension and inertia effects, and assuming that the liquid sheet retracts

with the formation of a bulbous rim at its end, Taylor [9] and Culick [10] obtained the rim

speed. This speed, also known as Taylor-Culick speed, is given as

UTC =

√
γ

ρh0

. (1)
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Following that, many studies have been performed on the retraction of liquid sheets [6, 12–

16]. The dynamics can be characterized in terms of the Ohnesorge number (Oh = µ/
√
ργh0;

µ is viscosity of the liquid sheet) which represents the relative importance of viscous and

inertia-capillary forces. At low Ohnesorge number, the elongated sheet retracts with the

formation of a bulbous rim which, after a transient stage, reaches the Taylor-Culick speed [6].

In the opposite regime of high Ohnesorge number, the film retracts with uniform thickening

of the film without the formation of a bulbous end [14, 17]. Earlier numerical studies have

shown that despite the change in geometry for high Ohnesorge number, for a sufficiently

long sheet, the Taylor-Culick speed is reached in the long time limit [6, 14]. Murano and

Okumura [16] recently studied experimentally the retraction of a liquid sheet formed by the

bursting of a bubble at a free surface. In the high Ohnesorge number regime they found

that the rim speed is better characterized by a balance between viscous and capillary effects

rather than by Taylor-Culick speed. Thus, a natural question is what is the rim speed of a

liquid sheet of finite length in the high Ohnesorge number regime.

In part 1 of this study [18] we have analyzed the retraction of an axisymmetric liquid

ligament. We show that the Ohnesorge number has a dramatic influence on the retraction

speed. In the present study, we focus on the viscous dominated regimes of 2D retracting

sheets. To address this problem, we use a combination of theoretical arguments and numeri-

cal simulations. A long-wave model [19] for the retracting sheet is used to develop the theory.

Based on the long-wave equations, we find a self-similar solution in the Stokes flow limit.

Numerical simulations are also performed by solving the complete Navier-Stokes equations

in order to examine the validity of the theoretical results. Two idealized configurations are

simulated representing either the bursting of a soap film or a bursting bubble at a liquid-air

interface. The rest of the paper is arranged as follows: first, we present our theoretical

analysis, next we present the numerical results and discuss those results in comparison to

the theory. Finally, we wind up with a discussion and concluding remarks.

II. Theoretical analysis

A. Long-wave equations

A convenient and widely used theoretical model to study the retraction of a viscous

sheet is the long-wave model. The long-wave equations are derived by Erneux and Davis

[19] assuming that the elongated liquid sheet is slender h0 � L0 (h0 is half of the initial
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thickness of the liquid sheet and L0 is half of its initial length) and the surrounding fluid

has negligible effect on the flow dynamics. The long-wave equations for the motion of the

slender liquid sheet can be written as [19, 20]

∂h

∂t
+
∂(hu)

∂x
= 0 (2)

∂u

∂t
+ u

∂u

∂x
=

4µ

ρh

∂

∂x

(
h
∂u

∂x

)
− γ

ρ

∂κ

∂x
(3)

Here, h(x, t) is the half-thickness of the sheet; u(x, t) is the x-directional velocity; t is time;

µ is the dynamic viscosity and ρ is the density of the sheet liquid; γ is the surface tension

coefficient. The curvature κ of the film is given by

κ = − ∂2h/∂x2(
1 + (∂h/∂x)2)3/2

. (4)

The complete expression for curvature is retained to capture the spherical cap at the tip of

the retracting sheet. The same technique has been successfully used by many researchers

[6, 14, 17].

