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Set inversion under functional uncertainties with joint meta-models ∗1

Reda El Amri† , Céline Helbert‡ , Miguel Munoz Zuniga§ , Clémentine Prieur¶, and Delphine2

Sinoquet‖3

4

Abstract. In this paper we propose an efficient sampling strategy to solve inversion problem under functional uncer-5
tainty. This approach aims to characterize region of a control space defined by exceedance above prescribed6
threshold. This study is motivated by an application on identifying the set of control parameters leading7
to meet the pollutant emission standards of a vehicle under driving profile uncertainties. In that context,8
the constrained response in the inversion problem is here formulated as the expectation over the functional9
random variable only known through a set of realizations and the unknown set is thus associated with10
the control variables. As often in industrial applications, this problem involves high-fidelity and time-11
consuming computational models. We thus proposed an approach that makes use of Gaussian Process12
meta-models built on the joint space of control and uncertain input variables. Specifically, we define a13
design criterion based on uncertainty in the excursion of the Gaussian Process and derive tractable expres-14
sions for the variance reduction in such a framework. Applications to analytical examples, followed by the15
automotive industrial test case show the accuracy and the efficiency brought by the proposed procedure.16

Key words. Set inversion; Gaussian Process models; Data reduction; Functional uncertainties.17

AMS subject classifications.18

1. Introduction. In recent years, engineers and scientists are increasingly relying on computer19

models as surrogate for physical experimentation generally too costly or impossible to execute20

([BGL+12, CBG+14]). In particular, practitioners using these numerical simulations are not only21

interested in the response of their model for a given set of inputs (forward problem) but also in22

recovering the set of input values leading to a prescribed value or range for the output of interest.23

The problem of estimating such a set is called hereafter an inversion problem.24

25

In our context, the numerical simulator modelling the system, denoted f , takes two types of26

input variables: a set of control variables x ∈ X, and a set of uncertain variables v ∈ V. With-27

out considering any assumptions on the distribution of the uncertain variable v, robust inversion28

consists in seeking the set of control variables x ∈ X such that supv∈V f(x,v) is smaller than a29

threshold c. Then, the difficulty of solving the robust inversion problem strongly depends on the30

uncertainty set V. In our setting, V is a functional space, and we consider the inversion problem un-31

der uncertainty as a stochastic inversion problem, assuming that the uncertainty has a probabilistic32

description. Let V denote the associated random variable, valued in V, modelling the uncertainty.33

In our framework, we are interested in recovering the set Γ∗ := {x ∈ X , g(x) = EV[f(x,V)] ≤ c},34

with c ∈ R, and the functional random variable V is only known from a set of realizations. The35

expectation appearing in Γ∗ has to be estimated. Moreover, the simulations are time consuming36

and thus the usual Monte Carlo method to estimate the expectation ought to be avoided.37

38

Inversion problems have already been carried out in many applications, notably reliability en-39

gineering (see, e.g., [BGL+12], [CBG+14]), climatology (see, e.g., [BL15], [FS+13]) and many other40

fields. In the literature, one way to solve the problem is to adopt a sequential sampling strategy41
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‡ECL, ICJ, UMR 5208, Université de Lyon, 36 av. G. de Collongue, Ecully, France (celine.helbert@ec-lyon.fr).
§IFP Energies Nouvelles, Rueil-Malmaison, France (miguel.munoz-zuniga@ifpen.fr).
¶Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, Grenoble, France (clementine.prieur@univ-grenoble-alpes.fr).
‖IFP Energies Nouvelles, Rueil-Malmaison, France (delphine.sinoquet@ifpen.fr).

1

This manuscript is for review purposes only.

mailto:elamri.reda@yahoo.com
mailto:celine.helbert@ec-lyon.fr
mailto:miguel.munoz-zuniga@ifpen.fr
mailto:clementine.prieur@univ-grenoble-alpes.fr
mailto:delphine.sinoquet@ifpen.fr


based on a Gaussian Process (GP) emulator of g : x 7→ EV[f(x,V)]. The underlying idea is that42

Gaussian Process emulators, which capture prior knowledge about the regularity of the unknown43

function, make it possible to assess the uncertainty about Γ∗ given a set of evaluations of g. More44

specifically, for the estimation of an excursion set, these sequential strategies are closely related45

to the field of Bayesian global optimization (see, e.g., [CG13]). In the case of inversion problems,46

Stepwise Uncertainty Reduction (SUR) strategies based on set measures were introduced in [VB09].47

