T. Gauthier, M. Yazdanpanah, A. Forret, B. Amblard, A. Lambert et al., CLC, a promising concept with challenging development issues, Powder Technol, vol.316, pp.3-17, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01581934

Y. Alghamdi, Z. Peng, J. Zanganeh, B. Moghtaderi, and E. Doroodchi, Hydrodynamics similarities in cold flow model of chemical looping combustors: An experimental study, Powder Technol, vol.343, pp.542-550, 2019.

H. J. Richter and K. F. Knoche, Reversibility of combustion processes, Acs Symposium Series, vol.235, pp.71-85, 1983.

N. Berguerand and A. Lyngfelt, Design and operation of a 10 kW(th) chemical-looping combustor for solid fuels -Testing with South African coal, Fuel, vol.87, issue.12, pp.2713-2726, 2008.

J. Stroehle, M. Orth, and B. Epple, Design and operation of a 1 MWth chemical looping plant, Appl. Energy, vol.113, pp.1490-1495, 2014.

C. Linderholm, M. Schmitz, P. Knutsson, and A. Lyngfelt, Chemical-looping combustion in a 100-kW unit using a mixture of ilmenite and manganese ore as oxygen carrier, Fuel, vol.166, pp.533-542, 2016.

P. Ohlemueller, J. Stroehle, and B. Epple, Chemical looping combustion of hard coal and torrefied biomass in a 1 MWth pilot plant, Int. J. Greenhouse Gas Control, vol.65, pp.149-159, 2017.

I. Abdulally, H. E. Andrus, C. Edberg, J. Chiu, P. Thibeault et al., ALSTOMs chemical looping combustion prototype for CO2 capture from existing pulverized coal fired power plants, NETL CO2 capture technology meeting, 2012.

S. Bayham, O. Mcgiveron, A. Tong, E. Chung, M. Kathe et al., Parametric and dynamic studies of an iron-based 25-kW(th) coal direct chemical looping unit using sub-bituminous coal, Appl. Energy, vol.145, pp.354-363, 2015.

J. Adanez, A. Abad, T. Mendiara, P. Gayan, L. F. De-diego et al., Chemical looping combustion of solid fuels, Prog. Energy Combust. Sci, vol.65, pp.6-66, 2018.

D. C. Guio-perez, T. Proell, and H. Hofbauer, Influence of ring-type internals on the solids residence time distribution in the fuel reactor of a dual circulating fluidized bed system for chemical looping combustion, Chem. Eng. Res. Des, vol.92, issue.6, pp.1107-1118, 2014.

A. Lyngfelt, D. Pallares, C. Linderholm, M. Ryden, and T. Mattisson, Distributor of volatile gases in the bottom part of a fluidized bed, Swedish Patent Application, pp.1400085-1400090, 2014.

P. Markstrom, C. Linderholm, and A. Lyngfelt, Operation of a 100 kW chemical-looping combustor with Mexican petroleum coke and Cerrejon coal, Appl. Energy, vol.113, pp.1830-1835, 2014.

J. Stroehle, M. Orth, and B. Epple, Chemical looping combustion of hard coal in a 1 MWth pilot plant using ilmenite as oxygen carrier, Appl. Energy, vol.157, pp.288-294, 2015.

R. Perez-vega, A. Abad, F. Garcia-labiano, P. Gayan, L. F. De-diego et al., Coal combustion in a 50 kW(th) Chemical Looping Combustion unit: Seeking operating conditions to maximize CO2 capture and combustion efficiency, Int. J. Greenhouse Gas Control, vol.50, pp.80-92, 2016.

H. Sun, M. Cheng, D. Chen, L. Xu, Z. Li et al., Experimental Study of a Carbon Stripper in Solid Fuel Chemical Looping Combustion, Ind. Eng. Chem. Res, vol.54, issue.35, 2015.

