Y. Li and J. Yu, New Stories of Zeolite Structures: Their Descriptions, Determinations, Predictions, and Evaluations, Chem. Rev, vol.114, pp.7268-7316, 2014.

J. Li, A. Corma, and J. Yu, Synthesis of New Zeolite Structures, Chem. Soc. Rev, vol.44, pp.7112-7127, 2015.

C. Baerlocher and J. K. Mccusker, Database of Zeolite Structures

M. E. Davis, Ordered Porous Materials for Emerging Applications, Nature, vol.417, pp.813-821, 2002.

A. Corma, Inorganic Solid Acids and their Use in Acid-Catalyzed Hydrocarbon Reactions, Chem. Rev, vol.95, pp.559-614, 1995.

C. Marcilly, . Acido-basic, and . Catalysis, , 2005.

W. Vermeiren and J. P. Gilson, Impact of Zeolites on the Petroleum and Petrochemical Industry, Topics Catal, vol.52, pp.1131-1161, 2009.

E. T. Vogt and B. M. Weckhuysen, Fluid Catalytic Cracking: Recent Developments on the Grand Old Lady of Zeolite Catalysis, Chem. Soc. Rev, vol.44, pp.7342-7370, 2015.

U. Deka, I. Lezcano-gonzalez, B. M. Weckhuysen, and A. M. Beale, Local Environment and Nature of Cu Active Sites in Zeolite-Based Catalysts for the Selective Catalytic Reduction of NOx, ACS Catal, vol.3, pp.413-427, 2013.

E. Borfecchia, P. Beato, S. Svelle, U. Olsbye, C. Lamberti et al., Cu-CHA -A Model System for Applied Selective Redox Catalysis, Chem. Soc. Rev, vol.47, pp.8097-8133, 2018.

C. Paolucci, I. Khurana, A. A. Parekh, S. Li, A. J. Shih et al., Dynamic Multinuclear Sites Formed by Mobilized Copper Ions in NOx Selective Catalytic Reduction, vol.357, pp.898-903, 2017.

T. Ennaert, J. Van-aelst, J. Dijkmans, R. De-clercq, W. Schutyser et al., Potential and Challenges of Zeolite Chemistry in the Catalytic Conversion of Biomass, Chem. Soc. Rev, vol.45, pp.584-611, 2016.

J. Jae, G. A. Tompsett, A. J. Foster, K. D. Hammond, S. M. Auerbach et al., Investigation into the Shape Selectivity of Zeolite Catalysts for Biomass Conversion, J. Catal, vol.279, pp.257-268, 2011.

I. Delidovich and R. Palkovits, Catalytic Isomerization of Biomass-Derived Aldoses: A Review, ChemSusChem, vol.9, pp.547-561, 2016.

D. P. Serrano, J. A. Melero, G. Morales, J. Iglesias, and P. Pizarro, Progress in the Design of Zeolite Catalysts for Biomass Conversion into Biofuels and Bio-Based Chemicals, Catal. Rev, vol.60, pp.1-70, 2018.

J. Sauer, Molecular Models in ab Initio Studies of Solids and Surfaces: From Ionic Crystals and Semiconductors to Catalysts, Chem. Rev, vol.89, pp.199-255, 1989.

R. Van-santen and G. J. Kramer, Reactivity Theory of Zeolitic Brønsted Acidic Sites, Chem. Rev, vol.95, pp.637-660, 1995.

W. E. Farneth and R. J. Gorte, Methods for Characterizing Zeolite Acidity, Chem. Rev, vol.95, pp.615-635, 1995.

G. Busca, Acid Catalysts in Industrial Hydrocarbon Chemistry, Chem. Rev, vol.107, pp.5366-5410, 2007.

V. Van-speybroeck, K. Hemelsoet, L. Joos, M. Waroquier, R. G. Bell et al., Advances in Theory and their Application within the Field of Zeolite Chemistry, vol.44, pp.7044-7111, 2015.

M. Boronat and A. Corma, Factors Controlling the Acidity of Zeolites, Catal. Lett, vol.145, pp.162-172, 2015.

L. Grajciar, C. J. Heard, A. A. Bondarenko, M. V. Polynski, J. Meeprasert et al., Towards Operando Computational Modeling in Heterogeneous Catalysis, Chem. Soc. Rev, vol.47, pp.8307-8348, 2018.

E. G. Derouane, J. M. André, and A. A. Lucas, Surface Curvature Effects in Physisorption and Catalysis by Microporous Solids and Molecular Sieves, J. Catal, vol.110, pp.58-73, 1988.

B. Smit and T. Maesen, Molecular Simulations of Zeolites: Adsorption, Diffusion, and Shape Selectivity, Chem. Rev, vol.108, pp.4125-4184, 2008.

P. B. Weisz and V. J. Frilette, Intracrystalline and Molecular-Shape-Selective Catalysis by Zeolite Salts, J. Phys. Chem, vol.64, pp.382-382, 1960.

P. B. Weisz, V. J. Frilette, R. W. Maatman, and E. B. Mower, Catalysis by Crystalline Aluminosilicates II. Molecular-Shape Selective Reactions, J. Catal, vol.1, pp.307-312, 1962.

B. Smit and T. L. Maesen, Towards a Molecular Understanding of Shape Selectivity, Nature, vol.451, pp.671-678, 2008.

L. Lin, A. H. Berger, R. L. Martin, J. Kim, J. A. Swisher et al., Silico Screening of Carbon-Capture Materials, vol.11, pp.633-641, 2012.

I. Yarulina, K. De-wispelaere, S. Bailleul, J. Goetze, M. Radersma et al., Structure-Performance Descriptors and the Role of Lewis Acidity in the Methanol-to-Propylene Process, Nature Chem, vol.10, pp.804-812, 2018.

E. M. Gallego, M. T. Portilla, C. Paris, A. León-escamilla, M. Boronat et al., Ab initio" Synthesis of Zeolites for Preestablished Catalytic Reactions, vol.355, pp.1051-1054, 2017.

P. Bai, M. Y. Jeon, L. Ren, C. Knight, M. W. Deem et al., Discovery of Optimal Zeolites for Challenging Separations and Chemical Transformations using Predictive Materials Modeling, Nat. Commun, vol.6, p.5912, 2015.

J. B. Uytterhoeven, L. G. Christner, and W. K. Hall, Studies of the Hydrogen Held by Solids. VIII. The Decationated Zeolites, J. Phys. Chem, vol.69, pp.2117-2126, 1965.

W. O. Haag, R. M. Lago, and P. B. Weisz, The Active Site of Acidic Aluminosilicate Catalysts, Nature, vol.309, pp.589-591, 1984.