Equation (3) is made dimensionless using the following scaling : h = h0h
∗, κ = (1/h0)κ∗,

z = L0z
∗, t = (L0/u0)t∗, u = u0u

∗ where u0 is a characteristic velocity which is a priori

unknown. It gives

ρh0u
2
0

γ

(
∂u∗

∂t∗
+ u∗

∂u∗

∂x∗

)
=
µu0h0

γL0

4

h∗
∂

∂x∗

(
h∗
∂u∗

∂x∗

)
− ∂κ∗

∂x∗
(5)

By balancing surface tension effect and viscous effect we obtain the characteristic velocity

u0 = (γ/µ)L0/h0 (hereafter the capillary velocity γ/µ and the capillary-viscous time scale

µh0/γ are respectively written as Uv and tv). Replacing u0, Eq. (5) can be rewritten as

(L0/h0)2

Oh2

(
∂u∗

∂t∗
+ u∗

∂u∗

∂x∗

)
=

4

h∗
∂

∂x∗

(
h∗
∂u∗

∂x∗

)
− ∂κ∗

∂x∗
(6)

The inertial term becomes negligible if Oh� L0/h0. However, even at high Oh, the inertial

term can be non-negligible if Oh ∼ L0/h0. This scaling is similar to the one obtained in

part 1 of this study [18] for an axisymmetric ligament.

B. Self-similar solution for Oh� L0/h0

In this study, we are interested in the retraction dynamics a liquid sheet for which the

flow is governed by the viscous and the capillary forces. Following the analysis of Sec. II A,
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we assume Oh � L0/h0 and we completely neglect the inertial term. Therefore, Eq. (3)

can be written as

0 =
4µ

h

∂

∂x

(
h
∂u

∂x

)
− γ ∂κ

∂x
. (7)

Integrating Eq. (7) from x to L, i.e. from an arbitrary position on the sheet to its tip

0 =

∫ L

x

(
4µ

∂

∂x

(
h
∂u

∂x

))
dx−

∫ L

x

(
γh
∂κ

∂x

)
dx. (8)

After some algebra we get

[
4µh

∂u

∂x

]L
x

−

γ
− hh

′′(
1 + h′2

)3/2
− 1(

1 + h′2
)1/2



L

x

= 0 (9)

To evaluate the integral we assume that the liquid sheet has a round end-tip. The

assumptions lead to the following boundary conditions: h(L, t) = 0 and ∂h/∂x(L, t) = ∞.

Applying the above boundary conditions in Eq. (9) and neglecting the higher-order terms

for the curvature we obtain

4
∂u

∂x
+

γ

µh
= 0. (10)

Equation (10) gives the evolution of the sheet far from the tip. We now assume that the

sheet is sufficiently long to be considered as semi-infinite such that the idealized problem is

independent of the initial length of the sheet. Moreover, without the loss of generality, we

set the location of the tip at x = 0. The only physical parameter that appears in Eq. (10) is

γ/µ. The thickness of the sheet can be written as h = h(x, t, γ/µ, h0) since we have assumed

that the sheet is semi-infinite. Here, two of the governing parameters have independent

dimension: γ/µ and t. Hence, by dimensional analysis [21] we get

h =
γ

µ
(t+ t0)H

(
x

(γ/µ)(t+ t0)
,

h0

(γ/µ)(t+ t0)

)
(11)

where t0 is a shift in time which has to be determined a posteriori from the initial condition.

We assume that h0/(γ/µ(t+ t0))� 1 which requires that 1� t/tv, i.e. that the solution we

are seeking for becomes valid after a sufficiently long time. Hence we look for a self-similar

solution written as

η =
x

(γ/µ)(t+ t0)
; h =

γ

µ
(t+ t0)H(η); u =

γ

µ
U(η) (12)
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where η is the self-similar variable; H and U are self-similar functions. Now, inserting the

self-similar variables in Eqs. (2) and (10) we get the following ordinary differential equations

(the primes represent derivative w.r.t. self-similar variable η)

HU
′
+ UH

′
+H −H ′

η = 0, (13)

U
′
H +

1

4
= 0. (14)

The above two equations can be combined to deduce a differential equation for H

H
′′

(1− 4H) = H
′2
/H. (15)

Equation (15) is similar to that evinced by Eggers [22] while studying the post-breakup

of an axisymmetric thread. Although no analytical solution can be obtained from Eq. (15),

it can be shown that far from the tip i.e. for η � 1, H ∼ 1/4. This leading order solution

can also be obtained from the solution evidenced by Munro and Lister [23] who studied an

infinite retracting sheet stretched along its edge. Indeed, considering the longitudinal strain

rate as zero in their Eq. (2.5) the self-similar thickness H reduces to 1/4. Although the

derivation presented in Munro and Lister [23] is different from the present one, they nicely

complement each other.

