R. Albrecht, D. Sebag, and E. Verrecchia, Organic matter decomposition: bridging 695 the gap between Rock-Eval pyrolysis and chemical characterization, 2015.

, NMR). Biogeochemistry, vol.122, pp.101-111

D. Arrouays, Changement climatique et évolution du stockage de carbone dans les 699 sols-Enjeux et incertitudes, Ol. Corps Gras Lipides, vol.15, pp.314-316, 2008.

,

R. Awale, M. A. Emeson, and S. Machado, Soil Organic Carbon Pools as Early 702 Indicators for Soil Organic Matter Stock Changes under Different Tillage Practices 703 in Inland Pacific Northwest, Front. Ecol. Evol, vol.5, 2017.

,

A. N. Badiane, M. Khouma, and M. Sène, Gestion et transformation de la matière 706 organique, p.707, 2000.

, Edition ISRA. Institut Sénégalais de Recherches Agricoles

J. Balesdent, D. Derrien, S. Fontaine, K. Klumpp, P. Loiseau et al., , p.709

M. Péan and E. Personeni, Contribution de la rhizodéposition aux matières 710 organiques du sol, quelques implications pour la modélisation de la dynamique du 711 carbone, Etude Gest. Sols, vol.18, pp.201-216, 2013.

P. Barré, A. F. Plante, L. Cécillon, S. Lutfalla, F. Baudin et al., , p.713

B. T. Eglin, T. Fernandez, J. M. Houot, S. Kätterer, T. Le-guillou et al., The energetic and chemical signatures of 715 persistent soil organic matter, Biogeochemistry, vol.130, pp.1-12, 2016.

,

A. Bationo and A. Buerkert, Soil organic carbon management for sustainable land use 718 in Sudano-Sahelian West Africa, p.719, 2001.

, Managing Organic Matter in Tropical Soils: Scope and Limitations, vol.720

D. Netherlands, , pp.131-142

A. Bationo, J. Kihara, B. Vanlauwe, B. Waswa, and J. Kimetu, Soil organic carbon 723 dynamics, functions and management in West African agro-ecosystems, 2007.

. Syst, Making Carbon Sequestration Work for Africa's Rural Poor, vol.94, pp.13-25

,

F. Behar, V. Beaumont, and H. D. Penteado, Rock-Eval 6 technology: performances 727 and developments, Oil Gas Sci. Technol, vol.56, pp.111-134, 2001.

,

E. Blanchart, A. Alain, M. Bernoux, A. Brauman, and J. Chotte, Organic 730 matter and biofunctioning in tropical sandy soils and implications for its 731 management, pp.224-241, 2007.

G. Bongiorno, E. K. Bünemann, C. U. Oguejiofor, J. Meier, G. Gort et al., , p.733

P. Brussaard, L. De-goede, and R. , Sensitivity of labile carbon fractions to 734 tillage and organic matter management and their potential as comprehensive soil 735 quality indicators across pedoclimatic conditions in Europe, Ecol. Indic, vol.99, pp.38-50, 2019.

,

J. Carrie, H. Sanei, and G. Stern, Standardisation of Rock-Eval pyrolysis for the 738 analysis of recent sediments and soils, Org. Geochem, vol.46, pp.38-53, 2012.

,

A. Chabbi, J. Lehmann, P. Ciais, H. W. Loescher, M. F. Cotrufo et al., , p.741

M. Schipper, L. Six, J. Smith, and P. , Aligning agriculture and climate policy, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01536008

, Nat. Clim. Change, vol.7, p.307

C. Chenu, K. Klumpp, A. Bispo, D. Angers, and C. Colnenne, Stocker du 744 carbone dans les sols agricoles : évaluation de leviers d'action pour la France, 2014.

. Innov and . Agron, , pp.23-37

M. Corbeels, R. Cardinael, K. Naudin, H. Guibert, and E. Torquebiau, The 4 per 747 1000 goal and soil carbon storage under agroforestry and conservation agriculture 748 systems in sub-Saharan Africa, Soil Tillage Res, 2018.

,

S. Daouk, M. Hassouna, A. Gueye-girardet, S. Niang, and H. Pfeifer, UV/Vis 751 Characterization and Fate of Organic Amendment Fractions in a Dune Soil, 2015.

S. Dakar, Pedosphere, vol.25, pp.372-385

A. De-rouw, Comment assurer la production de mil : jachère ou parcage ? 755 Presented at the Atelier Jachère et systèmes agraires, Floret & Pontanier (éd, pp.139-152, 1999.

S. Derenne and K. Quenea, Analytical pyrolysis as a tool to probe soil organic 758 matter, J. Anal. Appl. Pyrolysis, vol.111, pp.108-120, 2015.

,

M. Diacono and F. Montemurro, Long-term effects of organic amendments on soil 761 fertility. A review, Agron. Sustain. Dev, vol.30, pp.401-422, 2010.