W. J. Mortier, J. Sauer, J. A. Lercher, and H. Noller, Bridging and Terminal Hydroxyls. A Structural Chemical and Quantum Chemical Discussion, J. Phys. Chem, vol.88, pp.905-912, 1984.

T. Bucko, L. Benco, T. Demuth, and J. Hafner, Ab Initio Density Functional Investigation of the (001) Surface of Mordenite, J. Chem. Phys, vol.117, pp.7295-7305, 2002.

C. E. Hernandez-tamargo, A. Roldan, and N. H. De-leeuw, A Density Functional Theory Study of the Structure of Pure-Silica and Aluminium-Substituted MFI Nanosheets, J. Solid State Chem, vol.237, pp.192-203, 2016.

F. Ferrante, T. Rubino, and D. Duca, Butene Isomerization and Double-Bond Migration on the H-ZSM-5 Outer Surface: A Density Functional Theory Study, J. Phys. Chem. C, vol.115, pp.14862-14868, 2011.

J. Rey, P. Raybaud, and C. Chizallet, Ab Initio Simulation of the Acid Sites at the External Surface of Zeolite Beta, vol.9, pp.2176-2185, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01701465

L. Treps, A. Gomez, T. De-bruin, and C. Chizallet, Environment, Stability and Acidity of External Surface Sites of Silicalite-1 and ZSM-5 Micro-and Nano-Slabs, -Sheets and -Crystals, ACS Catal, vol.10, pp.3297-3312, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02552741

F. Leydier, C. Chizallet, A. Chaumonnot, M. Digne, E. Soyer et al., Brønsted Acidity of Amorphous Silica-Alumina: The Molecular Rules of Proton Transfer, J. Catal, vol.284, pp.215-229, 2011.

C. Chizallet and P. Raybaud, Pseudo-Bridging Silanols as Versatile Brønsted Acid Sites of Amorphous Aluminosilicates Surfaces, Angew. Chem. Int. Ed, vol.48, pp.2891-2893, 2009.

M. Valla, A. J. Rossini, M. Caillot, C. Chizallet, P. Raybaud et al., Atomic Description of the Interface between Silica and Alumina in Aluminosilicates through Dynamic Nuclear Polarization Surface-Enhanced NMR Spectroscopy and First-Principles Calculations, J. Am. Chem. Soc, vol.137, pp.10710-10719, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01229899

M. B. Roeffaers, R. Ameloot, M. Baruah, H. Uji-i, M. Bulut et al., Morphology of Large ZSM-5 Crystals Unraveled by Fluorescence Microscopy, J. Am. Chem. Soc, vol.130, pp.5763-5772, 2008.

L. Karwacki, M. H. Kox, D. A. Matthijs-de-winter, M. R. Drury, J. D. Meeldijk et al., Morphology-Dependent Zeolite Intergrowth Structures Leading to Distinct Internal and Outer-Surface Molecular Diffusion Barriers, Nat. Mater, vol.8, p.959, 2009.

S. Mintova, M. Jaber, and V. Valtchev, Nanosized Microporous Crystals: Emerging Applications, Chem. Soc. Rev, vol.44, pp.7207-7233, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02403134

J. Grand, S. N. Talapaneni, A. Vicente, C. Fernandez, E. Dib et al., One-Pot Synthesis of Silanol-Free Nanosized MFI Zeolite, Nat. Mater, vol.16, pp.1010-1015, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02410389

P. A. Jacobs, E. G. Derouane, and J. Weitkamp, Evidence for X-Ray-Amorphous Zeolites, J. Chem. Soc., Chem. Commun, pp.591-593, 1981.

K. Haw, J. Gilson, N. Nesterenko, M. Akouche, H. El-siblani et al., Supported Embryonic Zeolites and their Use to Process Bulky Molecules, ACS Catal, vol.8, pp.8199-8212, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02405865

M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki et al., Stable Single-Unit-Cell Nanosheets of Zeolite MFI as Active and Long-Lived Catalysts, Nature, vol.461, pp.246-249, 2009.

C. E. Kirschhock, S. P. Kremer, J. Vermant, G. Van-tendeloo, P. A. Jacobs et al., Design and Synthesis of Hierarchical Materials from Ordered Zeolitic Building Units, Chem. Eur. J, vol.11, pp.4306-4313, 2005.

W. J. Roth, P. Nachtigall, R. E. Morris, and J. ?ejka, Two-Dimensional Zeolites: Current Status and Perspectives, Chem. Rev, vol.114, pp.4807-4837, 2014.

C. Buchner, L. Lichtenstein, X. Yu, J. A. Boscoboinik, B. Yang et al., Ultrathin Silica Films: the Atomic Structure of Two-Dimensional Crystals and Glasses, vol.20, pp.9176-9183, 2014.

S. Bordiga, C. Lamberti, F. Bonino, A. Travert, and F. Thibault-starzyk, Probing Zeolites by Vibrational Spectroscopies, Chem. Soc. Rev, vol.44, pp.7262-7341, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01831400

J. A. Martens, G. Vanbutsele, P. A. Jacobs, J. Denayer, R. Ocakoglu et al., Evidences for Pore Mouth and Key-Lock Catalysis in Hydroisomerization of Long n-Alkanes over 10-Ring Tubular Pore Bifunctional Zeolites, Catal. Today, vol.65, pp.111-116, 2001.

J. A. Martens, W. Souverijns, W. Verrelst, R. Parton, G. F. Froment et al., Selective Isomerization of Hydrocarbon Chains on External Surfaces of Zeolite Crystals, Angew. Chem. Int. Ed, vol.34, pp.2528-2530, 1995.

V. Valtchev, G. Majano, S. Mintova, and J. Perez-ramirez, Tailored Crystalline Microporous Materials by Post-Synthesis Modification, Chem. Soc. Rev, vol.42, pp.263-290, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02403242

J. Perez-ramirez, C. H. Christensen, K. Egeblad, C. H. Christensen, and J. C. Groen, Hierarchical Zeolites: Enhanced Utilisation of Microporous Crystals in Catalysis by Advances in Materials Design, Chem. Soc. Rev, vol.37, pp.2530-2542, 2008.

M. Silaghi, C. Chizallet, and P. Raybaud, Challenges on Molecular Aspects of Dealumination and Desilication of Zeolites, Microporous Mesoporous Mater, vol.191, pp.82-96, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01068519

J. P?ech, P. Pizarro, D. P. Serrano, and J. ?ejka, From 3D to 2D Zeolite Catalytic Materials, Chem. Soc. Rev, vol.47, pp.8263-8306, 2018.