Equation (12) predicts that far from the tip, the thickness of the sheet evolves as

h(x, t) =
γ

µ

(t+ t0)

4
= h0

(
1 +

1

4

t

tv

)
, (16)

where we have used the initial condition h(t = 0) = h0 to find the value of t0 = 4tv. Now

using this similarity solution H = 1/4 in Eq. (14) we obtain U = 2C − η where C is a

constant. To understand the meaning of C we follow Eggers and Fontelos [24]. Integrating

Eq. (13) from 0 to η we obtain∫ η

0

[η
2

+HU −Hη
]′
dη =

∫ η

0

[
1

2
− 2H

]
dη. (17)

Inserting the asymptotic behavior H = 1/4, U = 2C − η valid for large η and the boundary

condition at the tip H = 0 at η = 0 we get

C

2
=

∫ η

0

[
1

2
− 2H

]
dη (18)

Eq. (18) can be rearranged as∫ η

0

2Hdη =

∫ η

0

1

2
dη − 1

2

∫ C

0

dη =
1

4

∫ η

C

2dη (19)
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(a) (b)

FIG. 1. (a) The self-similar interface profile and (b) the self-similar velocity profile. The numerical results for L0/h0 = 10 are

shown by the solid line, while the circles are the results for L0/h0 = 20. The tip of the self-similar interface profile can be

represented by a semi-circle with good accuracy (the dashed-dot line is a reference circle in (a)). In the velocity profile, the

dashed line represents the theoretical solution U = 2C − η.

This implies that C is the tip position of a rectangle that has the same area as that of the

liquid sheet.

The obtained similarity solutions for H and U are only valid far from the tip. To find

the similarity solution valid everywhere we use numerical results. We have used the Basilisk

solver [25–27] which solves the complete Navier-Stokes equations in the interior and exterior

fluids. We have performed numerical simulations with two constant volume liquid sheets

of initial aspect ratio 10 and 20. The similarity solutions obtained from the numerical

simulation for L0/h0 = 10 and L0/h0 = 20 are shown in Fig. 1. In Fig. 1 (a), the

retracting sheet profile is plotted in terms of the similarity variables H and η. There is no

observable difference between the two cases considered here. Moreover, we plotted the results

at different instant of time (larger than tv) in terms of the self-similar variable H and η, and

all the data collapsed on the same master curve. Hence, the sheets are sufficiently long to be

considered as semi-infinite and represent well the self-similar solution. It is evident in Fig. 1

(a) that the similarity solution for H quickly reaches the a constant thickness 1/4. The end

shape of the similarity profile can be represented by a semi-circle with good accuracy (see

Fig. 1 (a)). Figure 1 (b) shows the velocity profile within the liquid sheet in terms of the

similarity variable U and η. A good agreement between the numerical simulations (circles

and solid line) with the theoretical solution for the velocity profile U = 2C−η (dashed line)

corroborates the validity of the similarity solution. Fitting with the numerical data suggests

that the value of the coefficient C is 0.0978 approximately.
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III. Numerical results

(a) (b)

Air

Liquid

Air

FIG. 2. (a) Schematic of a bursting soap film in air (midsection view), (b) Schematic of a bursting bubble at a liquid-air

interface (midsection view).