More recently, a parallel implementation of these strategies has been proposed in [CBG+14] and48

applied to the recovery of an excursion set. Briefly, the strategy SUR gives sequentially the next49

location in the control space where to run the simulator in order to minimize an uncertainty mea-50

sure of the excursion set ([EAHL+20]).51

52

In the field of robust optimization where uncertainty comes from a real-valued (or vector-valued)53

random input, various methods exist and aim at optimizing the expectation taken with respect to54

the probability distribution of the random input (see [JLR13] or [WSN00]). These methods are55

based on the modelling of f by a Gaussian Process built in the joint space of deterministic and56

uncertain variables. Then a ”projected” (integrated) Gaussian Process is defined by taking the57

expectation with respect to the probability distribution of the random input, leading to an ap-58

proximation of the expected response g. Finally an adaptive design of experiments is proposed for59

optimizing the objective function g.60

61

In the same spirit, we propose an original method to deal with a stochastic inversion problem62

with the aim of further reducing the number of simulations required. In this work f is approxi-63

mated by a Gaussian Process model built on the joint space X×V. For the iterative approximation64

of Γ∗, the sampling strategy in the joint space is based on two steps. Firstly a SUR approach is65

applied to the ”projected” Gaussian Process to determine the next evaluation point xn+1 ∈ X.66

Secondly, in the uncertain space, the next function vn+1 is chosen such that the standard error67

of the ”projected” process evaluated at xn+1 is minimized. Compared to methods based on an68

accurate estimation of the expectation and the construction of a surrogate of g ([EAHL+20]) our69

adaptive design of experiments, defined in the joint space, leads to further reduce the number of70

calls to the numerical simulator.71

72

The article is structured as follows. Firstly, in Section 2, we recall the problem formulation and73

we extend the concept of Gaussian Process modelling to the case where the inputs contain a func-74

tional variable known through a finite set of realizations. In Section 3, we introduce a new adaptive75

sampling strategy to choose (xn,vn). The whole algorithm for our robust inversion procedure is76

then detailed. In Section 4, our procedure is implemented on two analytical test cases (Sections 4.177

and 4.2), and the modelling assumptions are discussed (Section 4.3). Finally, our new procedure is78

tested on the industrial test case of a car pollution control system (Section 4.4).79

80

2. Problem formulation. We model the output of the industrial simulator by a function f :81

X×V → R with X the space of the control parameters a bounded subset of Rp and V the space of82

the functional uncertain input. We model the functional uncertain input by a random variable V83

valued in V. We are interested in estimating the set84

(2.1) Γ∗ = {x ∈ X , g(x) ≤ c},85

where c ∈ R is a threshold and g : X→ R such that g(x) = EV[f(x,V)]. An additional constraint86

is that V is known through a finite set of realizations. The implication of this constraint will be87

specified in Section 3.3.88

The proposed sequential strategy to approximate Γ∗ involves two main ingredients introduced here-89

after : functional data reduction to reduce the problem to a finite dimensional space and Gaussian90
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Process modelling in the joint space Control × Uncertain.91

92

2.1. Functional data reduction. Let (Ω,F ,P) be a probability space. We assume that the
random process V belongs to H = L2(Ω,F ,P;V) with

V =

{
v : [0, T ]→ R, ||v|| = (< v, v >)1/2 =

(∫ T

0
v(t)2dt

)1/2

< +∞

}
.

We assume that V ∈ H has zero mean and continuous covariance function C(t, s). Then93

(2.2) V(t) =
∞∑
i=1

Uiψi(t), t ∈ [0, T ],94

where {ψi}∞i=1 is an orthonormal basis of eigenfunctions of the integral operator corresponding to95

C96

(2.3) λiψi(t) =

∫ T

0
C(t, s)ψi(s)ds,97

and with {Ui}∞i=1 denoting a set of uncorrelated random variables with zero mean and variance98

λi. Decomposition (2.2) is known as the Karhunen-Loève (KL) expansion of V ([LK10]). In the99

following we denote the truncated version of V100

(2.4) Vm(t) =

m∑
i=1

Uiψi(t),101

which represents, in the mean square error sense, the optimal m-term approximation of V ([LK10]).102

103

2.2. Gaussian Process modelling. We assume that f(x,v) is a realization of a Gaussian104

Process Z(x,u) defined on X× Rm, where u = (< v, ψ1 >, . . . , < v, ψm >)>.105

Let mZ be the mean function of Z(x,u) and kZ its covariance function,106

E[Z(x,u)] = mZ(x,u),

Cov(Z(x,u), Z(x′,u′)) = kZ(x,u; x′,u′).
(2.5)107

Let denote Zn, the GP Z conditioned on the set of n observations (simulations) Zn =108

{f(x1,v1), . . . , f(xn,vn)} of Z at Xn × Un = {(x1,u1), . . . , (xn,un)} where ui = (< vi, ψ1 >109

, . . . , < vi, ψm >)>110

(2.6) Zn(x,u) = [Z(x,u)|ZXn×Un = Zn].111

The conditional expectation is112

E[Zn(x,u)] = mZ(x,u) + kZ((x,u);Xn × Un)kZ(Xn × Un;Xn × Un)−1(Z−mZ(Xn × Un)),113

and the conditional covariance is114

Cov(Zn(x,u), Z
n
(x′,u′)) = kZ((x,u); (x′,u′))