S. Mitchell, A. B. Pinar, J. Kenvin, P. Crivelli, J. Karger et al., Structural Analysis of Hierarchically Organized Zeolites, Nat. Commun, vol.6, p.8633, 2015.

S. Van-donk, A. H. Janssen, J. H. Bitter, and K. P. Jong, Generation, Characterization, and Impact of Mesopores in Zeolite Catalysts, Catal. Rev, vol.45, pp.297-319, 2003.

L. Karwacki, D. A. De-winter, L. R. Aramburo, M. N. Lebbink, J. A. Post et al., Architecture-Dependent Distribution of Mesopores in Steamed Zeolite Crystals as Visualized by FIB-SEM Tomography, Angew. Chem. Int. Ed, vol.50, pp.1294-1298, 2011.

J. A. Van-bokhoven, A. M. Van-der-eerden, and D. C. Koningsberger, Three-Coordinate Aluminum in Zeolites Observed with In situ X-ray Absorption Near-Edge Spectroscopy at the Al K-Edge: Flexibility of Aluminum Coordinations in Zeolites, J. Am. Chem. Soc, vol.125, pp.7435-7442, 2003.

G. Agostini, C. Lamberti, L. Palin, M. Milanesio, N. Danilina et al., In Situ XAS and XRPD Parametric Rietveld Refinement To Understand Dealumination of Y Zeolite Catalyst, J. Am. Chem. Soc, vol.132, pp.667-678, 2010.

R. J. Pellet, C. S. Blackwell, and J. A. Rabo, Catalytic Cracking Studies and Characterization of Steamed Y and LZ-210 Zeolites, J. Catal, vol.114, pp.71-89, 1988.

D. Barthomeuf, ASA Debris in Zeolites and Zeolitic-Type Clusters in ASA Catalysts, Zeolites, vol.10, pp.131-133, 1990.

O. Cairon, T. Chevreau, and J. C. Lavalley, Brønsted Acidity of Extraframework Debris in Steamed Y Zeolites from the FTIR Study of CO Adsorption, J. Chem. Soc., Faraday Trans, vol.94, pp.3039-3047, 1998.

S. M. Menezes, V. L. Camorim, Y. L. Lam, R. A. Gil, A. Bailly et al., Characterization of Extra-Framework Species of Steamed and Acid Washed Faujasite by MQMAS NMR and IR Measurements, Appl. Catal. A, vol.207, pp.367-377, 2001.

A. Omegna, R. Prins, and J. A. Van-bokhoven, Effect of Temperature on Aluminum Coordination in Zeolites H-Y and H-USY and Amorphous Silica Alumina: an in situ Al K Edge XANES Study, J. Phys. Chem. B, vol.109, pp.9280-9283, 2005.

Y. Matsunaga, H. Yamazaki, T. Yokoi, T. Tatsumi, and J. N. Kondo, IR Characterization of Homogeneously Mixed Silica-Alumina Samples and Dealuminated Y Zeolites by Using Pyridine, CO, and Propene Probe Molecules, J. Phys. Chem. C, vol.117, pp.14043-14050, 2013.

E. Benazzi, L. Leite, N. Marchal-george, H. Toulhoat, and P. Raybaud, New Insights into Parameters Controlling the Selectivity in Hydrocracking Reactions, J. Catal, vol.217, pp.376-387, 2003.

E. J. Hensen, D. G. Poduval, V. Degirmenci, D. A. Ligthart, W. Chen et al., Acidity Characterization of Amorphous Silica-Alumina, J. Phys. Chem. C, vol.116, pp.21416-21429, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01840352

D. G. Poduval, J. A. Van-veen, M. S. Rigutto, and E. J. Hensen, Brønsted Acid Sites of Zeolitic Strength in Amorphous Silica-Alumina, Chem. Commun, vol.46, pp.3466-3468, 2010.

K. Gora-marek, M. Derewinski, P. Sarv, and J. Datka, IR and NMR Studies of Mesoporous Alumina and Related Aluminosilicates, Catal. Today, vol.101, pp.131-138, 2005.

D. Yun, Y. S. Yun, T. Y. Kim, H. Park, J. M. Lee et al., Mechanistic Study of Glycerol Dehydration on Brønsted Acidic Amorphous Aluminosilicate, J. Catal, vol.341, pp.33-43, 2016.

M. Hunger, D. Freunde, H. Pfeifer, H. Bremer, M. Jank et al., High-Resolution Proton Magnetic Resonance and Catalytic Studies Concerning Brønsted Centers of Amorphous Al 2 O 3 -SiO 2 Solids, Chem. Phys. Lett, vol.100, pp.29-33, 1983.

M. F. Williams, B. Fonfé, C. Sievers, A. Abraham, J. A. Van-bokhoven et al., Hydrogenation of Tetralin on Silica-Alumina-Supported Pt Catalysts. I. Physicochemical Characterization of the Catalytic Materials, J. Catal, vol.251, pp.485-496, 2007.

G. Crépeau, V. Montouillout, A. Vimont, L. Mariey, T. Cseri et al., Nature, Structure and Strength of the Acidic Sites of Amorphous Silica Alumina: an IR and NMR Study, J. Phys. Chem. B, vol.110, pp.15172-15185, 2006.

M. Trombetta, G. Busca, S. Rossini, V. Piccoli, U. Cornaro et al., FT-IR Studies on Light Olefin Skeletal Isomerization , III. Surface Acidity and Activity of Amorphous and Crystalline Catalysts Belonging to the SiO 2 -Al 2 O 3 System, J. Catal, vol.179, pp.581-596, 1998.

W. Daniell, U. Schubert, R. Glöckler, A. Meyer, K. Noweck et al., Enhanced Surface Acidity in Mixed Alumina-Silicas: a Low-Temperature FTIR Study, Appl. Catal. A, vol.196, pp.247-260, 2000.

T. K. Phung and G. Busca, Ethanol Dehydration on Silica-Aluminas: Active Sites and Ethylene/Diethyl Ether Selectivities, Catal. Comm, vol.68, pp.110-115, 2015.

M. Baca, E. De-la-rochefoucauld, E. Ambroise, J. M. Krafft, R. Hajjar et al., Characterization of Mesoporous Alumina Prepared by Surface Alumination of SBA-15, Microporous Mesoporous Mater, vol.110, pp.232-241, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00260914

F. A. Perras, Z. Wang, T. Kobayashi, A. Baiker, J. Huang et al., Shedding Light on the Atomic-Scale Structure of Amorphous Silica-Alumina and its Brønsted Acid Sites, Phys. Chem. Chem. Phys, vol.21, pp.19529-19537, 2019.