Finite liquid sheets may appear in different practical situations such as rupture of a soap

film [11] or bursting of a bubble at the surface of a pool [16]. These different cases encounter

different boundary conditions far away from the tip. For example, during the bursting of

a soap bubble in air (see Fig. 2 (a)), symmetry boundary condition can be observed at

the axis of symmetry of the film. On the other hand, during the bursting of a bubble at

a liquid-air interface (see Fig. 2 (b)), an outward flux of liquid is expected at the junction

between the sheet and the pool. In this section, we intend to study numerically the effect

of each of these configurations on the retraction process. We consider simplified versions of

the aforementioned configurations by neglecting the curvature of the sheet and considering

the geometry as two-dimensional. Thus, the bursting of the soap film is investigated by

considering the retraction of a symmetric 2D sheet while the bursting of the bubble is

studied by assigning a pool at the end of a 2D sheet and joining the sheet and the pool by

a large curvature region. The numerical details can be found in Refs. [18, 28] and typical

script used to run the simulations can be found on the Basilisk website [27]. The results are

discussed in different sections depending on the relative magnitude of Oh and L0/h0 as we

observe different dynamics for different values of these parameters.

A. Oh� L0/h0

In this part, we consider Oh� L0/h0, i.e. the flow is controlled by the balance between

the viscous and capillary forces, and the inertia of the fluid can be neglected.
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FIG. 3. (a) Interface profiles of the retracting sheet at different time instants. The profiles are plotted at time interval

∆t/tv = 1. (b) Temporal variation of the thickness of the sheet at x = 0. The dimensionless parameters are Oh = 40 and

L0/h0 = 10.

1. Bursting of a soap film

The numerical results are in excellent agreement with the theory. This is evident in Fig.

3, which shows the temporal variation of the sheet thickness for the symmetry boundary

condition mentioned above. The dimensionless parameters considered here are Oh = 40 and

L0/h0 = 10. Figure 3 (a) shows the interface profiles of a retracting sheet at different time

instants. The temporal variation of the thickness of the retracting sheet is presented in Fig.

3 (b) which shows that the thickness grows linearly with time in accordance with Eq. (16)

or the self-similar solution discussed in Sec. II B. A deviation is seen in Fig. 3 (b) towards

the later stage of retraction. Indeed, in the final stage of retraction, the length and the

width of the sheet become comparable (or the tip region covers the whole domain) and the

similarity solution is not valid. The self-similar solution is derived assuming that the liquid

sheet is semi-infinite, which is not valid when the length and the width of the sheet become

comparable. Nevertheless, the numerical simulations suggest that the similarity solution

remains valid until the length of the sheet is approximately two times the thickness of the

sheet.

A model for the retraction speed of the tip at the initial stage of the retraction has already

been given by Savva and Bush [14]. They showed that the initial speed of the tip reads as

ut = UTC
√
t/(πtv). This analytical result compares well with the numerical results for very

short time t ≤ 0.01tv (Fig. 4 (a)). The agreement is even better for a larger aspect ratio.
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FIG. 4. Comparison of the retraction speed of the liquid sheet obtained from numerical simulations (solid lines) with the

theoretical prediction (dashed lines). (a) The numerical results are compared with the early stage retraction theory of Savva

and Bush [14]. (b) Comparison of the numerical results with the present theory (Eq. (20)) for the later stage of retraction.

The results are shown for Oh = 40, L0/h0 = 10 (red color) and Oh = 40, L0/h0 = 20 (blue color). A zoomed view at the later

stage when the self-similar solution is no longer valid is shown in the inner image for Oh = 40, L0/h0 = 10.

In a longer time, a noticeable deviation of the theory from the simulation is observed. It

can be seen in Fig. 4 (a) that the speed of the tip (for both aspect ratios considered here)

quickly reached a peak value while the theoretical model predicts a monotonic increase of

the speed. This deviation from the theoretical model implies that the initial acceleration

stage is over and the self-similar solution has become valid. Indeed the self-similar solution

is supposed to be valid at t/tv � 1.