,

J. Disnar, B. Guillet, D. Kéravis, C. Di-giovanni, and D. Sebag, Soil organic 764 matter (SOM) characterization by Rock-Eval pyrolysis: scope and limitations, 2003.

. Geochem, , vol.34, pp.239-244

A. Don, T. Scholten, and E. Schulze, Conversion of cropland into grassland: 767 Implications for soil organic-carbon stocks in two soils with different texture, 2009.

, Plant Nutr. Soil Sci, vol.172, pp.53-62

M. Eden, H. H. Gerke, and S. Houot, Organic waste recycling in agriculture and 770 related effects on soil water retention and plant available water: a review, 2017.

. Sustain and . Dev, , vol.37

J. Espitalie, G. Deroo, and F. Marquis, La pyrolyse Rock-Eval et ses applications, 1986.

, Troisième partie. Rev. Inst. Fr. Pétrole, vol.41, pp.73-89

,

. Fao, Gestion de la fertilité des sols pour la sécurité alimentaire en Afrique 776 subsaharienne, 2003.

C. Feller, Une méthode de fractionnement granulométrique de la matière 778 organique des sols, Cah. ORSTOM Sér. Pédologie, vol.17, pp.339-346, 1979.

C. Feller, M. Brossard, Y. Chen, E. R. Landa, and J. Trichet, Selected pioneering 780 works on humus in soils and sediments during the 20th century: A retrospective 781 look from the International Humic Substances Society view, Studies from the History of Soil Science and Geology, vol.35, pp.903-912, 2010.

,

C. Feller, E. Fritsch, R. Poss, and C. Valentin, Effet de la texture sur le stockage et la 785 dynamique des matières organiques dans quelques sols ferrugineux et 786 ferrallitiques (Afrique de l'Ouest, en particulier), Cah ORSTOM Sér Pédol, vol.26, p.25, 1991.

J. M. Fernández, A. F. Plante, J. Leifeld, and C. Rasmussen, Methodological 789 considerations for using thermal analysis in the characterization of soil organic 790 matter, J. Therm. Anal. Calorim, vol.104, pp.389-398, 2011.

K. Fujisaki, L. Chapuis-lardy, A. Albrecht, T. Razafimbelo, J. Chotte et al., Data synthesis of carbon distribution in particle size fractions of tropical 794 soils: Implications for soil carbon storage potential in croplands, Geoderma, vol.793, pp.41-51, 2018.

K. Fujisaki, T. Chevallier, L. Chapuis-lardy, A. Albrecht, T. Razafimbelo et al., , p.797

Y. B. Ndour and J. Chotte, Soil carbon stock changes in tropical croplands 798 are mainly driven by carbon inputs: A synthesis, Agric. Ecosyst. Environ, vol.259, pp.147-158, 2018.

F. Ganry and A. Badiane, La valorisation agricole des fumiers et des composts en 801, 1998.

, Afrique soudano-sahélienne. Diagnostic et perspectives. Agric. Dév, pp.73-80

E. G. Gregorich, A. W. Gillespie, M. H. Beare, D. Curtin, H. Sanei et al., , 2015.

, Evaluating biodegradability of soil organic matter by its thermal stability and 805 chemical composition, Soil Biol. Biochem, vol.91, pp.182-191

,

M. Grillot, Modélisation multi-agents et pluri-niveaux de la réorganisation du cycle 808 de l'azote dans des systèmes agro-sylvo, 2018.

H. Guérin and E. Roose, Ingestion, restitution et transfert d'éléments fertilisants aux 811 agrosystèmes par les ruminants domestiques en régions semi-arides d'Afrique 812 occidentale : points de vue d'un zootechnicien et d'un agro-pédologue, Marseille 813 IRD Éditions, pp.161-178, 2017.

F. Harris, Management of manure in farming systems in semi-arid West africa, 2002.

. Exp and . Agric, , vol.38

R. J. Haynes and R. Naidu, Influence of lime, fertilizer and manure applications on soil 817 organic matter content and soil physical conditions: a review, Nutr. Cycl, 1998.

, farms for food security and achieving the "4 per Thousand" target. Sci. Total 883 Environ, vol.51, pp.1024-1033

S. M. Ogle, F. J. Breidt, and K. Paustian, Agricultural management impacts on soil 885 organic carbon storage under moist and dry climatic conditions of temperate and 886 tropical regions 35, 2005.

E. E. Oldfield, M. A. Bradford, and S. A. Wood, Global meta-analysis of the relationship 888 between soil organic matter and crop yields, vol.5, pp.15-32, 2019.

