F. Campbell and G. Allen, Within group variable selection through the Exclusive Lasso, Electronic Journal of Statistics, vol.57, pp.4220-4257, 2017.

G. Ciuperca, Adaptive Fused LASSO in Grouped Quantile Regression, Journal of Statistical Theory and Practice, vol.11, pp.107-125, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02072129

G. Ciuperca, Adaptive group LASSO selection in quantile models, Statistical Papers, vol.60, pp.173-197, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02072135

G. Ciuperca and M. Maciak, Change-point detection in a linear model by adaptive fused quantile method, Scandinavian Journal of Statistics, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02077538

S. De-vito, M. Piga, L. Martinotto, and G. Francia, CO, NO2 and NOx urban pollution monitoring with on-field calibrated electronic nose by automatic bayesian regularization, Sensors and Actuators B: Chemical, vol.143, pp.182-191, 2009.

X. Guo, H. Zhang, Y. Wang, and J. L. Wu, Model selection and estimation in high dimensional regression models with group SCAD, Statistics & Probability Letters, vol.103, pp.86-92, 2015.

Q. He, L. Kong, Y. Wang, S. Wang, T. A. Chan et al., Regularized quantile regression under heterogeneous sparsity with application to quantitative genetic traits, Computational Statistics and Data Analysis, vol.95, pp.222-239, 2016.

W. Jang, J. Lim, N. A. Lazar, J. M. Loh, Y. et al., Some properties of generalized fused lasso and its applications to high dimensional data, Journal of the Korean Statistical Society, vol.44, pp.352-365, 2015.

L. Jiang, H. J. Wang, and H. D. Bondell, Interquantile shrinkage in regression models, Journal of Computational and Graphical Statistics, vol.22, pp.970-986, 2013.

L. Jiang, H. D. Bondell, and H. Wang, Interquantile shrinkage and variable selection in quantile regression, Computational Statistics and Data Analysis, vol.69, pp.208-219, 2014.

F. Leonardi and P. Buhlmann, Computationally efficient change point detection for highdimensional regression, 2016.

X. Li, L. Mo, X. Yuan, and J. Zhang, Linearized alternating direction method of multipliers for sparse group and fused LASSO models, Computational Statistics and Data Analysis, vol.79, issue.1, pp.203-221, 2014.

Y. Liu, J. Tao, H. Zhang, X. Xiu, and L. Kong, Fused LASSO penalized least absolute deviation estimator for high dimensional linear regression, Numerical Algebra, Control and Optimization, vol.8, pp.97-117, 2018.

J. Qian and L. Su, Shrinkage estimation of regression models with multiple structural changes, Econometric Theory, vol.32, pp.376-1433, 2016.

M. Wang and G. L. Tian, Variable selection in quantile regression, Statistical Papers, vol.60, pp.1469-1486, 2019.

F. Wei and J. Huang, Consistent group selection in high-dimensional linear model, Bernoulli, vol.16, pp.1369-1384, 2010.

Y. Wu and Y. Liu, Variable selection in quantile regression, Statistica Sinica, vol.19, pp.801-817, 2009.

B. Zhang and J. Geng, Multiple change-points estimation in linear regression models via sparse group lasso, IEEE Transactions on Signal Processing, vol.63, pp.2209-2224, 2015.

C. Zhang and Y. Xiang, On the oracle property of adaptive group lasso in high-dimensional linear models, Statistical Papers, vol.57, pp.249-265, 2016.

J. Zhou, J. Liu, V. A. Narayan, Y. , and J. , Modeling Disease Progression via Fused Sparse Group Lasso, pp.1095-1103, 2012.