A. Brambilla, C. E. Frouzakis, J. Mantzaras, A. Tomboulides, S. Kerkemeier et al., Detailed transient numerical simulation of h2/air hetero-/homogeneous combustion in platinum-coated channels with conjugate heat transfer, Combust. Flame, vol.161, issue.10, pp.2692-2707, 2014.

R. Sui, W. Liang, J. Mantzaras, and C. K. Law, Coupled reaction mechanism reduction for the hetero-/homogeneous combustion of syngas over platinum, Combust.Flame, vol.214, pp.37-46, 2020.

M. Reinke, J. Mantzaras, R. Bombach, S. Schenker, and A. Inauen, Gas phase chemistry in catalytic combustion of methane/air mixtures over platinum at pressures of 1 to 16 bar, Combust. Flame, vol.141, issue.4, pp.448-468, 2005.

R. Carroni, V. Schmidt, and T. Griffin, Catalytic combustion for power generation, Catalysis Today, vol.75, issue.1, pp.287-295, 2002.

P. Granger and V. I. Parvulescu, Catalytic nox abatement systems for mobile sources: from three-way to lean burn after-treatment technologies, Chemical Reviews, vol.111, issue.5, pp.3155-3207, 2011.

A. Russell and W. S. Epling, Diesel oxidation catalysts, Catalysis Reviews, vol.53, issue.4, pp.337-423, 2011.

N. S. Kaisare and D. G. Vlachos, A review on microcombustion: Fundamentals, devices and applications, Prog. Energy and Combust. Sci, vol.38, issue.3, pp.321-359, 2012.

M. F. Zwinkels, S. G. Järs, P. G. Menon, and T. A. Griffin, Catalytic materials for high-temperature combustion, Catalysis Reviews-Sci. and Eng, vol.35, issue.3, pp.319-358, 1993.

H. Santos and M. Costa, Modelling transport phenomena and chemical reactions in automotive three-way catalytic converters, Chemical Eng. J, vol.148, issue.1, pp.173-183, 2009.

M. Kumar, M. Bhandwal, M. Sharma, A. Verma, U. Srivastava et al., Effect of creating turbulence on the performance of catalytic converter, Int. J. Performability Eng, vol.12, issue.2, pp.115-120, 2016.

C. Appel, J. Mantzaras, R. Schaeren, R. Bombach, and A. Inauen, Turbulent catalytically stabilized combustion of hydrogen/air mixtures in entry channel flows, Combust. Flame, vol.140, issue.1, pp.70-92, 2005.

B. O. Arani, C. E. Frouzakis, J. Mantzaras, F. Lucci, and K. Boulouchos, Direct numerical simulation of turbulent channel-flow catalytic combustion: Effects of reynolds number and catalytic reactivity, Combust. Flame, vol.187, pp.52-66, 2018.

B. O. Arani, C. E. Frouzakis, J. Mantzaras, and K. Boulouchos, Direct numerical simulations of turbulent catalytic and gas-phase combustion of h2/air over pt at practically-relevant reynolds numbers, Proc. Combust. Inst, vol.37, issue.4, pp.5489-5497, 2019.

H. A. Ibrahim, W. H. Ahmed, S. Abdou, and V. Blagojevic, Experimental and numerical investigations of flow through catalytic converters, Int. J. Heat Mass Transfer, vol.127, pp.546-560, 2018.

S. L. Andersson and N. H. Schoeoen, Methods to increase the efficiency of a metallic monolithic catalyst, Indust. & Eng. Chem. Research, vol.32, issue.6, pp.1081-1086, 1993.

A. M. Holmgren, Enhanced mass transfer in monolith catalysts with bumps on the channel walls, Indust. & Eng. Chem. Research, vol.38, issue.5, pp.2091-2097, 1999.

L. L. Raja, R. J. Kee, and L. R. Petzold, Simulation of the transient, compressible, gas-dynamic behavior of catalytic-combustion ignition in stagnation flows, Symp. (Int.) on Combust, vol.27, issue.2, pp.2249-2257, 1998.

K. Ramanathan, V. Balakotaiah, and D. H. West, Geometry effects on ignition in catalytic monoliths, AIChE journal, vol.50, issue.7, pp.1493-1509, 2004.

J. Mantzaras, Progress in non-intrusive laser-based measurements of gas-phase thermoscalars and supporting modeling near catalytic interfaces, Prog. Energy Combust. Sci, vol.70, pp.169-211, 2019.

S. B. Rasmussen, M. A. Bañares, P. Bazin, J. Due-hansen, P. Ávila et al., Monitoring catalysts at work in their final form: spectroscopic investigations on a monolithic catalyst, Phys. Chem. Chem. Phys, vol.14, issue.7, pp.2171-2177, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01840343

Y. Li, G. Chen, F. Wu, T. Cheng, and Y. Chao, Effects of catalyst segmentation with cavities on combustion enhancement of blended fuels in a micro channel, Combust. Flame, vol.159, issue.4, pp.1644-1651, 2012.