Z. Wang, Y. Jiang, O. Lafon, J. Trébosc, K. Kim et al., Brønsted Acid Sites Based on Penta-Coordinated Aluminum Species, Nat. Commun, vol.7, p.13820, 2016.

J. Huang, N. Van-vegten, Y. Jiang, M. Hunger, and A. Baiker, Increasing the Bronsted Acidity of Flame-Derived Silica/Alumina up to Zeolitic Strength, Angew. Chem., Int. Ed, vol.49, pp.7776-7781, 2010.

V. Sanchez-escribano, G. Garbarino, E. Finocchio, G. Busca, and A. Silica-alumina, Structural Features, Acid Sites and the Role of Adsorbed Water, Topics Catal, vol.60, pp.1554-1564, 2017.

A. G. Rankin, P. B. Webb, D. M. Dawson, J. Viger-gravel, B. J. Walder et al., Determining the Surface Structure of Silicated Alumina Catalysts via Isotopic Enrichment and Dynamic Nuclear Polarization Surface-Enhanced NMR Spectroscopy, J. Phys. Chem. C, vol.121, pp.22977-22984, 2017.

B. R. Goldsmith, B. Peters, J. K. Johnson, B. C. Gates, and S. L. Scott, Beyond Ordered Materials: Understanding Catalytic Sites on Amorphous Solids, ACS Catal, vol.7, pp.7543-7557, 2017.

M. A. Ardagh, Z. Bo, S. L. Nauert, and J. M. Notestein, Depositing SiO 2 on Al 2 O 3 : a Route to Tunable Brønsted Acid Catalysts, ACS Catal, vol.6, pp.6156-6164, 2016.

W. O. Parker and S. Wegner, Aluminum in Mesoporous Silica-Alumina, Microporous Mesoporous Mater, vol.158, pp.235-240, 2012.

K. Haw, J. Goupil, J. Gilson, N. Nesterenko, D. Minoux et al., Embryonic ZSM-5 Zeolites: Zeolitic Materials with Superior Catalytic Activity in 1,3,5-Triisopropylbenzene Dealkylation, New J. Chem, vol.40, pp.4307-4313, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02402352

J. S. Hargreaves and A. L. Munnoch, A Survey of the Influence of Binders in Zeolite Catalysis, Catal. Sci. Technol, vol.3, pp.1165-1171, 2013.

S. Mitchell, N. Michels, and J. Perez-ramirez, From Powder to Technical Body: the Undervalued Science of Catalyst Scale Up, Chem. Soc. Rev, vol.42, pp.6094-6112, 2013.

R. Bingre, B. Louis, and P. Nguyen, An Overview on Zeolite Shaping Technology and Solutions to Overcome Diffusion Limitations, Catalysts, vol.8, p.163, 2018.

G. T. Whiting, F. Meirer, M. M. Mertens, A. Bons, B. M. Weiss et al., Binder Effects in SiO 2 -and Al 2 O 3 -Bound Zeolite ZSM-5-Based Extrudates as Studied by Microspectroscopy, ChemCatChem, vol.7, pp.1312-1321, 2015.

S. Mitchell, N. Michels, K. Kunze, and J. Pérez-ramírez, Visualization of Hierarchically Structured Zeolite Bodies from Macro to Nano Length Scales, Nature Chem, vol.4, pp.825-831, 2012.

N. Michels, S. Mitchell, and J. Pérez-ramírez, Effects of Binders on the Performance of Shaped Hierarchical MFI Zeolites in Methanol-to-Hydrocarbons, ACS Catal, vol.4, pp.2409-2417, 2014.

J. C. Da-silva, K. Mader, M. Holler, D. Haberthur, A. Diaz et al., Assessment of the 3 D Pore Structure and Individual Components of Preshaped Catalyst Bodies by X-Ray Imaging, ChemCatChem, vol.7, pp.413-416, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02315490

G. T. Whiting, S. Chung, D. Stosic, A. D. Chowdhury, L. I. Van-der-wal et al., Multiscale Mechanistic Insights of Shaped Catalyst Body Formulations and Their Impact on Catalytic Properties, ACS Catal, vol.9, pp.4792-4803, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02160853

C. D. Chang, S. D. Hellring, J. N. Miale, K. D. Schmitt, P. W. Brigandi et al., Insertion of Aluminium into High-Silica-Content Zeolite Frameworks. Part 3.-Hydrothermal Transfer of Aluminium from Al 2 O 3 into [Al]ZSM-5 and [B]ZSM-5, J. Chem. Soc., Faraday Trans. 1, vol.81, pp.2215-2224, 1985.

D. S. Shihabi, W. E. Garwood, P. Chu, J. N. Miale, R. M. Lago et al., Aluminum Insertion into High-Silica Zeolite Frameworks: II. Binder Activation of High-Silica ZSM-5, J. Catal, vol.93, pp.471-474, 1985.

L. Lakiss, J. Gilson, V. Valtchev, S. Mintova, A. Vicente et al., Zeolites in a Good Shape: Catalyst Forming by Extrusion Modifies their Performances, Microporous Mesoporous Mater, p.110114, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02874995

J. Hafner, L. Benco, and T. Bucko, Acid-Based Catalysis in Zeolites Investigated by Density-Functional Methods, Topics Catal, vol.37, pp.41-54, 2006.

V. Van-speybroeck, K. De-wispelaere, J. Van-der-mynsbrugge, M. Vandichel, K. Hemelsoet et al., First Principle Chemical Kinetics in Zeolites: the Methanol-to-Olefin Process as a Case Study, Chem. Soc. Rev, vol.43, pp.7326-7357, 2014.

K. E. Gubbins, Y. Liu, J. D. Moore, and J. C. Palmer, The Role of Molecular Modeling in Confined Systems: Impact and Prospects, Phys. Chem. Chem. Phys, vol.13, pp.58-85, 2011.

G. Li and E. A. Pidko, The Nature and Catalytic Function of Cation Sites in Zeolites: a Computational Perspective, ChemCatChem, vol.11, pp.134-156, 2018.

E. Mansoor, J. Van-der-mynsbrugge, M. Head-gordon, and A. T. Bell, Impact of Long-Range Electrostatic and Dispersive Interactions on Theoretical Predictions of Adsorption and Catalysis in Zeolites, Catal. Today, vol.312, pp.51-65, 2018.

M. K. Sabbe, M. Reyniers, and K. Reuter, First-Principles Kinetic Modeling in Heterogeneous Catalysis: an Industrial Perspective on Best-Practice, Gaps and Needs, Catal. Sci. Technol, vol.2, pp.2010-2024, 2012.