Based on the self-similar solution, we now build a model for the speed of the tip. We

assume that the sheet is rectangular with a semi-circular tip. The volume of the liquid

sheet is constant and is equal to V0 = (L− h)2h + πh2/2 and hence, we have L = V0/2h +

(1− π/4)h. Replacing h using Eq. (16) we obtain

dL

dt
= Uv

(
−4(L0/h0 − 1) + π

(t/tv + 4)2
+

1

4

(
1− π

4

))
(20)

where −dL/dt is the tip speed. Remarkably, Eq. (20) shows that the slender liquid

sheet does not retract at a steady speed. Indeed, the retraction speed of a finite liquid sheet

decreases as a square of time. Moreover, the retraction speed in this regime is independent of

the Ohnesorge number. The maximum speed scales linearly with the aspect ratio. Indeed,

in the case of large aspect ratio (L0/h0 � 1) the maximum speed (at t = 0) scales as

0.25(L0/h0)Uv.
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Figure 4 (b) shows the comparison of the present long time asymptotic theory (Eq. (20))

with the numerical result. As evident in Fig. 4 (b), the numerical results are in very good

agreement with the theoretical results corroborating that the speed of the retracting sheet is

inversely proportional to the square of the time of retraction. The same level of agreement

has been observed for the other values of dimensionless parameters (for example Oh = 10,

20) which are not repeated here. Moreover, the maximum speed reached by the tip scales

linearly with the aspect ratio as predicted by the theory. At the later stage when the length

and width of the sheet become comparable, the self-similar solution is no longer valid and

the numerical results deviate a little from the theory although this deviation is not very

significant. This deviation can be seen in the zoomed inner image of Fig. 4 (b).

2. Bursting of a bubble at a liquid-air interface

Next, we simulate the retraction of a liquid sheet attached to a pool. Fig. 5 (a) shows

the interface profiles of the sheet when the other end of the sheet is connected to a pool.

A circular arc of radius 5h0 is defined to match the planar pool and the sheet. Since the

curvature of this region is large in comparison with the curvature of the tip, capillary effects

are expected to be smaller. Hence the motion in this region is less pronounced in comparison

with the sheet as evidenced in figure 5 (a). Remarkably, the sheet retracts with a uniform

increase in thickness which suggests that the self-similar solution is valid. A zoomed view of

the interfaces of the sheet at different time instants are shown in Fig. 5 (b). The temporal

variation of the sheet thickness is plotted in Fig. 5 (c) which shows that the sheet thickness

increases linearly with time with a slope 1/4 in accordance with that predicted by the self-

similar solution. As evinced in the previous section, we observe the same deviation in the

temporal variation of sheet thickness with the theory in the long time limit due to the

limitation of the self-similar solution when the aspect ratio reaches a value close to 2.

The short time asymptotic theory of Savva and Bush [14] is in good agreement with the

numerical results (see Fig. 6) for the early stage of retraction. We observe that the time at

which the numerical predictions deviate from the short time asymptotic theory is larger than

the symmetric film studied in the last section. As a consequence, for the same dimensionless

parameters, the maximum speed reached by the tip is higher.

Next, we derive the retraction speed at the tip of the liquid sheet. The constant volume

assumption of the liquid sheet used in deriving Eq. (20) is not valid in this case. Indeed
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FIG. 5. (a) Interface profiles of the retracting sheet at different time instants. The profiles are shown at a time interval

∆t/tv = 1. (b) The zoomed view of the interface profiles is shown in (a). (c) Temporal variation of the thickness of the sheet

at x/h0 = 10. The dimensionless parameters are Oh = 40 and L0/h0 = 10.

the volume of the liquid sheet where the self-similar solution is valid (assumed to be the

matching point between the circular arc and the 2D sheet) decreases continuously as the

liquid drains out into the pool. Figure 7 (a) shows the outflow velocity at the end of the

sheet (x = 10h0) i.e. at the location where the sheet is connected to the large curvature

region connecting to the pool. It is approximatively equal to the viscous-capillary velocity