H. Sun, M. Cheng, Z. Li, and N. Cai, Riser-Based Carbon Stripper for Coal-Fueled Chemical Looping Combustion, Ind. Eng. Chem. Res, vol.55, issue.8, pp.2381-2390, 2016.

M. Cheng, H. Sun, Z. Li, and N. Cai, Annular Carbon Stripper for Chemical-Looping Combustion of Coal, Ind. Eng. Chem. Res, vol.56, issue.6, pp.1580-1593, 2017.

H. Chen, M. Cheng, L. Liu, Y. Li, Z. Li et al., Coal-fired chemical looping combustion coupled with a high-efficiency annular carbon stripper, Int. J. Greenhouse Gas Control, p.93, 2020.

M. Cheng, Y. Li, Z. Li, and N. Cai, An integrated fuel reactor coupled with an annular carbon stripper for coal-fired chemical looping combustion, Powder Technol, vol.320, pp.519-529, 2017.

T. Gauthier, A. Hoteit, F. Guillou, and H. Stainton, Chemical looping combustion method with a reaction zone including a gas-solid separation zone and plant using same. US9927118, 2018.

A. Lyngfelt and B. Leckner, A 1000 MWth boiler for chemical-looping combustion of solid fuels -Discussion of design and costs, Appl. Energy, vol.157, pp.475-487, 2015.

J. Adanez, A. Abad, F. Garcia-labiano, P. Gayan, and L. F. De-diego, Progress in chemical-looping combustion and reforming technologies, Prog. Energy Combust. Sci, vol.38, issue.2, pp.215-282, 2012.

C. Linderholm, A. Abad, T. Mattisson, and A. Lynyfelt, 160 h of chemical-looping combustion in a 10 kW reactor system with a NiO-based oxygen carrier, Int. J. Greenhouse Gas Control, vol.2, issue.4, pp.520-530, 2008.

H. R. Kim, D. Wang, L. Zeng, S. Bayham, A. Tong et al., Coal direct chemical looping combustion process: Design and operation of a 25-kW(th) sub-pilot unit, Fuel, vol.108, pp.370-384, 2013.

J. Adanez, A. Cuadrat, A. Abad, P. Gayan, L. F. De-diego et al., Ilmenite activation during consecutive redox cycles in chemical-looping combustion, Energy Fuels, vol.24, issue.2, pp.1402-1413, 2010.

R. C. Darton, R. D. Lanauze, J. F. Davidson, and D. Harrison, Bubble-growth due to coalescence in fluidized-beds, Trans. Inst. Chem. Eng, vol.55, issue.4, pp.274-280, 1977.

G. Rim and D. Lee, Bubbling to turbulent bed regime transition of ternary particles in a gas-solid fluidized bed, Powder Technol, vol.290, pp.45-52, 2016.

H. T. Bi, N. Ellis, I. A. Abba, and J. R. Grace, A state-of-the-art review of gas-solid turbulent fluidization, Chem. Eng. Sci, vol.55, issue.21, pp.4789-4825, 2000.

J. Yerushalmi and N. T. Cankurt, Further-studies of the regimes of fluidization, Powder Technol, vol.24, issue.2, pp.187-205, 1979.

Y. Jin, Z. Q. Yu, Z. W. Wang, and P. Cai, A criterion for transition from bubbling to turbulent fuidization, Fluidization V, Engineering Foundation, pp.289-296, 1986.

G. S. Lee and S. D. Kim, Pressure-fluctuations in turbulent fluidized-beds, J. Chem. Eng. Jpn, issue.5, pp.515-521, 1988.

P. Cai, S. P. Chen, Z. Q. Jin, and Z. W. Wang, Effect of operating temperature and pressure on the transition from bubbling to turbulent fluidization, J. Chem. Ind. Eng, vol.5, pp.122-132, 1989.

M. Horio, Hydrodynamics of circulating fuidization: Present status and research needs, pp.3-14, 1991.

M. Nakajima, M. Harada, R. Yamazaki, and G. Jimbo, Bubble fraction and voidage in an emulsion phase in the transition to a turbulent fluidized bed, Kagaku Kogaku Ronbunshu, vol.16, issue.2, pp.322-328, 1990.