C. Chizallet and P. Raybaud, Density Functional Theory Simulations of Complex Catalytic Materials in Reactive Environments: Beyond the Ideal Surface at Low Coverage, Catal. Sci. Technol, vol.4, pp.2797-2813, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01069690

E. A. Pidko, Toward the Balance between the Reductionist and Systems Approaches in Computational Catalysis: Model versus Method Accuracy for the Description of Catalytic Systems, ACS Catal, vol.7, pp.4230-4234, 2017.

J. C. Groen, T. Bach, U. Ziese, A. M. Paulaime-van-donk, K. P. Jong et al., Creation of Hollow Zeolite Architectures by Controlled Desilication of Al-Zoned ZSM-5 Crystals, J. Am. Chem. Soc, vol.127, pp.10792-10793, 2005.

R. Catlow, R. Bell, F. Cora, and B. Slater, Chapter 19 -Molecular Modelling in Zeolite Science, In Stud. Surf. Sci. Catal, 2007.

T. Bucko, L. Benco, O. Dubay, C. Dellago, and J. Hafner, Mechanism of Alkane Dehydrogenation Catalyzed by Acidic Zeolites: Ab Initio Transition Path Sampling, J. Chem. Phys, p.214508, 2009.

T. Bu?ko, L. Benco, J. Hafner, and J. G. Ángyán, Monomolecular Cracking of Propane over Acidic Chabazite: An Ab Initio Molecular Dynamics and Transition Path Sampling Study, J. Catal, vol.279, pp.220-228, 2011.

T. Bucko and J. Hafner, Entropy Effects in Hydrocarbon Conversion Reactions: Free-Energy Integrations and Transition-Path Sampling, J. Phys.: Condens. Matter, p.384201, 2010.

J. Rey, P. Raybaud, C. Chizallet, and T. Bu?ko, Competition of Secondary versus Tertiary Carbenium Routes for the Type B Isomerization of Alkenes over Acid Zeolites Quantified by Ab Initio Molecular Dynamics Simulations, ACS Catal, vol.9, pp.9813-9828, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02397701

J. Rey, A. Gomez, P. Raybaud, C. Chizallet, and T. Bu?ko, On the Origin of the Difference between Type A and Type B Skeletal Isomerization of Alkenes Catalyzed by Zeolites: The Crucial Input of Ab Initio Molecular Dynamics, J. Catal, vol.373, pp.361-373, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02149821

T. Bu?ko and J. Hafner, The Role of Spatial Constraints and Entropy in the Adsorption and Transformation of Hydrocarbons Catalyzed by Zeolites, J. Catal, vol.329, pp.32-48, 2015.

M. Nielsen, A. Hafreager, R. Y. Brogaard, K. De-wispelaere, H. Falsig et al., Collective Action of Water Molecules in Zeolite Dealumination, Catal. Sci. Technol, vol.9, pp.3721-3725, 2019.

P. Cnudde, K. De-wispelaere, L. Vanduyfhuys, R. Demuynck, J. Van-der-mynsbrugge et al., How Chain Length and Branching Influence the Alkene Cracking Reactivity on H-ZSM-5, ACS Catal, vol.8, pp.9579-9595, 2018.

P. Cnudde, K. De-wispelaere, J. Van-der-mynsbrugge, M. Waroquier, and V. Van-speybroeck, Effect of Temperature and Branching on the Nature and Stability of Alkene Cracking Intermediates in H-ZSM-5, J. Catal, vol.345, pp.53-69, 2017.

J. Hajek, J. Van-der-mynsbrugge, K. De-wispelaere, P. Cnudde, L. Vanduyfhuys et al., On the Stability and Nature of Adsorbed Pentene in Brønsted Acid Zeolite H-ZSM-5 at 323K, J. Catal, vol.340, pp.227-235, 2016.

S. L. Moors, K. De-wispelaere, J. Van-der-mynsbrugge, M. Waroquier, and V. Van-speybroeck, Molecular Dynamics Kinetic Study on the Zeolite-Catalyzed Benzene Methylation in ZSM-5, ACS Catal, vol.3, pp.2556-2567, 2013.

K. De-wispelaere, S. Bailleul, and V. Van-speybroeck, Towards Molecular Control of Elementary Reactions in Zeolite Catalysis by Advanced Molecular Simulations Mimicking Operating Conditions, Catal. Sci. Technol, vol.6, pp.2686-2705, 2016.

G. A. Collins, D. W. Cruickshank, and A. Breeze, Ab Initio Calculations on the Silicate Ion, Orthosilicic Acid and Their L2,3 X-Ray Spectra, J. Chem. Soc, vol.68, pp.1189-1195, 21972.

J. Sauer and B. ;-l-urawski, Molecular and Electronic Structure of Disiloxane, an Ab Initio MO Study, Chem. Phys. Lett, vol.65, pp.587-591, 1979.

G. V. Gibbs, Molecules as Models for Bonding in Silicates, Am. Mineral, vol.67, pp.421-450, 1982.

G. M. Zhidomirov and V. B. Kazansky, Quantum-Chemical Cluster Models of Acid-Base Sites of Oxide-Catalysts, Adv. Catal, vol.34, pp.131-202, 1986.

J. C. White and A. C. Hess, Periodic Hartree-Fock Study of Siliceous Mordenite, J. Phys. Chem, vol.97, pp.6398-6404, 1993.

J. B. Nicholas and A. C. Hess, Ab Initio Periodic Hartree-Fock Investigation of a Zeolite Acid Site, J. Am. Chem. Soc, vol.116, pp.5428-5436, 1994.

E. Aprà, R. Dovesi, C. Freyria-fava, C. Pisani, C. Roetti et al., Ab Initio Hartree-Fock Modelling of Zeolites: Application to Silico-Chabazite, Model. Simul. Mater. Sci. Eng, vol.1, pp.297-306, 1993.

L. Campana, A. Selloni, J. Weber, A. Pasquarello, I. Papai et al., First Principles Molecular Dynamics Calculation of the Structure and Acidity of a Bulk Zeolite, Chem. Phys. Lett, vol.226, pp.245-250, 1994.

A. Warshel and M. Levitt, Theoretical Studies of Enzymic reactions: Dielectric, Electrostatic and Steric Stabilization of the Carbonium Ion in the Reaction of Lysozyme, J. Mol. Biol, vol.103, pp.227-249, 1976.

M. Levitt, Birth and Future of Multiscale Modeling for Macromolecular Systems (Nobel Lecture), Angew. Chem. Int. Ed, vol.53, pp.10006-10018, 2014.