− kZ((x,u);Xn × Un)kZ(Xn × Un;Xn × Un)−1kZ(Xn × Un; (x′,u′)).
115

It is important to note that the Gaussian Process Z(x,u) is defined on the finite-dimensional trun-116

cated space X× Rm. A discussion about this model is proposed in Section 4.3.117

3
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2.3. Integrated Gaussian Process. Recall that Γ∗ = {x ∈ X , g(x) = E[f(x,V)] ≤ c}.118

Therefore, to model the function g, we introduce the integrated process119

(2.7) Y n
x = EU[Zn(x,U)] =

∫
Rm

Zn(x,u)dρ(u),120

where dρ(u) is the probability distribution of U = (U1, . . . , Um)T introduced in (2.4). The process121

Y n
x is a Gaussian Process ([JLR13]) fully characterized by its mean and covariance functions which122

are given by123

E[Y n
x ] =

∫
Rm

mZ(x,u)dρ(u)+∫
Rm

kZ((x,u);Xn × Un)kZ(Xn × Un;Xn × Un)−1(Z−mZ(Xn × Un))dρ(u),

(2.8)124

and125

Cov(Y n
x , Y

n
x′) =

∫
Rm

∫
Rm

kZ((x,u); (x′,u′))

− kZ((x,u);Xn × Un)kZ(Xn × Un;Xn × Un)−1kZ(Xn × Un; (x′,u′))dρ(u)dρ(u′).

(2.9)

126

127

128

3. Data driven infill strategy for stochastic inversion. In this section we propose a two-step129

infill strategy in the joint space. The first step consists in choosing a point in the control space130

while the second one aims at enriching the design with a new point in the uncertain space.131

3.1. Minimization of the Vorob’ev deviation: choice of next x. The objective of the first132

step is to wisely choose the points in the control space X in order to accurately estimate the set133

Γ∗ = {x ∈ X , g(x) = EV[f(x,V)] ≤ c}. For this purpose, we consider in the inversion set the134

statistical model of the unobservable function g given by Y n
x introduced in Section 2.3. Due to the135

stochastic nature of (Y n
x )x∈X, the associated excursion set,136

(3.1) Γ = {x ∈ X , Y n
x ≤ c}137

is a well defined random closed set if (Y n
x )x∈X has continuous sample paths ([Mol06] p.4, 23). There-138

fore, from now on, the considered random processes will be supposed separable ([Doo53], p.57),139

the mean mZ continuous and the covariance function kZ to be Matérn (5/2 or 3/2). Indeed, under140

these assumptions, we know that (Z(x,u))(x,u)∈X×Rm has continuous sample paths ([Pac03] p.44141

table 2.1) and we can prove that the path continuity property remains valid for the integrated con-142

ditioned process (Y n
x )x∈X by using the necessary criterion introduced in [Adl81] p.60 and presented143

in [Pac03] p.38 Eq.(2.9).144

From the assumption that g is a realization of Y n
x , the true unknown set Γ∗ can be seen as a145

realization of the random closed set Γ. The book of [Mol06] gives many possible definitions for the146

variance of a random closed set. In the present work we adapt the Stepwise Uncertainty Reduction147

(SUR) strategy introduced in [CG13] which aims at decreasing an uncertainty function defined as148

the Vorob’ev deviation ([Vor84, VL13]) of the random set.149

More precisely the uncertainty function at step n is defined as150

Huncert
n = E[µ(Γ4Qn,α∗n) | ZXn×Un = Zn],151

where µ is the Lebesgue measure on X, the Vorob’ev quantiles are given by Qn,α = {x ∈ X , P(Y n
x ≤152

c) ≥ α}, and the Vorob’ev expectation Qn,α∗n can be determined by tuning α to a level α∗ such153

4
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that µ(Qn,α∗n) = E[µ(Γ) | ZXn×Un = Zn].154

Let155

Huncert
n+1 (x) = E[µ(Γ4Qn+1,α∗n+1

) | ZXn×Un = Zn, Y
n
x ].156

The objective of the SUR strategy is thus to enrich the current design with a new point xn+1157

satisfying158

xn+1 ∈ argminx∈X En,x[Huncert
n+1 (x)]

:= argminx∈X Jn(x),
(3.2)159

where En,x denotes the expectation with respect to Y n
x |ZXn×Un = Zn (for detailed formula and160

estimation of Jn(.) see [CG13]).161

It remains now to enrich the design with a new point in the uncertain space.162

163

3.2. Minimization of the variance: choice of next u. The process Y n approximates the164

expectation EV[f(·,V)]. It can be seen as a projection of Zn from the joint space onto the control165

space. We propose to sample the point un+1 in the uncertain space in order to reduce at most the166

one-step-ahead variance at point xn+1, VAR(Y n+1
xn+1

), whose expression is obtained from Eq.(2.9).167

More precisely,168

(3.3) un+1 = argminũ∈RmVAR(Y n+1
xn+1

),169

with170

VAR(Y n+1
xn+1

) = ϑ(ũ)

=

∫
Rm

∫
Rm

kZ((xn+1,u); (xn+1,u
′))dρ(u)dρ(u′)