G. E. Dunham, M. D. Mann, and N. S. Grewal, Dependence of transition to turbulent fluidization on static bed depth in a fluidized bed, Preprints of the fourth international conference on circulating yuidized beds, 1993.

H. T. Bi and J. R. Grace, Effect of measurement method on the velocities used to demarcate the onset of turbulent fluidization, Chem. Eng. J, vol.57, issue.3, pp.261-271, 1995.

M. Yazdanpanah, A. Forret, and T. Gauthier, Impact of size and temperature on the hydrodynamics of chemical looping combustion, Appl. Energy, vol.157, pp.416-421, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01266619

P. Cai, The transition of flow regime in dense phase gas-solid fluidized bed, 1989.

A. Chehbouni, J. Chaouki, C. Guy, and D. Klvana, ffets de différents paramètres sur les vitesses du transition de la fluidisation en régime turbulent, Can. J. Chem. Eng, vol.73, pp.41-50, 1995.

D. F. King, Estimation of dense bed voidage in fast and slow fluidized beds of FCC catalyst, pp.1-8, 1989.

E. R. Monazam and L. J. Shadle, Analysis of the Acceleration Region in a Circulating Fluidized Bed Riser Operating above Fast Fluidization Velocities, Ind. Eng. Chem. Res, vol.47, issue.21, pp.8423-8429, 2008.

Q. Miao, J. Zhu, C. Barghl, C. Wanfi, X. L. Yin et al., Axial and radial solids holdup modeling of circulating fluidized bed risers, Proceedings of the 20th International Conference on Fluidized Bed Combustion, pp.335-340, 2010.

R. Wong, T. Pugsley, and F. Berruti, Modelling the axial voidage profile and flow structure in risers of circulating fluidized beds, Chem. Eng. Sci, vol.47, issue.9, pp.2301-2306, 1992.

D. Kunii and O. Levenspiel, Flow modeling of fast fluidized bed, pp.91-98, 1991.

T. S. Pugsley, G. S. Patience, F. Berruti, and J. Chaouki, Modelling the oxidation of n-butane to maleic anhydride in a circulating fluidized bed reactor, Ind. Eng. Chem. Res, issue.12, pp.2652-2660, 1992.

G. S. Patience, J. Chaouki, F. Berruti, and R. Wong, Scaling considerations for circulating fluidized-bed risers, Powder Technol, vol.72, issue.1, pp.31-37, 1992.

S. Ouyang and O. E. Potter, Consistency of circulating fluidized bed experimental data, Ind. Eng. Chem. Res, vol.32, issue.6, pp.1041-1045, 1993.

D. Bai and K. Kato, Quantitative estimation of solids holdups at dense and dilute regions of circulating fluidized beds, Powder Technol, vol.101, issue.3, pp.183-190, 1999.

A. S. Issangya, J. R. Grace, and J. X. Zhu, Bottom and exit region solids hold-ups in circulating fluidized bed risers, Circulating Fluidized Bed Technology VIII, pp.209-215, 2005.

W. X. Huang, A. J. Yan, and J. J. Zhu, Axial solids distribution and flow development in the risers of circulating fluidized beds with different heights, J. Chin. Inst. Chem. Eng, vol.36, issue.1, pp.17-24, 2005.

X. Qi, J. Zhu, and W. Huang, A new correlation for predicting solids concentration in the fully developed zone of circulating fluidized bed risers, Powder Technol, vol.188, issue.1, pp.64-72, 2008.

J. Xu, X. Lu, W. Zhang, J. Chen, Q. Wang et al., Effects of superficial gas velocity and static bed height on gas-solid flow characteristics in a 60-meter-high transparent CFB riser, Chem. Eng. J, vol.334, pp.545-557, 2018.