γ/µ and decreases slowly as a function of time. Now considering that the end velocity is

ue = γ/µ, we calculate the tip velocity of the retracting sheet. We include the outflow

rate at the end of the sheet (up to which self-similar solution is valid) in the theoretical
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FIG. 6. Comparison of the retraction speed of the liquid sheet obtained from numerical simulations (solid lines) with the

early stage retraction theory of Savva and Bush [14] (dashed line). The results are shown for Oh = 40, L0/h0 = 10 (red color)

and Oh = 40, L0/h0 = 20 (blue color).
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FIG. 7. (a) Velocity at the junction between the sheet and the initially circular arc (x/h0 = 10). (b) Comparison of the

retraction speed of the liquid sheet obtained from numerical simulations (solid lines) with the theoretical prediction of Eq.

(23) (dashed line). The results are shown for Oh = 40, L0/h0 = 10 (red color) and Oh = 40, L0/h0 = 20 (blue color).

derivation. The volume of the portion liquid sheet (V ) up to the connecting point to the

pool after time t can be calculated as

V = V0 −
∫ t

0

2huedt, (21)

where V0 is the initial volume of the liquid sheet. Now, assuming the tip of the liquid sheet to

be semi-circular and considering the volume of the liquid sheet to be V = (L−h)2h+πh2/2
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we have

L =
V0

2h
+ h

(
1− π

4

)
− 1

2h

∫ t

0

2huedt

(22)

Now, using the similarity solution in a similar way as described in Sec. III A 1 we can find

the tip speed as

dL

dt
= Uv

(
−4(L0/h0 − 1) + π

(t/tv + 4)2
+

1

4

(
1− π

4

)
− 1

2
− 8

(t/tv + 4)2

)
(23)

It is evident in Fig. 7 (b) that the numerical results are in reasonably good agreement

with the theory. A deviation towards the later stage of retraction is a consequence of two

factors: first, the self-similar solution used in deriving Eq. (23) is not valid towards the

later stage of retraction, and second, the assumed constant velocity at the end of the sheet

decreases by a small amount in reality.

B. Oh ∼ L0/h0

In this regime, the dimensional analysis of Sec. II A states that inertia and viscous effects

are comparable. Therefore, a natural question that arises here is whether the similarity

solution mentioned above is valid in this limit or not. Numerical simulations reveal that the

thickness of the sheet increases linearly with time with a slope of 1/4 (not shown here) in

good agreement with the self-similar solution.

Figure 8 shows the velocity of the tip in the short and long time limit for the two

configurations discussed in the previous sections. The early-stage retraction theory of Savva

and Bush [14] is in reasonable agreement with the numerical results (Figs. 8 (a) and (c)). A

comparison of the retraction velocity of the sheet predicted by Eqs. (20) and (23) with the

results obtained from the Basilisk simulations are shown in Figs. 8 (b) and (d) respectively.

The models can predict the retraction speed with good accuracy. Even for the retraction in

a pool, the theory is matching very well. This is because the self-similar solution is valid and

the velocity at the end of the sheet is approximately equal to the assumed value (ue ≈ γ/µ)

for the entire period considered here. Therefore we may conclude that even though the

inertia and the viscous term are of the same order form a dimensional analysis point of

view, it is apparent that the flow is dominated by the viscous effect.
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FIG. 8. Comparison of the retraction speed of the liquid sheet obtained from numerical simulations (solid lines) with the

theoretical predictions (dashed lines) for the early stage (Savva and Bush [14]) and later stage (Eqs. (20) and (23)) of

retraction. Here, (a) and (b) show the comparison of the numerical results and theory for the soap film (symmetric

retraction) in the early stage and later stage of retraction respectively. (c) and (d) show the comparison of the numeric and

theory in the early stage and later stage of retraction for the case of bursting bubble at the interface of a pool. The results

are shown for Oh = 20, L0/h0 = 20 (red color) and Oh = 40, L0/h0 = 40 (blue color).