−
∫
Rm

∫
Rm

kZ((xn+1,u);Xn+1 × Un+1)

kZ(Xn+1 × Un+1;Xn+1 × Un+1)
−1kZ(Xn+1 × Un+1; (xn+1,u

′))dρ(u)dρ(u′),

(3.4)171

where Xn+1 = (Xn,xn+1), Un+1 = (Un, ũ) and Xn, Un are the sample points in the control space,172

uncertain space at step n.173

174

3.3. Implementation. The setting of our procedure is driven by our industrial application175

where the probability distribution of the uncertain variable V is known only through a finite set176

of realizations Ξ = {v̆1, . . . , v̆N}.177

178

Computational method for functional PCA. We consider the empirical version of C(s, t) defined179

as CN (s, t) =
1

N

N∑
i=1

v̆i(s)v̆i(t). The eigenvalue problem defined by Eq. (2.3) is then solved by180

discretizing the trajectories {v̆i}i=1,...,N on [0, T ] and replacing C by CN .181

Denoting by ψ̂i, i = 1, . . . ,m, the estimated eigenfunctions, we define182

(3.5) Gm = {ŭ1, . . . ŭN}183

with ŭi = (< v̆i, ψ̂1 >, . . . , < v̆i, ψ̂m >)T .184

185

5
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Minimization of the one-step-ahead variance. Since V is known through a finite set Ξ, Eq. (3.3)186

is solved on the finite set Gm.187

188

We now detail the implementation of our methodology. Let us first state the global algorithm189

and then comment some of its steps.190

Algorithm 3.1 Stochastic inversion via joint space modelling

Require: The truncation argument m and the DoE of n points Xn × Un in (X,Gm)
1: Set n = n0.
2: Calculate Z the simulator responses at the design points Xn × Un
3: while n ≤ budget do
4: Fit the GP model Zn

5: Induce the integrated GP Y n
x

6: xn+1 ← sampling criterion Jn
7: un+1 ← argminũ∈GVAR(Y n+1

xn+1
)

8: Simulation at (xn+1,vn+1), where vn+1 ∈ Ξ is the curve corresponding to un+1

9: Update DoE : Xn+1 × Un+1 = Xn × Un ∪ {(xn+1,vn+1)}
10: Update Z = Z ∪ {f(xn+1,vn+1)}
11: Set n = n+ 1
12: end while
13: Fit the final GP model Zn

14: Approximate Γ∗ by the Vorob’ev expectation

step 1 Let U be the smallest m-rectangle containing Gm, U =
∏m

i=1 [min(< Ξ, ψ̂i >),max(< Ξ, ψ̂i >)]).191

For the initial DOE, we first build a Latin Hypercube Design of n points Xn× Ūn in the joint space192

(X,U). Then the set of points Un is determined such that for i = 1, ..., n, ui ∈ Gm is the closest193

point from ūi ∈ Ūn (with respect to the euclidean norm in Rm).194

step 4 The covariance kernel of the GP is chosen as a sum of two terms: a Matèrn-5/2 covariance and195

a constant variance term modelling a homoscedastic noise. The homoscedastic modelling of the196

noise is discussed in Section 4.3. The mean function of the GP is modelled by a constant function.197

All types of parameters (mean, correlation lengths, variance and noise) are estimated by maximum198

likelihood [RGD12].199

step 5 In the framework where the uncertain vector U is Gaussian as well as the covariance kernel, closed200

form solutions of the integrals in (2.8) and (2.9) are given in [JLR13]. In our framework, the integrals201

in (2.8) and (2.9) are approximated by Monte Carlo.202

step 6 xn+1 is obtained by solving (3.2) with a continuous global optimization algorithm: GENetic Opti-203

mization Using Derivatives (GENOUD) [JS11].204

step 7 Once more the integrals in (3.4) are approximated by Monte Carlo. More details on the estimation205

of (3.4) can be found in [JLR13]. Here the minimization problem is solved by an exhaustive search206

on the finite set Gm defined in (3.5).207

step 8 The simulator is evaluated at point (xn+1,vn+1) where vn+1 is the curve of the initial set of curves208

Ξ corresponding to the truncated vector of coefficients un+1.209

Remark that Algorithm 3.1 depends on a prior choice of the truncation argument m. To overcome210

this, we propose another variant of this strategy. The approach consists in augmenting the uncertain211

space once convergence is established. More precisely, we start with a Gaussian Process defined in212

the p + m dimensional space. Once the enrichment strategy (given by Algorithm 3.1) no longer213

provides information, the dimension of the uncertain space is increased and the GP is updated in214

the p+m+ 1 dimensional space. It is important to underline that this approach does not require215

additional calls to the numerical simulator. This second strategy is summarized by Algorithm 3.2:216

6
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Algorithm 3.2 Stochastic inversion via sequential joint space modelling