M. Karplus, Development of Multiscale Models for Complex Chemical Systems: From H+H 2 to Biomolecules (Nobel Lecture), Angew. Chem. Int. Ed, vol.53, pp.9992-10005, 2014.

U. Eichler, C. M. Kölmel, and J. Sauer, Combining Ab Initio Techniques with Analytical Potential Functions for Structure Predictions of Large Systems: Method and Application to Crystalline Silica Polymorphs, J. Comput. Chem, vol.18, pp.463-477, 1997.

J. Sauer and M. Sierka, Combining Quantum Mechanics and Interatomic Potential Functions in Ab Initio Studies of Extended Systems, J. Comput. Chem, vol.21, pp.1470-1493, 2000.

P. V. Sushko, J. L. Gavartin, and A. L. Shluger, Electronic Properties of Structural Defects at the MgO (001) Surface, J. Phys. Chem. B, vol.106, pp.2269-2276, 2002.

W. A. De-jong, E. Bylaska, N. Govind, C. L. Janssen, K. Kowalski et al., Utilizing High Performance Computing for Chemistry: Parallel Computational Chemistry, Phys. Chem. Chem. Phys, vol.12, pp.6896-6920, 2010.

J. Tomasi, B. Mennucci, and R. Cammi, Quantum Mechanical Continuum Solvation Models, Chem. Rev, vol.105, pp.2999-3094, 2005.

R. E. Bulo, C. Michel, P. Fleurat-lessard, and P. Sautet, Multiscale Modeling of Chemistry in Water: Are We There Yet?, J Chem Theory Comput, vol.9, pp.5567-5577, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01112602

O. H. Han, C. S. Kim, and S. B. Hong, Direct Evidence for the Nonrandom Nature of Al Substitution in Zeolite ZSM-5: An Investigation by 27 Al MAS and MQ MAS NMR, Angew. Chem. Int. Ed, vol.41, pp.469-472, 2002.

S. Sklenak, J. Dedecek, C. Li, B. Wichterlova, V. Gabova et al., Aluminum Siting in Silicon-Rich Zeolite Frameworks: A Combined High-Resolution 27 Al NMR Spectroscopy and Quantum Mechanics/Molecular Mechanics Study of ZSM-5, Angew. Chem., Int. Ed, vol.46, pp.7286-7289, 2007.

J. D?de?ek, Z. Sobalík, and B. Wichterlová, Siting and Distribution of Framework Aluminium Atoms in Silicon-Rich Zeolites and Impact on Catalysis, Catal. Rev, vol.54, pp.135-223, 2012.

J. Holzinger, M. Nielsen, P. Beato, R. Y. Brogaard, C. Buono et al., Identification of Distinct Framework Aluminum Sites in Zeolite ZSM-23: A Combined Computational and Experimental 27 Al NMR Study, J. Phys. Chem. C, vol.123, pp.7831-7844, 2018.

J. Holzinger, P. Beato, L. F. Lundegaard, and J. Skibsted, Distribution of Aluminum over the Tetrahedral Sites in ZSM-5 Zeolites and Their Evolution after Steam Treatment, J. Phys. Chem. C, vol.122, pp.15595-15613, 2018.

J. A. Van-bokhoven, T. L. Lee, M. Drakopoulos, C. Lamberti, S. Thieb et al., Determining the Aluminium Occupancy on the Active T-Sites in Zeolites using X-Ray Standing Waves, Nat. Mater, vol.7, pp.551-555, 2008.

P. Sarv, C. Fernandez, J. Amoureux, and K. Keskinen, Distribution of Tetrahedral Aluminium Sites in ZSM-5 Type Zeolites: An 27 Al (Multiquantum) Magic Angle Spinning NMR Study, J. Phys. Chem, vol.100, pp.19223-19226, 1996.

S. Sklenak, J. D?de?ek, C. Li, B. Wichterlová, V. Gábová et al., Aluminium Siting in the ZSM-5 Framework by Combination of High Resolution 27 Al NMR and DFT/MM calculations, Phys. Chem. Chem. Phys, vol.11, pp.1237-1247, 2009.

J. D?de?ek, S. Sklenak, C. Li, B. Wichterlová, V. Gábová et al., the ZSM-5 Zeolite Framework on the 27 Al NMR Spectra. A Combined High-Resolution, vol.27, pp.1447-1458, 2009.

P. Sarv, B. Wichterlová, and J. ?ejka, Multinuclear MQMAS NMR Study of NH 4 /Na-Ferrierites, J. Phys. Chem. B, vol.102, pp.1372-1378, 1998.

A. B. Pinar, R. Verel, J. Pérez-pariente, and J. A. Van-bokhoven, Direct Evidence of the Effect of Synthesis Conditions on Aluminum Siting in Zeolite Ferrierite: A 27 Al MQ MAS NMR Study, Microporous Mesoporous Mater, vol.193, pp.111-114, 2014.

J. A. Van-bokhoven, D. C. Koningsberger, P. Kunkeler, H. Van-bekkum, and A. P. Kentgens, Stepwise Dealumination of Zeolite ?eta at Specific T-Sites Observed with 27 Al MAS and 27 Al MQ MAS NMR, J. Am. Chem. Soc, vol.122, pp.12842-12847, 2000.

A. Abraham, S. Lee, C. Shin, S. Hong, R. Prins et al., Influence of Framework Silicon to Aluminium Ratio on Aluminium Coordination and Distribution in Zeolite Beta Investigated by 27 Al MAS and 27 Al MQ MAS NMR, Phys. Chem. Chem. Phys, vol.6, pp.3031-3036, 2004.

J. Z. Hu, C. Wan, A. Vjunov, M. Wang, Z. Zhao et al., 27 Al MAS NMR Studies of HBEA Zeolite at Low to High Magnetic Fields, J. Phys. Chem. C, vol.121, pp.12849-12854, 2017.

J. D?de?ek, S. Sklenak, C. Li, F. Gao, J. Brus et al., Effect of Al/Si Substitutions and Silanol Nests on the Local Geometry of Si and Al Framework Sites in Silicone-Rich Zeolites: A Combined High Resolution 27 Al and 29 Si NMR and Density Functional Theory/Molecular Mechanics Study, J. Phys. Chem. C, vol.113, pp.14454-14466, 2009.

G. Sastre, V. Fornes, and A. Corma, Preferential Siting of Bridging Hydroxyls and Their Different Acid Strengths in the Two-Channel System of MCM-22 Zeolite, J. Phys. Chem. B, vol.104, pp.4349-4354, 2000.