C. Oh� L0/h0

As the aspect ratio of the sheet increases, for a fixed Ohnesorge number, the inertia

of the retracting sheet becomes non-negligible. Under such a condition, the sheet retracts

with the formation of a bulbous end. Brenner and Gueyffier [17] proposed a criterion for

the formation of the bulbous rim at the end in terms of Reynolds number (based on the

length of the sheet and the Taylor-Culick speed) and Ohnesorge number. If we use the

dimensionless parameters defined in the present article, their criterion for large Oh reads as
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FIG. 9. Interface profiles at different time instants for the retraction of a symmetric film (a) and a bursting bubble at the

liquid-air interface (b). The profiles are plotted at time interval ∆t/tv = 1 for Oh = 20 and L0/h0 = 80. A comparison of the

retraction speed of the liquid sheet obtained from numerical simulations (solid lines) with the theoretical prediction (dashed

lines) given by Eqs. (20) and (23) are shown in (c) and (d) respectively. The purple dashed line is the theoretical prediction

of Savva and Bush [14] for the early stage of retraction.

Oh > 1 and Oh > L0/h0. Their criterion of viscous to inertial crossover is in agreement

with the scaling analysis presented in Sec. II A. The Stokes flow assumptions are no longer

valid for Oh� L0/h0. Under this condition, the liquid sheet retracts with the formation of

a bulbous rim.

Figure 9 shows the interface profiles of a retracting soap film in (a) and a bursting bubble

at the liquid-air interface in (b) along with the retraction speed in (c) and (d) respectively.

The dimensionless parameters considered here are Oh = 20 and L0/h0 = 80. The self-similar

solution becomes invalid in this regime and the sheet retracts with the formation of a small

bulbous tip (see Fig. 9 (a) and (b)). In this limit, the retraction speed of the liquid sheet

is not well predicted by the theory presented in Secs. III A 1 and III A 2 because the inertia

effects are non-negligible. It can be observed in Figs. 9 (c) and (d) that the maximum speed
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reached by the rim in these particular cases (Oh = 20 and L0/h0 = 80) is approximatively

11Uv = 0.55UTC . We thus expect a value closer to the Taylor-Culick speed as the inertia

effect increases.

IV. Discussion and concluding remarks

In the present work, we have studied the retraction of a liquid sheet of finite length

in the large Oh limit where the viscous effect is dominant. Using the long-wavelength

model we have derived the scaling laws as well as the similarity solution for the sheet

profile in capillary-viscous dominated flow (Oh� L0/h0) where the sheet thickness increases

uniformly across the whole domain. According to the self-similar solution, the sheet thickness

grows linearly with time. Using the similarity solution we have derived the expression for

the temporal variation of the retraction speed of the tip of the sheet. We have considered

two configurations: the retraction of a soap film with a symmetric boundary condition at

the extremity away from the tip, and, the retraction of the film of a bursting bubble at

a liquid-air interface. The radius of curvature of the liquid films is considered to be large

enough to have negligible effects on the retraction dynamics. We have shown that in both

configurations, the retraction speed of the sheet decreases as the inverse-square of time which

is in agreement with the numerical results when the inertia effect is not significant i.e. for

Oh� L0/h0 and Oh ∼ L0/h0.

Sünderhauf et al. [6] and Savva and Bush [14] have shown that even when the viscous

effect is important, the tip of a retracting sheet always reaches the Taylor-Culick speed.

However, why is the speed reached in the present study in the high Oh limit so different

from the Taylor-Culick speed? The major difference between the present study and the

studies of Refs. [6] and [14] is that they considered a pseudo infinite sheet by writing the

equations in a frame moving with the tip. The scaling analysis performed here shows that

the inertia effect can not be neglected even for high Ohnesorge number if the aspect ratio

is sufficiently high (Oh� L0/h0). In the present investigation, the sheet has a finite aspect

ratio. The reduction of the rim speed of a finite sheet may be attributed to viscous effects.