Require: The initial truncation argument m = 2 and the DoE of n points Xn × Un in (X,Gm)
1: Set n = n0.
2: Calculate Z the simulator responses at the design points Xn × Un
3: while n ≤ budget do
4: m← Update.Dimension()
5: Fit the GP model Zn

6: Induce the integrated GP Y n
x

7: xn+1 ← sampling criterion Jn
8: un+1 ← argmin

ũ∈G
VAR(Y n+1

xn+1
)

9: Simulator response at (xn+1,vn+1), where vn+1 ∈ Ξ is the curve corresponding to un+1

10: Update DoE : Xn+1 × Un+1 = Xn × Un ∪ {(xn+1,vn+1)}
11: Update Z = Z ∪ {f(xn+1,vn+1)}
12: Set n = n+ 1
13: end while
14: Fit the GP model Zn

15: Approximate Γ∗ by the Vorob’ev expectation

In step 4 of Algorithm 3.2, the uncertain space dimension is updated based on a stagnation217

criterion of the Vorob’ev Deviation (see Eq.(26) in [EAHL+20]). If the criterion is verified then218

one dimension is added and thus m = m+ 1.219

220

4. Numerical experiments.221

4.1. Two analytical examples - set-up. To illustrate the behaviour of the proposed algorithm222

3.1, we consider two analytical examples. We suppose that a sample Ξ of N = 200 realizations223

of the functional random variable V is available and its probability distribution is unknown. To224

highlight the robustness of our method regarding the random distribution of the uncertainties, we225

consider two types of functional random variables: Brownian motion and max-stable process. As226

Algorithm 3.1 depends on the truncation argument m, different values are tested (see Table.4.1) to227

better understand the effect of the uncertain space dimension.228

m 2 4 8

V : Brownian motion 90.1 % 95.2 % 97.6%

V : Max-stable process 58.8 % 63.3 % 70%
Table 1

The explained variance of the functional data by the reduced variables in function of m for two types of uncer-
tainties.

For the next two analytical examples, we consider a Gaussian Process prior Z(x,u) with229

constant mean and Matèrn covariance kernel with ν = 5/2. Random Latin Hypercube Designs230

(RLHD) are used as initial DoE for the two algorithms. The number of points of the initial DoE is231

20 for the first analytical example and 30 for the second one. The RLHD induces variability in the232

behaviour of the algorithms. To account for this variability in the tests, the performance of each233

method is averaged over 30 (respectively 10) independent runs for Brownian motion (respectively234

max-stable process).235

236

Analytical example 1. We consider an additive function, sum of the two-dimensional Bo-237

7
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hachevsky function and a random term, defined as238

f : (x,V) 7→
(
x21 + 2x22 − 0.3 cos(3πx1)− 0.4 cos(4πx2) + 0.7

)
+

∫ T

0
eVtdt,239

where x ∈ X = [−100, 100]2. The objective is to construct the sets Γ∗ = {x ∈ X , g(x) =240

EV[f(x,V)] ≤ 3500} for the two different types of distribution of the random functional variable241

(Brownian motion and max-stable process).242

243

Analytical example 2. For the second example we define a function that is not separable244

with respect to the control variables and uncertainties. The function involves the maximum and245

the minimum of the function v, so catching the whole variability of V becomes important. The246

function f is given by247

f : (x,V) 7→ max
t

Vt|0.1 cos(x1 max
t

Vt) sin(x2)(x1 + x2 min
t

Vt)
2|
∫ T

0
(30 + Vt)

x1x2
20 dt,248

where the control variables lie in X = [1.5, 5] × [3.5, 5]. The objective is to construct the sets249

Γ∗ = {x ∈ X , g(x) = EV[f(x,V)] ≤ c}, where c = 1.2 and c = 0.9 for the Brownian motion and250

the max-stable Process respectively.251

252

To compare the performance of both algorithms, we use the ratio of the volume of the253

symmetric difference between the true set Γ∗ and the estimated set Qn,α∗ : µ(Γ∗4Qn,α∗n)/µ(Γ∗).254

255

Figure 1. Analytical example 1 with Brownian motion (top) and with max-stable process (bottom). Convergence
of Algorithm 3.1 for m = {2, 4, 8}. Left: mean of the symmetric differences vs. number of simulator calls in log
scale. The mean is taken over the independent runs of initial RLHD. Right: symmetric differences associated with
the random initial DOEs at the maximal simulation budget.

8
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Figure 2. Analytical example 2 with Brownian motion (top) and with max-stable process (bottom). Convergence
of Algorithm 3.1 for m = {2, 4, 8} and for adaptive choice of m value. Left: mean of the symmetric differences vs.
number of simulator calls in log scale. The dashed grey curve is the mean of m values in the case of an adaptive choice
of its value. The mean is taken over the independent runs of initial RLHD. Right: symmetric differences associated
with the random initial DOEs at the maximal simulation budget.