,

K. T. Osman, Management of Soil Problems, p.891, 2018.

. Cham,

M. Pansu, Détermination de quelques paramètres caractéristiques de la cinétique 893, 1991.

, et de minéralisation des amendements organiques dans les sols

, Cah ORSTOM Sér Pédol, vol.26, pp.131-144

K. Paustian, J. Lehmann, S. Ogle, D. Reay, G. P. Robertson et al., Climate-896 smart soils, Nature, vol.532, pp.49-57, 2016.

A. F. Plante, J. M. Fernández, M. L. Haddix, J. M. Steinweg, and R. T. Conant, , 2011.

, Biological, chemical and thermal indices of soil organic matter stability in four 899 grassland soils, Soil Biol. Biochem, vol.43, pp.1051-1058

,

D. S. Powlson, C. M. Stirling, C. Thierfelder, R. P. White, and M. L. Jat, Does 902 conservation agriculture deliver climate change mitigation through soil carbon 903 sequestration in tropical agro-ecosystems?, Agric. Ecosyst. Environ, vol.220, pp.164-174, 2016.

,

J. J. Ramisch, Inequality, agro-pastoral exchanges, and soil fertility gradients in 906 southern Mali, Agric. Ecosyst. Environ, vol.105, pp.353-372, 2005.

,

R. Romanens, F. Pellacani, A. Mainga, R. Fynn, P. Vittoz et al., Soil 909 diversity and major soil processes in the Kalahari basin, 2019.

R. , , vol.19

J. Sanderman and A. S. Grandy, Ramped thermal analysis for isolating biologically 912 meaningful soil organic matter fractions with distinct residence times, vol.6, pp.913-131, 2020.

J. P. Scharlemann, E. V. Tanner, R. Hiederer, and V. Kapos, Global soil carbon: 915 understanding and managing the largest terrestrial carbon pool, Carbon Manag, vol.5, pp.81-91, 2014.

W. H. Schlesinger and R. Amundson, Managing for soil carbon sequestration: Let's 918 get realistic, Glob. Change Biol, 2018.

M. W. Schmidt, M. S. Torn, S. Abiven, T. Dittmar, G. Guggenberger et al., , p.920

M. Kleber, I. Kögel-knabner, J. Lehmann, D. A. Manning, and P. Nannipieri, , p.921

D. P. Rasse, S. Weiner, and S. E. Trumbore, Persistence of soil organic matter 922 as an ecosystem property, Nature, vol.478, pp.49-56, 2011.

,

A. Schomburg, D. Sebag, P. Turberg, E. P. Verrecchia, C. Guenat et al., , p.925

T. Schlaepfer, R. Le-bayon, and R. C. , Composition and superposition of alluvial 926 deposits drive macro-biological soil engineering and organic matter dynamics in 927 floodplains, Geoderma, vol.355, p.113899, 2019.

,

A. Schomburg, E. P. Verrecchia, C. Guenat, P. Brunner, D. Sebag et al., Rock-Eval pyrolysis discriminates soil macro-aggregates formed by plants 931 and earthworms, Soil Biol. Biochem, vol.930, pp.117-124, 2018.

,

, Monitoring organic matter dynamics in soil profiles by 'Rock-Eval pyrolysis': bulk 935 characterization and quantification of degradation, Eur. J. Soil Sci, vol.57, pp.344-355

,

D. Sebag, E. P. Verrecchia, L. Cécillon, T. Adatte, R. Albrecht et al., , p.938

G. Cailleau, Y. Copard, T. Decaens, J. Disnar, M. Hetényi et al., , p.939

L. Trombino, Dynamics of soil organic matter based on new Rock-Eval 940 indices, Geoderma, vol.284, pp.185-203, 2016.

,

V. ?imanský, M. Juriga, J. Jonczak, ?. Uzarowicz, and W. St?pie?, How relationships 943 between soil organic matter parameters and soil structure characteristics are 944 affected by the long-term fertilization of a sandy soil, Geoderma, vol.342, pp.75-84, 2019.

,

B. P. Singh, R. Setia, M. Wiesmeier, and A. Kunhikrishnan, Agricultural Management 947 Practices and Soil Organic Carbon Storage, in: Soil Carbon Storage, pp.948-207, 2018.

L. Soucémarianadin, L. Cécillon, C. Chenu, F. Baudin, M. Nicolas et al., , p.950

P. , Is Rock-Eval 6 thermal analysis a good indicator of soil organic carbon 951 lability? -A method-comparison study in forest soils, Soil Biol. Biochem, vol.117, pp.108-116, 2018.

J. Soussana, S. Lutfalla, F. Ehrhardt, T. Rosenstock, C. Lamanna et al., , p.954

M. Richards, E. Wollenberg, ). Lini, J. Chotte, E. Torquebiau et al., , p.955

P. Lal and R. , Matching policy and science: Rationale for the '4 per 1000 -soils 956 for food security and climate' initiative, Soil Tillage Res, 2017.

