J. Ancheyta, S. Sánchez, and M. A. Rodríguez, Kinetic modeling of hydrocracking of heavy oil fractions: A review, Catalysis Today, pp.76-92, 2005.

A. Argyriou, T. Evgeniou, and M. Pontil, Multi-task feature learning, Advances in neural information processing systems, pp.41-48, 2007.

A. Argyriou and M. Pontil, A spectral regularization framework for multi-task structure learning, Advances in neural information processing systems, pp.25-32, 2008.

P. J. Becker and B. Celse, A continuous lumping model for hydrocracking on a zeolite catalysts: model development and parameter identification, Fuel, pp.73-82, 2016.

P. J. Becker and N. Serrand, A single events microkinetic model for hydrocracking of vacuum gas oil, Computers Chemical Engineering, pp.70-79, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01519925

C. Bouveyron and J. Jacques, Adaptive linear models for regression: improving prediction when population has changed, Pattern Recognition Letters, pp.2237-2247, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00305987

M. M. Breunig, LOF: identifying density-based local outliers, Proceedings of the 2000 ACM SIGMOD international conference on Management of data, pp.93-104, 2000.

B. Cao, Adaptive Transfer Learning, Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, pp.407-412, 2010.

N. Y. Cao, Accelerating Kinetic Parameter Identification by Extracting Information from Transient Data: A Hydroprocessing Study Case, p.361, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02571855

B. Celse, J. J. Costa, and V. Costa, Experimental Design in Nonlinear Case Applied to Hydrocracking Model: How Many Points Do We Need and Which Ones?, In: International Journal of Chemical Kinetics, pp.660-670, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01408735

N. Cressie, Spatial prediction and ordinary kriging, Mathematical geology, pp.239-252, 1988.

W. Dai, Boosting for Transfer Learning, Proceedings of the 24th international conference on Machine learning, pp.193-200, 2007.

P. F. De-aguiar, D-optimal designs, Chemometrics and intelligent laboratory systems, vol.30, pp.199-210, 1995.

T. Evgeniou and M. Pontil, Regularized multi-task learning, Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pp.109-117, 2004.

C. Helbert, D. Dupuy, and L. Carraro, Assessment of uncertainty in computer experiments from Universal to Bayesian Kriging, Applied Stochastic Models in Business and Industry, pp.99-113, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00409728

R. W. Kennard and L. A. Stone, Computer aided design of experiments, pp.137-148, 1969.

T. Launay, A. Philippe, and S. Lamarche, Construction of an informative hierarchical prior for a small sample with the help of historical data and application to electricity load forecasting, Test, pp.361-385, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00625117

A. Nikolov, M. Singh, and U. T. Tantipongpipat, Proportional volume sampling and approximation algorithms for A-optimal design, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, pp.1369-1386, 2019.

S. Pan and Q. Yang, IEEE Transactions on Knowledge and Data Engineering, pp.1345-1359, 2010.

D. Pardoe and P. Stone, Boosting for Regression Transfer, Proceedings of the 27th international conference on Machine learning, pp.863-870, 2010.

F. Pedregosa, Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

R. Raina, A. Y. Ng, and D. Koller, Constructing informative priors using transfer learning, Proceedings of the 23rd international conference on Machine learning, pp.713-720, 2006.

O. Roustant, D. Ginsbourger, and Y. Deville, Dicekriging, Diceoptim: Two R packages for the analysis of computer experiments by kriging-based metamodelling and optimization, Journal of Statistical Software, p.54, 2012.
URL : https://hal.archives-ouvertes.fr/emse-00741762

S. M. Salaken, Seeded transfer learning for regression problems with deep learning, Expert Systems with Applications, pp.565-577, 2019.

N. Segev, Learn on source, refine on target: a model transfer learning framework with random forests, IEEE Transactions on pattern analysis and machine intelligence, pp.1811-1824, 2016.

M. L. Stein, Interpolation of spatial data: some theory for kriging, 2012.

L. Tierney, Markov chains for exploring posterior distributions, the Annals of Statistics, pp.1701-1728, 1994.

F. Tsung, Statistical transfer learning: A review and some extensions to statistical process control, Quality Engineering, pp.115-128, 2018.

A. Zellner, On assessing prior distributions and Bayesian regression analysis with gprior distributions, pp.233-243, 1986.