4.2. Two analytical examples - results. In Figures 1 and 2, we show the averaged convergence256

rates of Algorithm 3.1 on the two analytical examples with the two types of functional uncertainties257

(Brownian and max-stable processes). The average is taken over the repeated runs of the complete258

approach corresponding to the 30 random initial designs, and for 3 values of the truncation argument259

m.260

For the first analytical example, the smaller values of m, the faster the convergence. This261

observation can be explained by the fact that, in higher dimensional joined space (due to larger262

values of m), much more evaluation points are necessary to learn an accurate GP model (more263

hyper parameters to determine). It is worth noting that even for 90% (for Brownian motion) or264

58.8% (for max-stable process) of explained variance with m = 2 the proposed algorithm provides265

an efficient estimate of the true set Γ∗. Indeed, on stage 8 in Algorithm 3.1 the curve vn+1 ∈ Ξ266

associated to un+1 is recovered, such that the information lost after the dimension reduction is267

reduced, thereby further robustifying the method.268

For the second analytical example, the output depends on local behaviours of the stochastic269

process. The truncation argument m = 2 is too small to catch these dependencies, the function is270

sensitive to higher KL order. For the Brownian motion, more than 95% of variance is explained with271

m = 4. It seems sufficient to obtain an accurate approximation of Γ∗. The improvement between272

m = 2 and m = 4 is noticeable. The improvement is not as important when the uncertainties273

are driven by a max-stable process since the percentage of explained variance increases slowly.274

Better results should be observed with m = 8. It is not the case because a higher dimension275

leads to difficulties in the estimation of the GP except by increasing consequently the number of276

observation points.277
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In Figure 3 we can see the evolution of the feasible domain estimation with respect to the278

iterations of Algorithm 3.1 for the second analytic case and the Brownian motion, and for different279

truncation levels. From left to right we observe the increase of additional sampling points near the280

boundary with the iteration number.281

As shown in Figure 4, the larger the dimension of the problem is, the larger the computational282

cost is. Moreover, the computational time needed to provide the next evaluation point increases283

with the number of simulator calls, and thus with the number of iterations, because of the cost of284

Kriging approximation directly linked with the learning sample size. For example at iteration 150,285

the run with m = 8 requires 275 seconds to perform the optimization and provide the next evalu-286

ation point whereas the one for iteration 80 requires 203 seconds. For m = 2, the computational287

time for iteration 150 is 164 seconds and 126 seconds for iteration 80.288

From this observation, we propose to evaluate the strategy based on an adaptive choice of m289

presented in Algorithm 3.2: we start with a small value m = 2, and increase this number when290

the variation of the Vorob’ev deviation remains smaller than a given threshold ε (0.005) during291

l0 consecutive iterations (l0 = 4) (see Eq. (26) in [EAHL+20]). This adaptive strategy allows292

to increase the dimension of the KL reduced space only when it is necessary to obtain a better293

accuracy. It allows to save simulations and reduce computational time, as illustrated on the second294

analytical example with the Brownian motion on Figure 2 (top). The accuracy reached with this295

strategy is similar to the one obtained with the strategy with fixed m = 8 but with a gain of ≈ 12%296

in terms of computational time (Figure 4). Only the last iterations are performed with m = 8 and297

the first 30 iterations are performed with m = 2 (see the dashed grey curve on Figure 2 (top left)).298

4.3. Discussion on the GP model on the finite-dimensional truncated space. We discuss299

here the assumption stated in Section 2.2 that f(x,v) is a realization of a Gaussian Process Z(x,u)300

defined on the truncated space X × Rm. It is worth underlying here that our aim was to reduce301

the simulation cost by considering a m-truncation of the KL expansion while accounting for our302

partial knowledge on the distribution of V through only a finite sample of realizations.303

Let us consider two truncation arguments m and L > m, with L large enough to ensure that the304

part of variance explained by the KL terms indexed by i > L is negligible.305

For a given realization v of V, let us introduce the notation (u, ũ) ∈ Rm × RL−m where u = (<306

v, ψ̂1 >, . . . , < v, ψ̂m >)> and ũ = (< v, ψ̂m+1 >, . . . , < v, ψ̂L >)>.307

In that setting f(x,V) can be expressed as308

f(x,V) = f(x, V̂L) + εT = f
(
x, (U, Ũ)Φ̂L

)
+ εT309

where V̂L is the empirical version (estimated from CN ) of the KL approximation of V given310

by (2.4), Φ̂L = (ψ̂1, ..., ψ̂L)T and εT is the error associated to the KL truncation and empirical311

approximation, supposed small by construction.312

Then, the best L2-approximation of f
(
x, (U, Ũ)Φ̂L

)
by a measurable function of U only is the

conditional expectation EŨ

[
f
(
x, (U, Ũ)Φ̂L

)
|U
]
. We thus write:

f(x,V) = EŨ

[
f
(
x, (U, Ũ)Φ̂L

)
|U
]