,

P. Tittonell, A. Muriuki, C. J. Klapwijk, K. D. Shepherd, R. Coe et al., , 2013.

, Soil Heterogeneity and Soil Fertility Gradients in Smallholder Farms of the East 960

, African Highlands. Soil Sci. Soc. Am. J, vol.77, p.525

,

A. Tounkara, C. Clermont-dauphin, F. Affholder, S. Ndiaye, D. Masse et al., Inorganic fertilizer use efficiency of millet crop increased with organic 964 fertilizer application in rainfed agriculture on smallholdings in central Senegal, vol.963

, Agric. Ecosyst. Environ, vol.294, p.106878

,

P. Tschakert, Carbon for Farmers: Assessing the Potential for Soil Carbon 968 Sequestration in the Old Peanut Basin of Senegal, Clim. Change, vol.67, pp.273-290, 2004.

,

M. Von-lützow, I. Kögel-knabner, K. Ekschmitt, H. Flessa, G. Guggenberger et al., SOM fractionation methods: Relevance to functional 972 pools and to stabilization mechanisms, Soil Biol. Biochem, vol.39, pp.2183-2207, 2007.

,

S. A. Wood, M. R. Smith, J. Fanzo, R. Remans, and R. S. Defries, Trade and the 975 equitability of global food nutrient distribution, Nat. Sustain, vol.1, pp.34-37, 2018.

,

S. A. Wood, N. Sokol, C. W. Bell, M. A. Bradford, S. Naeem et al., , p.978

C. A. , Opposing effects of different soil organic matter fractions on crop 979 yields, Ecol. Appl, vol.26, pp.2072-2085, 2016.

J. L. Yost and A. E. Hartemink, Soil organic carbon in sandy soils: A review, Advances in Agronomy, pp.217-310, 2019.

,

S. Zingore, P. Tittonell, M. Corbeels, M. T. Van-wijk, and K. E. Giller, Managing soil 984 fertility diversity to enhance resource use efficiencies in smallholder farming 985 systems: a case from Murewa District, Zimbabwe. Nutr. Cycl. Agroecosystems, vol.90, pp.986-87, 2011.

, Senegalese Arenosols (the present study), and compared to the model derived from 1017

. Sebag, Gabonese Ferralsols used as an external reference, 2016.

, Figure 5. S2 thermograms obtained by Rock-Eval pyrolysis of (a) the surface layer, and 1019 (b) the deep layer for the different situations: preserved (grey), no input (black), 1020 +millet residues (brown), +manure (deep pink), and +organic wastes

, Note that the vertical-axis scales are not the same for (a) and (b)

, R-indexes (a) and I-indexes (b) in the surface layers (0-10 cm) of Senegalese 1023, vol.6

. Sebag, Arenosols (this study) compared to the same indexes in the A or Ah horizons (depth ? 1024 15 cm) of Gabonese Ferralsols used as the external reference set, 2016.

. Sebag, Gabonese Ferralsols (serving as the external reference set, 2016.

, a) for all analysed soil 1029 depths in the two preserved situations; (b) for cultivated situations (collected during or 1030 outside of the crop cycle ) in house-fields that received no organic inputs, at soil depths 0-10 and 10-30 cm; (c) same as (b), but in out-fields; (d) in annual fallows; (e), with 1032 manure application in house-fields; (f) with manure application in out-fields; and (g, Figure 8. Correlations between SOC (g.kg -1 soil) and Delta-R

, Supplementary materials -Figure captions

, Supplementary Material S1. Correlation between SOC contents (g.kg -1 soil) measured by 1036

, Rock-Eval pyrolysis and by dry combustion with a CHN analyser

, Supplementary material S2. SOC (g.kg -1 soil) in the different situations, according to (a) 1038 the field location, (b) the use of the plot, and (c) the season

, Rock-Eval pyrolysis of the surface layers (0-10 cm) of Senegalese Arenosols (this 1041 study) compared to values in the A or Ah horizons (depth ? 15 cm) of Gabonese 1042

. Sebag, Ferralsols (serving as the external reference set, 2016.

, Rock-Eval pyrolysis of the surface layers (0-10 cm) of Senegalese Arenosols (this 1045 study) compared to values in the A or Ah horizons (depth ? 15 cm) of Gabonese 1046

. Sebag, Ferralsols (serving as the external reference set, 2016.

, Supplementary Material S5. A3 contributions (%) in the S2 thermograms obtained by 1048

, Rock-Eval pyrolysis of the surface layers (0-10 cm) of Senegalese Arenosols (this 1049 study) compared to values in the A or Ah horizons (depth ? 15 cm, p.1050

. Sebag, Ferralsols (serving as the external reference set, 2016.

, Rock-Eval pyrolysis of the surface layers (0-10 cm) of Senegalese Arenosols (this 1053 study) compared to values in the A or Ah horizons (depth ? 15 cm) of Gabonese