G. Sastre, V. Fornes, and A. Corma, On the Preferential Location of Al and Proton Siting in Zeolites: A Computational and Infrared Study, J. Phys. Chem. B, vol.106, pp.701-708, 2002.

S. Wang, Y. He, W. Jiao, J. Wang, and W. Fan, Recent Experimental and Theoretical Studies on Al Siting/Acid Site Distribution in Zeolite Framework, Curr. Opin. Chem. Eng, vol.23, pp.146-154, 2019.

K. Muraoka, W. Chaikittisilp, and T. Okubo, Energy Analysis of Aluminosilicate Zeolites with Comprehensive Ranges of Framework Topologies, Chemical Compositions, and Aluminum Distributions, J. Am. Chem. Soc, vol.138, pp.6184-6193, 2016.

K. Schröder, J. Sauer, M. Leslie, and C. R. Catlow, Siting of AI and Bridging Hydroxyl Groups in ZSM-5: A Computer Simulation Study, vol.12, pp.20-23, 1992.

D. Zhai, Y. Liu, H. Zheng, L. Zhao, J. Gao et al., A First-Principles Evaluation of the Stability, Accessibility, and Strength of Brønsted Acid Sites in Zeolites, J. Catal, vol.352, pp.627-637, 2017.

C. Li, A. Vidal-moya, P. J. Miguel, J. Dedecek, M. Boronat et al., Selective Introduction of Acid Sites in Different Confined Positions in ZSM-5 and Its Catalytic Implications, ACS Catal, vol.8, pp.7688-7697, 2018.

E. Dib, T. Mineva, P. Gaveau, E. Véron, V. Sarou-kanian et al., Probing Disorder in Al-ZSM-5 Zeolites by 14 N NMR Spectroscopy, J. Phys. Chem. C, vol.121, pp.15831-15841, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01576192

B. C. Knott, C. T. Nimlos, D. J. Robichaud, M. R. Nimlos, S. Kim et al., Consideration of the Aluminum Distribution in Zeolites in Theoretical and Experimental Catalysis Research, ACS Catal, vol.8, pp.770-784, 2017.

T. Demuth, J. Hafner, L. Benco, and H. Toulhoat, Structural and Acidic Properties of Mordenite. An ab Initio Density-Functional Study, J. Phys. Chem. B, vol.104, pp.4593-4607, 2000.

E. Gutierrez-acebo, J. Rey, C. Bouchy, Y. Schuurman, and C. Chizallet, Location of the Active Sites for Ethylcyclohexane Hydroisomerization by Ring Contraction and Expansion in the EUO Zeolitic Framework, ACS Catal, vol.9, pp.1692-1704, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02119047

A. Ghorbanpour, J. D. Rimer, and L. C. Grabow, Periodic, vdW-Corrected Density Functional Theory Investigation of the Effect of Al Siting in H-ZSM-5 on Chemisorption Properties and Site-Specific Acidity, Catal. Comm, vol.52, pp.98-102, 2014.

L. Shi, J. Yang, G. Shen, Y. Zhao, R. Chen et al., The Influence of Adjacent Al Atoms on the Hydrothermal Stability of H-SSZ-13: a First-Principles Study, Phys. Chem. Chem. Phys, vol.2020, pp.2930-2937

F. Göltl, A. M. Love, S. C. Schuenzel, P. Wolf, M. Mavrikakis et al., Computational Description of Key Spectroscopic Features of Zeolite SSZ-13, Phys. Chem. Chem. Phys, vol.21, pp.19065-19075, 2019.

M. Wang, N. R. Jaegers, M. S. Lee, C. Wan, J. Z. Hu et al., Genesis and Stability of Hydronium Ions in Zeolite Channels, J. Am. Chem. Soc, vol.141, pp.3444-3455, 2019.

P. Losch, H. R. Joshi, O. Vozniuk, A. Grunert, C. Ochoa-hernandez et al., Proton Mobility, Intrinsic Acid Strength and Acid Site Location in Zeolites Revealed by VTIR and DFT Studies, J. Am. Chem. Soc, 2018.

E. Nusterer, P. E. Blöchl, and K. Schwarz, Interaction of Water and Methanol with a Zeolite at High Coverages, Chem. Phys. Lett, vol.253, pp.448-455, 1996.

?. Benco, T. Demuth, J. Hafner, and F. Hutschka, Spontaneous Proton Transfer between O-Sites in Zeolites, Chem. Phys. Lett, vol.324, pp.373-380, 2000.

X. Li, B. Walker, and A. Michaelides, Quantum Nature of the Hydrogen Bond, Proceedings of the National Academy of Sciences, p.6369, 2011.

D. M. Wilkins, D. E. Manolopoulos, S. Pipolo, D. Laage, and J. T. Hynes, Nuclear Quantum Effects in Water Reorientation and Hydrogen-Bond Dynamics, J Phys Chem Lett, vol.8, pp.2602-2607, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01527210

A. Hibbs and R. P. Feynman, Quantum Mechanics and Path Integrals

M. Interamericana, , 1965.

M. Ceriotti, D. E. Manolopoulos, and M. Parrinello, Accelerating the Convergence of Path Integral Dynamics with a Generalized Langevin Equation, J. Chem. Phys, vol.134, p.84104, 2011.

K. P. Schröder, J. Sauer, M. Leslie, C. R. Catlow, and J. M. Thomas, Bridging Hydroxyl Groups in Zeolitic Catalysts: a Computer Simulation of their Structure, Vibrational Properties and Acidity in Protonated Faujasites, vol.188, pp.320-325, 1992.

H. V. Brand, L. A. Curtiss, and L. E. Iton, Computational Studies of Acid Sites in ZSM 5: Dependence on Cluster Size, J. Phys. Chem, vol.96, pp.7725-7732, 1992.

H. V. Brand, L. A. Curtiss, and L. E. Iton, Ab Initio Molecular Orbital Cluster Studies of the Zeolite ZSM-5. 1. Proton Affinities, J. Phys. Chem, vol.97, pp.12773-12782, 1993.

A. Redondo and P. J. Hay, Quantum Chemical Studies of Acid Sites in Zeolite ZSM-5, J. Phys. Chem, vol.97, pp.11754-11761, 1993.

U. Eichler, M. Brändle, and J. Sauer, Predicting Absolute and Site Specific Acidities for Zeolite Catalysts by a Combined Quantum Mechanics/Interatomic Potential Function Approach, J. Phys. Chem. B, vol.101, pp.10035-10050, 1997.

M. Rybicki and J. Sauer, Acid Strength of Zeolitic Brønsted Sites-Dependence on Dielectric Properties, Catal. Today, vol.323, pp.86-93, 2019.

