J. Nölling, G. Breton, M. V. Omelchenko, K. S. Makarova, Q. Zeng et al., , p.577

J. Dubois, D. Qiu, J. Hitti, Y. I. Wolf, R. L. Tatusov et al., , p.578

P. Soucaille, M. J. Daly, G. N. Bennett, E. V. Koonin, and D. R. Smith, Genome 579 Sequence and Comparative Analysis of the Solvent-Producing Bacterium 580 Clostridium acetobutylicum, J. Bacteriol, vol.183, pp.4823-4838, 2001.

M. Yoo, G. Bestel-corre, C. Croux, A. Riviere, I. Meynial-salles et al., , p.583

E. Papoutsakis and S. Y. Lee, A Quantitative System-Scale Characterization of 584 the Metabolism of Clostridium acetobutylicum, 2015.

C. M. Cooksley, Y. Zhang, H. Wang, S. Redl, K. Winzer et al., Targeted 587 mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol 588 fermentation pathway, Metabolic Engineering, vol.14, pp.630-641, 2012.

Z. Dai, H. Dong, Y. Zhang, and Y. Li, Elucidating the contributions of multiple 591 aldehyde/alcohol dehydrogenases to butanol and ethanol production in, 2016.

, Clostridium acetobutylicum. Sci Rep, vol.6, p.651

J. T. Heap, O. J. Pennington, S. T. Cartman, G. P. Carter, and N. P. Minton, The 594, Biology Toolkit for Clostridium. Front. Microbiol, vol.9, p.4382, 2007.

Y. Wang, Z. Zhang, S. Seo, K. Choi, T. Lu et al., , 2015.

, Markerless chromosomal gene deletion in Clostridium beijerinckii using

, CRISPR/Cas9 system, Journal of Biotechnology, vol.200

T. Xu, Y. Li, Z. Shi, C. L. Hemme, Y. Li et al., , p.607

A. M. Spormann, Efficient Genome Editing in Clostridium cellulolyticum via 608 CRISPR-Cas9 Nickase, Appl. Environ. Microbiol, vol.81, pp.4423-4431, 2015.

S. Nagaraju, N. K. Davies, D. Walker, M. Köpke, and S. D. Simpson, Genome 611 editing of Clostridium autoethanogenum using CRISPR/Cas9, Biotechnol, vol.612, p.187, 2016.

M. E. Pyne, M. R. Bruder, M. Moo-young, D. A. Chung, and C. P. Chou, Harnessing 614 heterologous and endogenous CRISPR-Cas machineries for efficient markerless 615 genome editing in Clostridium, Sci Rep, vol.6, p.234, 2016.

Y. Wang, Z. Zhang, S. Seo, P. Lynn, T. Lu et al., , 2016.

, Bacterial Genome Editing with CRISPR-Cas9. Deletion, Integration, Single

, CRISPR/Cas9-Based Efficient Genome Editing in Clostridium ljungdahlii an

, Autotrophic Gas-Fermenting Bacterium, ACS Synth. Biol, vol.5, pp.1355-1361

Q. Li, J. Chen, N. P. Minton, Y. Zhang, Z. Wen et al.,

J. Gu, Y. Jiang, W. Jiang, Y. Yang, and S. , CRISPR-based genome editing and 630 expression control systems in Clostridium acetobutylicum and Clostridium 631 beijerinckii, Biotechnology Journal, vol.11, pp.961-972, 2016.

F. Wasels, J. Jean-marie, F. Collas, A. M. López-contreras, and L. Ferreira, , 2017.

, A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium 634 acetobutylicum, Journal of Microbiological Methods, vol.140, pp.5-11

H. Dong, W. Tao, Y. Zhang, and Y. Li, Development of an anhydrotetracycline-637 inducible gene expression system for solvent-producing Clostridium 638 acetobutylicum. A useful tool for strain engineering, Metabolic Engineering, vol.639, pp.59-67, 2012.

B. J. Rauch, M. R. Silvis, J. F. Hultquist, C. S. Waters, M. J. Mcgregor et al., , p.641

J. Bondy-denomy, Inhibition of CRISPR-Cas9 with Bacteriophage Proteins, 2017.

, Cell, vol.168, pp.150-158

A. H. Hartman, H. Liu, and S. B. Melville, Construction and Characterization of a and Evolutionary Impact of Anti-CRISPRs, Annu. Rev. Virol, vol.4, pp.37-59, 2011.

S. Y. Stanley and K. L. Maxwell, Phage-Encoded Anti-CRISPR Defenses, 2018.

. Rev and . Genet, , vol.52, pp.445-464

N. D. Marino, R. Pinilla-redondo, B. Csörg?, and J. Bondy-denomy, Anti-CRISPR 653 protein applications. Natural brakes for CRISPR-Cas technologies, Nat Methods, vol.654, 2020.

M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna et al., , 2012.

, Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial

, Immunity. Science, vol.337, pp.816-821

M. A. Al-hinai, A. G. Fast, and E. T. Papoutsakis, Novel System for Efficient Isolation 659 of Clostridium Double-Crossover Allelic Exchange Mutants Enabling Markerless 660, 2012.

, Chromosomal Gene Deletions and DNA Integration. Appl. Environ. Microbiol, vol.661, pp.8112-8121

J. Shin, F. Jiang, J. Liu, N. L. Bray, B. J. Rauch et al.,

J. Denomy, J. E. Corn, and J. A. Doudna, Disabling Cas9 by an anti-CRISPR DNA 664 mimic, Sci. Adv, vol.3, issue.1701620, 2017.

D. Mayo-muñoz, F. He, J. Jørgensen, P. Madsen, Y. Bhoobalan-chitty et al., Anti-CRISPR-Based and CRISPR-Based Genome Editing of Sulfolobus, vol.666, 2018.

C. Cho, S. Hong, H. G. Moon, Y. Jang, D. Kim et al., , 2019.

, Engineering Clostridial Aldehyde/Alcohol Dehydrogenase for Selective Butanol

, Production. mBio, vol.10, p.653

J. G. Doench, E. Hartenian, D. B. Graham, Z. Tothova, M. Hegde et al.,

M. , E. Bl, R. J. Xavier, and D. E. Root, Rational design of highly active sgRNAs 676 for CRISPR-Cas9-mediated gene inactivation, Nat Biotechnol, vol.32, pp.1262-1267, 2014.

L. D. Mermelstein and E. T. Papoutsakis, In vivo methylation in Escherichia coli by 679 the Bacillus subtilis phage phi 3T I methyltransferase to protect plasmids from 680 restriction upon transformation of Clostridium acetobutylicum ATCC 824, 1993.

, Environ Microbiol, vol.59, pp.1077-1081

. Gapes, D. Nimcevic, and A. Friedl, Long-Term Continuous Cultivation of, 1996.

, Clostridium beijerinckii in a Two-Stage Chemostat with On-Line Solvent

, Removal. Appl Environ Microbiol, vol.62, pp.3210-3219