Y. Li, G. Chen, H. Hsu, and Y. Chao, Enhancement of methane combustion in microchannels: effects of catalyst segmentation and cavities, Chem. Eng. J, vol.160, issue.2, pp.715-722, 2010.

A. D. Benedetto, G. Landi, V. D. Sarli, P. Barbato, R. Pirone et al., Methane catalytic combustion under pressure, Catalysis Today, vol.197, issue.1, pp.206-213, 2012.

J. Ran, L. Li, X. Du, R. Wang, W. Pan et al., Numerical investigations on characteristics of methane catalytic combustion in micro-channels with a concave or convex wall cavity, Energy Conversion Manag, vol.97, pp.188-195, 2015.

K. W. Aniolek, A CFD study of diesel substrate channels with differing wall geometries, SAE Technical Paper, pp.2004-2005, 2004.

A. M. Chabane, K. Truffin, A. Nicolle, F. Nicoud, O. Cabrit et al., Direct numerical simulation of combustion near a carbonaceous surface in a quiescent flow, Int. J. Heat Mass Transfer, vol.84, pp.130-148, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01149022

U. Dogwiler, J. Mantzaras, P. Benz, B. Kaeppeli, R. Bombach et al., Homogeneous ignition of methane-air mixtures over platinum: Comparison of measurements and detailed numerical predictions, Int.) on Combust, vol.27, pp.2275-2282, 1998.

T. Schoenfeld, The avbp handbook, 2008.

T. Poinsot and D. Veynante, Theoretical and numerical combustion, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00270731

J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular theory of gases and liquids, vol.26, 1954.

O. Deutschmann, Interactions between transport and chemistry in catalytic reactors, Habilitation thesis, 2001.

O. Cabrit, Wall modeling of the flow inside solid rocket motor nozzles, 2009.

O. Cabrit and F. Nicoud, Direct numerical simulation of a reacting turbulent channel flow with thermochemical ablation, J. Turbulence, vol.11, issue.44, pp.1-33, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00803379

O. Deutschmann, R. Schmidt, F. Behrendt, and J. Warnat, Numerical modeling of catalytic ignition, Int.) Combust, vol.26, pp.1747-1754, 1996.

W. K. Metcalfe, S. M. Burke, S. S. Ahmed, and H. J. Curran, A hierarchical and comparative kinetic modeling study of c1-c2 hydrocarbon and oxygenated fuels, Int. J. Chem. Kinetics, vol.45, issue.10, pp.638-675, 2013.

P. Pepiot-desjardins and H. Pitsch, An efficient error-propagation-based reduction method for large chemical kinetic mechanisms, Combust. Flame, vol.154, issue.1, pp.67-81, 2008.

P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, Vode: A variable-coefficient ode solver, SIAM J. Sci. Stat. Comput, vol.10, issue.5, pp.1038-1051, 1989.

J. Mantzaras, New directions in advanced modeling and in situ measurements near reacting surfaces, vol.90, pp.681-707, 2013.

X. Zheng, M. Schultze, J. Mantzaras, and R. Bombach, Effects of hydrogen addition on the catalytic oxidation of carbon monoxide over platinum at power generation relevant temperatures, Proc. Combust. Inst, vol.34, issue.2, pp.3343-3350, 2013.

X. Zheng, J. Mantzaras, and R. Bombach, Hetero-/homogeneous combustion of ethane/air mixtures over platinum at pressures up to 14bar, Proc. Combust. Inst, vol.34, issue.2, pp.2279-2287, 2013.

A. Brambilla, M. Schultze, C. E. Frouzakis, J. Mantzaras, R. Bombach et al., An experimental and numerical investigation of premixed syngas combustion dynamics in mesoscale channels with controlled wall temperature profiles, Proc. Combust. Inst, vol.35, issue.3, pp.3429-3437, 2015.

F. N. Selle and T. Poinsot, Actual impedance of nonreflecting boundary conditions: Implications for computation of resonators, AIAA J, vol.42, issue.5, pp.958-964, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00910165

D. H. Rudy and J. C. Strikwerda, A nonreflecting outflow boundary condition for subsonic navier-stokes calculations, J. Comput. Phys, vol.36, issue.1, pp.55-70, 1980.

F. Tagliante, T. Poinsot, L. M. Pickett, P. Pepiot, L. Malbec et al., A conceptual model of the flame stabilization mechanisms for a lifted diesel-type flame based on direct numerical simulation and experiments, Combust. Flame, vol.201, pp.65-77, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01998335

M. E. Coltrin, H. Moffat, R. Kee, and F. Rupley, Creslaf (version 4. 0): A fortran program for modeling laminar, chemically reacting, boundary-layer flow in cylindrical or planar channels, 1993.