+ εP + εT

with εP the L2-projection error. We can further approximate the conditional expectation by

f
(
x, (U, ũ(U))Φ̂L

)
+ εE

where ũ(U) is one realization of Ũ|U and εE accounts for the expectation approximation. The313

latter approximation is motivated by the fact that, since V is only known through a finite sample,314

we only have access to one ũ(u) realization for each u corresponding to the sample v in the finite315

set Ξ. Thus we can write:316

(4.1) f(x,V) = f
(
x, (U, ũ(U))Φ̂L

)
+ ε317
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Figure 3. Feasible domain estimation for function 2 in green and its boundary in red for 3 different iterations
(30, 70 and 150 from left to right) and for the 3 values of m = 2, 4 and 8 and the adaptive choice of m value (from
top to bottom). The black dots are the x coordinates of the points in the initial design of experiments, the red crosses
are the additional points chosen by the algorithm.
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Figure 4. The computational time (sec.) needed to provide the next evaluation point as a function of iterations
for the second analytic example with Brownian motion. The values are average computational times for 5 runs of
each strategy: m = 2, 4, 8 and adaptive choice of m value.

with ε = εT + εP + εE . According to this last equation, the modelling assumption in Section 2.2318

should include a noisy term. However, the estimation of this heteroscedastic noise comes with319

an extra estimation cost and as it can be seen in Figure 5, no significant model improvement is320

observed.321

Indeed in Figure 5, for m = 2, we present the evolution of the symmetric difference for the noisy
GP model Z(x,u) introduced from equation (4.1) when the noise ε is Gaussian and heteroscedastic
with a variance function of (x,u):

τ2(x,u) = V arŨ
[
f
(
x,
(
u, Ũ(u)

)
Φ̂L

)∣∣U = u
]
.

Moreover, supposing V Gaussian or ”nearly Gaussian” then Ũ can be considered independent
of U and τ2(x,u) can be estimated by

τ̂2(x,u) =

l∑
k=1

wk
[
f
(
x,VQuant

k

)
−

l∑
j=1

wjf
(
x,VQuant

j

)]2
where l = 5 and the VQuant

k are greedy functional quantizers and wk associated weights (see322

[EAHL+20] for more details). These quantizers are built from a set of N curves {
(
u, ũk

)
Φ̂L, k =323

1, ..., N} where ũk are independent samples of Ũ which in practice are uniformly sampled in the324

finite set Ḡ = {ū1, ..., ūN} where ūi = (< v̆i, ψ̂m+1 >, ..., < v̆i, ψ̂L >). Numerically we select 20325

(x,u)-points from the initial DoE set of size n = 30 and estimate the corresponding τ̂2. To avoid326

further estimation of τ2 at new locations (the remaining DoE points and during the infill strategy),327

we also build a second GP model of log(τ̂2) based on the 20 initial estimations. Finally the noisy328

GP model Z is built using as noise variance exp
(

ˆlog(τ̂2)
)
. Overall we need additional l× 20 = 100329

costly evaluations of f to estimate the heteroscedastic noise.330

In Figure 5 we notice that compared to the noiseless model with m = 2, the noisy model achieves a331

faster symmetric difference volume reduction but the overcost, for the variance estimation, makes332

this approach interesting only for a large simulation budget: at least 130 simulations. For the333

Brownian case, on function 2, the noiseless models with higher m still perform better for a budget334
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Figure 5. Function 2 with Brownian (top) and max-stable processes (bottom) with a comparison with the het-
eroscedastic GP model. Convergence of Algorithm 3.1 for m = {2, 4, 8}, adaptive choice of m value. Left: mean
of the symmetric difference vs. number of simulator calls. The mean is taken over the independent runs of initial
RLHD. The additional curve (cyan) corresponds to m = 2 with the heteroscedastic model, it is translated to take into
account the extra-cost of 100 simulations for the noise estimation. Right: symmetric differences associated with the
random initial DOEs at the maximal simulation budget.

up to 150 than the noisy one. A model with a small m, that is to say with a rough truncation error,335

involves a larger bias. Nevertheless, refining the heteroscedastic noise estimation should bring the336

method to a similar level but much further on the axis corresponding to the number of simulations.337

But on function 2 with a Max-stable process, the noisy model slightly outperforms the noiseless338

models (m = 2, 4, 8) when approaching the 150 simulations (Figure 5). We can understand this339

improvement by the fact that even with higher m a noiseless model does not make up for a wilder340

truncation error which is better approximated by a noisy model.341

Note that it is possible to relax the Gaussian hypothesis on V. In that case the same kind of342

heteroscedastic variance estimator could be used but would require an empirical estimation of the343

conditional distribution of Ũ|U which seems difficult in the context of our partial knowledge of V344

imposing on us to work on a finite predefined set G ∪ Ḡ.345

346

4.4. Application to a pollution control system SCR. In this section we test the proposed347

method on an automotive test case from IFPEN. The problem concerns an after-treatment device348

of diesel vehicles, called Selective Catalytic Reduction (SCR). This latter consists of a basic process349

of chemical reduction of nitrogen oxides (NOx) to diatomic nitrogen (N2) and water (H2O) by the350