In the long time limit, the two opposing ends of the sheet retract towards each other to form

a stationary liquid cylinder (soap film configuration) or the liquid film retracts towards a

stationary pool to completely coalesce into it (bursting bubble configuration). The capillary

pressure difference near the tip created by the change in curvature drives the flow which
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is resisted by the viscosity of the liquid. The capillary pressure difference decreases with

time as the sheet thickness increases (uniformly) resulting in a decrease in the driving force,

while the viscous resistance acts continuously. In contrast, for a semi-infinite sheet and finite

Oh, the film thickness increases near the tip and gradually decreases further away from the

tip. The region of influence of the tip motion is proportional to Oh [14] and a uniform

increase in the whole film thickness is not a valid assumption for Oh � L0/h0. For an

infinite sheet, the maximum thickness of the sheet increases linearly with time (as observed

by Savva and Bush [14] for high Oh) not the thickness in the far-field. Because of this reason

a decreasing speed is not witnessed in Refs. [6] and [14] in the long time limit. Moreover,

due to the absence of edge effects, the retraction speed of the sheet continues increasing

until there is a balance between the capillary force and the inertia, and hence reaches the

Taylor-Culick speed. However, this does not imply that viscous dissipation does not play

any role in the retraction process of a semi-infinite sheet. Indeed, half of the surface energy

is dissipated through viscous dissipation and the other half is converted to kinetic energy as

demonstrated numerically and theoretically in Ref. [6] and Ref. [14] respectively. Here, the

viscous effect merely affect how momentum is distributed in the sheet but does not affect

the final retraction speed in the long time limit. This explains why Taylor-Culick speed is

achieved even for high Oh in Refs. [6] and [14].

Next, it is a natural intuition to know about the evidence of the decrease in the retraction

speed in the experiments. Considering the bubble bursting at the free surface of water (tap

water or seawater), as reported in Lhuissier and Villermaux [29], the typical value of the

Ohnesorge number is less than 1 while the aspect ratio is approximatively 10000. Thus

inertia plays an important role in the retraction of the film and as a result, the Taylor-Culick

velocity is reached. The retraction dynamics in those configurations are different from the

present study which is focused on the high Oh limit. The present analysis applies to the

bubble bursting at the free surface of a highly viscous liquid, for instance, in glass furnaces or

during volcanic eruptions. Debrégeas et al. [30] studied experimentally the bursting kinetics

of an air bubble rising at the free surface of a highly viscous (and viscoelastic) liquid. The

typical dimensionless parameters in their experiments were: Oh ≈ 105 and L0/h0 ≈ 10000,

a range of value in agreement with the present theory. In figure 2 (b) of their paper, they

evidenced the decrease of the retraction speed in the later stage of the retraction process. The

authors explained this singular behaviour by the fact that the rim was meeting progressively
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thicker film, i.e. the film thickness was non-uniform. It is rather questionable whether the

decrease of the rim velocity can be explained by the present theory or by the argument

provided by Debrégeas et al. [30] and a detailed study is needed to disentangle both effects.

Also in the present study, we have assumed that the liquid surface is clean and the system

is isothermal. This is far from being the case in many experiments where surfactant can

be present. For instance, in the experiments of Lhuissier and Villermaux [29] surfactants

are naturally present since tap water is used for the liquid phase. However, no effect of

the surfactants on the retraction velocity was seen since the rim reached the Taylor-Culick

velocity. On the other hand, the recent investigation of Constante-Amores et al. [31] on the

retraction of liquid ligaments suggests that the presence of surfactants and the reduction in

surface tension lead to a reduction of the retraction velocity. Their analysis was performed

in the inertia dominated regime (low Oh) and for a liquid ligament. De Malmazet et al.

[32] studied the coalescence of drop at liquid-liquid interface in presence of micro-particles.

They observed that the retracting sheet bend due to the difference of interfacial tension on

both sides of the sheet. Hence, the presence of the surfactants or presence of temperature

gradient may change the present results which need further investigation.
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