R. Kee, F. Rupley, J. Miller, M. Coltrin, J. Grcar et al., , 2004.

R. S. Barlow, A. N. Karpetis, J. H. Frank, and J. Chen, Scalar profiles and no formation in laminar opposed-flow partially premixed methane/air flames, Combust. Flame, vol.127, issue.3, pp.2102-2118, 2001.

S. Karagiannidis and J. Mantzaras, Numerical investigation on the start-up of methane-fueled catalytic microreactors, Combustion and Flame, vol.157, issue.7, pp.1400-1413, 2010.

A. Ern and V. Giovangigli, Eglib: A general-purpose fortran library for multicomponent transport property evaluation, Manual of EGlib version, vol.3, p.12, 2004.

G. Landi, A. D. Benedetto, P. S. Barbato, G. Russo, and V. D. Sarli, Transient behavior of structured lamno3 catalyst during methane combustion at high pressure, Chem. Eng. Sci, vol.116, pp.350-358, 2014.

G. A. Viswanathan, M. Sheintuch, and D. Luss, Transversal hot zones formation in catalytic packed-bed reactors, Industrial & Eng. Chem. Research, vol.47, issue.20, pp.7509-7523, 2008.

B. Veyssière, M. Arrigoni, and S. Kerampran, Influence of mixture composition on the oscillatory behaviour of flames propagating from the closed end toward the open end of smooth horizontal tubes, Proc.), vol.12, pp.265-271, 2002.

C. Tsai, The asymmetric behavior of steady laminar flame propagation in ducts, Combust. Sci. Technol, vol.180, issue.3, pp.533-545, 2008.

D. Fernández-galisteo, C. Jiménez, M. Sánchez-sanz, and V. N. Kurdyumov, The differential diffusion effect of the intermediate species on the stability of premixed flames propagating in microchannels, Combust. Theory Model, vol.18, issue.4-5, pp.582-605, 2014.

V. N. Kurdyumov, Lewis number effect on the propagation of premixed flames in narrow adiabatic channels: Symmetric and non-symmetric flames and their linear stability analysis, Combust. Flame, vol.158, issue.7, pp.1307-1317, 2011.

V. N. Kurdyumov and C. Jiménez, Propagation of symmetric and non-symmetric premixed flames in narrow channels: Influence of conductive heat-losses, Combustion and Flame, vol.161, issue.4, pp.927-936, 2014.

G. Pizza, J. Mantzaras, and C. E. Frouzakis, Flame dynamics in catalytic and non-catalytic mesoscale microreactors, Catalysis Today, vol.155, issue.1, pp.123-130, 2010.

J. Wan, A. Fan, Y. Liu, H. Yao, W. Liu et al., Experimental investigation and numerical analysis on flame stabilization of ch 4/air mixture in a mesoscale channel with wall cavities, Combust. Flame, vol.162, issue.4, pp.1035-1045, 2015.

. .. , 22 5 Summary of the meshing strategy, t interp and t AI respectively stand for the interpolation time and the physical time at which chemical reactions are activated, List of Figures 1 Sketch of the surface kinetics numerical resolution

, 2D OH concentration maps for case (a)

, 2D OH concentration maps for case (b)

). .. 2d-oh-;-c, 25 13 Temporal evolution of the normalized reaction front position X f taken at y = 0.5h c and 1.5h c : Channel with inert walls versus catalytic channel

, Pt-coatings considered for the channel with obstacles (top) and cavities (bottom): the green segments highlight the edges covered with Pt

, Spatial resolution of H species within the reaction zone along the channel plane of symmetry (OS case).The heat release profile is also plotted

C. .. , 29 21 Longitudinal profiles along the channel center line, (a) gas velocity, temperature and equivalence ratio for cases OF (solid lines) and OS (red dashed lines); (b) gaseous heat release rate and species mass fractions for case OF, Comparison of the OH concentration maps: Effect of obstacles, cavities and coating type on the anchoring position

, Spatial field and near-wall longitudinal profiles with obstacles, (a) gaseous heat release rate (log scale) and velocity vectors (up to 1mm above the catalytic wall) for cases OS; (b) longitudinal profiles of temperature and species 1mm above the catalytic wall for cases OF (solid lines) and OS, p.30

. .. , Left : gas-phase heat release rate (log scale); right: Y OH channel profile along the plane of symmetry. The grey OH lines stand for the past whereas the thick black lines refer to the present profiles, Methane conversion for both types of Pt-coating : obstacles vs. cavities

. Tables,