J. Ancheyta-juárez and E. Villafuerte-macías, Experimental validation of a kinetic model for naphtha reforming, Studies in Surface Science and Catalysis, vol.133, pp.615-618, 2001.

C. Audet, S. L. Digabel, C. Tribes, and V. Rochon-montplaisir, The NOMAD project

A. Bhosekar and M. Ierapetritou, Advances in surrogate based modeling, feasibility analysis, and optimization: A review, Computers & Chemical Engineering, vol.108, pp.250-267, 2018.

J. A. Caballero and I. E. Grossmann, An algorithm for the use of surrogate models in modular flowsheet optimization, AIChE Journal, vol.54, issue.10, pp.2633-2650, 2008.

A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to Derivative-Free Optimization, MPS-SIAM Series on Optimization. SIAM, 2009.

I. Fahmi and S. Cremaschi, Process synthesis of biodiesel production plant using artificial neural networks as the surrogate models, Computers & Chemical Engineering, vol.46, pp.105-123, 2012.

F. A. Fernandes, Optimization of Fischer-Tropsch synthesis using neural networks, Chemical Engineering & Technology, vol.29, issue.4, pp.449-453, 2016.

G. Font, D. Sinoquet, H. Langouët, M. Castagné, and S. Magand, Derivative free optimization method and physical simulations coupled with statistical models for transient engine calibration, Proceedings of 6th Conference Design of Experiments (DoE) in Engine Development, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02284372

G. F. Froment, K. G. Bischoff, and J. De-wilde, Chemical Reactor Analysis and Design, 2010.

T. Gjervan, R. Prestvik, and A. Holmen, Basic Principles in Applied Catalysis, Springer Series in Chemical Physics, pp.125-158, 2004.

C. A. Henao and C. T. Maravelias, Surrogate-based process synthesis, Computer Aided Chemical Engineering, vol.28, pp.1129-1134, 2010.

C. A. Henao and C. T. Maravelias, Surrogate-based superstructure optimization framework, AIChE Journal, vol.57, issue.5, pp.1216-1232, 2011.

A. C. Hindmarsh and . Odepack, A Systematized Collection of ODE Solvers, pp.55-64, 1983.

. Ibm and . Cplex,

D. R. Jones, M. Schonlau, and W. J. Welch, Efficient global optimization of expensive black-box functions, Journal of Global Optimization, vol.13, issue.4, pp.455-492, 1998.

H. Langouët, Constraints Derivative-Free Optimization: Two industrial applications in reservoir engineering and in engine calibration, 2011.

H. Langouët, F. Delbos, D. Sinoquet, and S. Da-veiga, A derivative free optimization method for reservoir characterization inverse problem, Proceedings of the 12th European Conference on the Mathematics of Oil Recovery (ECMOR 2010), 2010.

M. P. Lapinski, S. Metro, P. R. Pujadó, and M. Moser, Catalytic reforming in petroleum processing, Handbook of Petroleum Processing, pp.1-25, 2014.

S. and L. Digabel, Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm, ACM Transactions on Mathematical Software, vol.37, issue.4, 2011.

K. Mcbride and K. Sundmacher, Overview of surrogate modeling in chemical process engineering, Chemie Ingenieur Technik, vol.91, issue.3, pp.228-239, 2019.

B. A. Mccarl, A. Meeraus, P. Van-der-eijk, M. Bussieck, S. Dirkse et al., McCarl Expanded GAMS User Guide, GAMS Release 24.6. GAMS Development Corporation, 2017.

K. Meert and M. Rijckaert, Intelligent modelling in the chemical process industry with neural networks: a case study, Computers & Chemical Engineering, vol.22, pp.587-593, 1998.

L. Mencarelli, P. Duchêne, and A. Pagot, Surrogate-based modeling techniques with application to catalytic reforming and isomerization processes, Computers & Chemical Engineering, vol.135, p.2020
URL : https://hal.archives-ouvertes.fr/hal-02553492

K. Palmer and R. Realff, Metamodeling approach to optimization of steady-state flowsheet simulations: Model generation, Chemical Engineering Research and Design, vol.80, issue.7, pp.760-772, 2002.

K. Palmer and R. Realff, Optimization and validation of steady-state flowsheet simulation metamodels, Chemical Engineering Research and Design, vol.80, issue.7, pp.773-782, 2002.

N. Quirante and J. A. Caballero, Large scale optimization of a sour water stripping plant using surrogate models, Computers & Chemical Engineering, vol.92, issue.7, pp.143-162, 2015.

N. Quirante, J. Javaloyes, and J. A. Caballero, Rigorous design of distillation columns using surrogate models based on Kriging interpolation, AIChE Journal, issue.7, pp.2169-2187, 2015.

R. Raman and I. E. Grossmann, Modelling and computational techniques for logic based integer programming, Computers & Chemical Engineering, vol.18, issue.7, pp.563-578, 21994.

D. Sullivan, S. Metro, and P. R. Pujadó, Isomerization in Petroleum Processing, Handbook of Petroleum Processing, pp.1-15, 2014.

M. Tawarmalani and N. V. Sahinidis, A polyhedral branch-and-cut approach to global optimization, Mathematical Programming, vol.103, issue.2, pp.225-249, 2005.

F. Trespalacios and I. E. Grossmann, Review of mixed-integer nonlinear and generalized disjunctive programming methods, Chemie Ingenieur Technik, vol.86, pp.991-1012, 2014.

U. T. Turaga and R. Ramanathan, Catalytic naphtha reforming: Revisiting its importance in the modern refinery, Journal of Scientific and Industrial Research, vol.62, issue.10, pp.963-978, 2003.

G. Valavarasu and B. Sairam, Light naphtha isomerization process: A review, Petroleum Science and Technology, vol.31, issue.6, pp.580-595, 2013.

K. K. Vu, C. Ambrosio, Y. Hamadi, and L. Liberti, Surrogate-based methods for black-box optimization, International Transactions in Operational Research, vol.24, issue.3, pp.393-424, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02105302