reaction of NOx and ammonia NH3. The reaction itself occurs in the SCR catalyst. Ammonia is351

provided by a liquid-reductant agent injected upstream of the SCR catalyst. The amount of ammo-352

nia introduced into the reactor is a critical quantity: overdosing causes undesirable ammonia slip353
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downstream of the catalyst, whereas under-dosing causes insufficient NOx reduction. In practice,354

ammonia slip is restricted to a prescribed threshold. We use an emission-oriented simulator devel-355

oped by IFPEN, which models the vehicle, its engine and the exhaust after-treatment system. This356

latter takes as input the vehicle driving cycle profile and provides the time-series of corresponding357

exhaust emissions as output. A realistic SCR control law is used in this simulator. See [BCLP12]358

for an example of such a control law. In this study, the inputs are two control variables and a359

functional one considered as random. The control variables are parameters of the SCR control law.360

They set the targeted level of NH3 storage in the catalyst and then are indirectly related to the361

NH3 injected. They lie in X = [0, 0.6]2. The functional random variable describes the evolution of362

vehicle speed on I = [0, 5400s] and is known through an available sample of 100 real driving cycles.363

Two samples are represented in Figure 6. In short, the ammonia emissions peak during a driving

Figure 6. Seven real-driving cycles extracted from the available sample of 100 cycles.

364

cycle is modelled as a function365

(4.2) f :

X× V → R
(x,V) 7→ f(x,V) = max

t∈I
NHslip

3 (t)
366

We are interested in recovering the set Γ∗ = {x ∈ X, g(x) = EV[f(x,V)] ≤ c}, with c = 30ppm.367

Conducting this study on a full grid would consist on covering the space [0, 0.6]2 with a fine mesh368

and evaluating the code 100 times at each point. Knowing that each simulation takes about two369

minutes, such study would require many hours of computational time, and thus using meta-models370

allows to tackle this computational issue.371

372

As discussed in the previous subsection, we start by reducing the space dimension of the un-373

certain variable as described in Section 2.1 and fix the truncation argument to m = 20 in order374

to explain 80% of the variance. Thereafter, we consider a Gaussian Process prior Z(x,u), with375

constant mean function and Matérn covariance kernel with ν = 5/2. The initial DoE consists of376

a n = 5 × (2 + 20) = 110 points LHS design optimized with respect to the maximin criterion.377

The covariance kernel hyper-parameters are estimated by maximizing the likelihood. As for the378

analytical example, we proceed to add one point at each iteration of the SUR strategy.379

Figure 7 shows the coverage probability function defined by the integrated Gaussian Process380

Yx conditionally to the n available observations. The initial estimate of Γ∗ is given by the green381

set of blue boundary. From Figure 8, we note that, for each additional point, the new observed382

response affects the estimation of the excursion set and its uncertainty. Thus, the Vorob’ev deviation383

generally decreases in function of the iterations. SUR algorithm heavily visits the boundary region384
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Figure 7. SCR pollution control system. The initial DoE (black triangles) and the initial estimate set (green).
The contour plot in grey represents the excursion probability.

of Γ∗ and explore also other potentially interesting regions. Actually, after 400 iterations (510385

evaluations) the whole domain X has an excursion probability close to either 0 or 1.386

Figure 8. SCR pollution control system. The Vorob’ev deviation in function of the number of simulations (left).
The coverage probability function, the initial DoE (black triangles) and the estimate set (green set) after 400 added
points (red). The contour plot in grey represents the excursion probability.

5. Conclusion. The aim of this paper is to propose an excursion set inversion procedure for387

control system in an uncertain environment. Furthermore, control systems whose behaviour is simu-388

lated by high-fidelity and expensive-to-evaluate models are considered. Gaussian Process modelling389

approaches are therefore introduced as computationally costless approximations of the outputs of390
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the simulator.391

The proposed strategy minimizes the uncertainties on the excursion set of the simulator output392

by, first, creating a Gaussian Process model in the joint space of deterministic and uncertain input393

variables. The vector-valued random variables result from a dimension reduction of the functional394

input variable. Then another ”projected” Gaussian Process is built to represent the mean of the395

quantity of interest (output of the simulator). Enrichment of the design of experiments is performed396

in the joint space. This allows us to direct the experimental design points toward regions of the397

space that decrease significantly the uncertainties on the excursion set while limiting the number398

of simulation cost.399

Two bi-dimensional examples based on analytic expressions are considered to validate the pro-400

posed procedure. This allows us to validate the proposed method with comparison with exact401

solutions. The application of the proposed procedure shows increased efficiency as the number402

of calls to the complex simulator is reduced. Finally, we apply the methodology to an industrial403

problem related to the pollution control system of an automotive. An excursion set solution is404

found within a reasonable number of simulations.405

The paper focuses on the expectation while other reliability measures may also be of great406

importance. For example, one may interested in ensuring a certain level of reliability with a high407

probability or satisfying multiple constraints, e.g., on the mean and the variance.408
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