A. J. Jones and E. Iglesia, The Strength of Brønsted Acid Sites in Microporous Aluminosilicates, ACS Catal, vol.5, pp.5741-5755, 2015.

H. Knözinger, Infrared Spectroscopy for the Characterization of Surface Acidity and Basicity, In Handbook of Heterogeneous Catalysis

G. Ertl, H. Knözinger, and J. Weitkamp, , vol.2, pp.707-732, 1997.

M. Boronat and A. Corma, What Is Measured When Measuring Acidity in Zeolites with Probe Molecules?, ACS Catal, vol.9, pp.1539-1548, 2019.

F. Göltl, A. Grüneis, T. Bucko, and J. Hafner, Van der Waals Interactions Between Hydrocarbon Molecules and Zeolites: Periodic Calculations at Different Levels of Theory, from Density Functional Theory to the Random Phase Approximation and Møller-Plesset Perturbation Theory, J. Chem. Phys, p.114111, 2012.

G. Piccini, M. Alessio, J. Sauer, Y. Zhi, Y. Liu et al., Accurate Adsorption Thermodynamics of Small Alkanes in Zeolites. Ab initio Theory and Experiment for H-Chabazite, J. Phys. Chem. C, vol.119, pp.6128-6137, 2015.

V. B. Kazansky and I. N. Senchenya, Quantum Chemical Study of the Electronic Structure and Geometry of Surface Alkoxy Groups as Probable Active Intermediates of Heterogeneous Acidic Catalysts: What Are the Adsorbed Carbenium Ions?, J. Catal, vol.119, pp.108-120, 1989.

P. Viruela-martin, C. M. Zicovich-wilson, and A. Corma, Ab Initio Molecular Orbital Calculations of the Protonation Reaction of Propylene and Isobutene by Acidic OH Groups of Isomorpbously Substituted Zeolites, J. Phys. Chem, vol.97, pp.13713-13719, 1993.

V. B. Kazansky, M. V. Frash, and R. A. Van-santen, Quantumchemical Study of the Isobutane Cracking on Zeolites, Appl. Catal. A, vol.146, pp.225-247, 1996.

J. P. Hay, A. Redondo, and Y. Guo, Theoretical Studies of Pentene Cracking on Zeolites: C-C ?-Scission Processes, vol.50, pp.517-523, 1999.

X. Rozanska, R. Van-santen, F. Hutschka, and J. Hafner, A Periodic DFT Study of Intramolecular Isomerization Reactions of Toluene and Xylenes Catalyzed by Acidic Mordenite, J. Am. Chem. Soc, vol.123, pp.7655-7667, 2001.

L. Benco, J. Hafner, F. Hutschka, and H. Toulhoat, Physisorption and Chemisorption of Some n-Hydrocarbons at the Brønsted Acid Site in Zeolites 12-Membered Ring Main Channels: Ab Initio Study of the Gmelinite Structure, J. Phys. Chem. B, vol.107, pp.9756-9762, 2003.

M. Boronat, P. M. Viruela, and A. Corma, Reaction Intermediates in Acid Catalysis by Zeolites: Prediction of the Relative Tendency To Form Alkoxides or Carbocations as a Function of Hydrocarbon Nature and Active Site Structure, J. Am. Chem. Soc, vol.126, pp.3300-3309, 2004.

C. Tuma and J. Sauer, Protonated Isobutene in Zeolites: tert-Butyl Cation or Alkoxide?, Angew. Chem. Int. Ed, vol.44, pp.4769-4771, 2005.

C. Tuma, T. Kerber, and J. Sauer, The tert-Butyl Cation in H-Zeolites: Deprotonation to Isobutene and Conversion into Surface Alkoxides, Angew. Chem. Int. Ed, vol.49, pp.4678-4680, 2010.

H. Fang, A. Zheng, J. Xu, S. Li, Y. Chu et al., Theoretical Investigation of the Effects of the Zeolite Framework on the Stability of Carbenium Ions, J. Phys. Chem. C, vol.115, pp.7429-7439, 2011.

S. Svelle, C. Tuma, X. Rozanska, T. Kerber, and J. Sauer, Quantum Chemical Modeling of Zeolite-Catalyzed Methylation Reactions: Toward Chemical Accuracy for Barriers, J. Am. Chem. Soc, vol.131, pp.816-825, 2009.

G. Piccini, M. Alessio, and J. Sauer, Ab Initio Calculation of Rate Constants for Molecule-Surface Reactions with Chemical Accuracy, Angew. Chem. Int. Ed, vol.55, pp.5235-5237, 2016.

M. Rybicki and J. Sauer, Ab Initio Prediction of Proton Exchange Barriers for Alkanes at Brønsted Sites of Zeolite H-MFI, J. Am. Chem. Soc, vol.140, pp.18151-18161, 2018.

P. N. Plessow and F. Studt, Olefin Methylation and Cracking Reactions in H-SSZ-13 Investigated with Ab Initio and DFT Calculations, Catal. Sci. Technol, vol.8, pp.4420-4429, 2018.

S. R. Blaszkowski and R. A. Van-santen, The Mechanism of Dimethyl Ether Formation from Methanol Catalyzed by Zeolitic Protons, J. Am. Chem. Soc, vol.118, pp.5152-5153, 1996.

S. R. Blaszkowski and R. A. Van-santen, Theoretical Study of the Mechanism of Surface Methoxy and Dimethyl Ether Formation from Methanol Catalyzed by Zeolitic Protons, J. Am. Chem. Soc, vol.101, pp.2292-2305, 1997.

S. S. Konda, S. Caratzoulas, and D. G. Vlachos, Computational Insights into the Role of Metal and Acid Sites in Bifunctional Metal/Zeolite Catalysts: A Case Study of Acetone Hydrogenation to 2-Propanol and Subsequent Dehydration to Propene, ACS Catal, vol.6, pp.123-133, 2016.

Y. Zhi, H. Shi, L. Mu, Y. Liu, D. Mei et al., Dehydration Pathways of 1-Propanol on HZSM-5 in the Presence and Absence of Water, J. Am. Chem. Soc, vol.137, pp.15781-15794, 2015.

S. Kim, D. J. Robichaud, G. T. Beckham, R. S. Paton, and M. R. Nimlos, Ethanol Dehydration in HZSM-5 Studied by Density Functional Theory: Evidence for a Concerted Process, J. Phys. Chem. A, vol.119, pp.3604-3614, 2015.

M. John, K. Alexopoulos, M. Reyniers, and G. B. Marin, Reaction Path Analysis for 1-Butanol Dehydration in H-ZSM-5 Zeolite: Ab Initio and Microkinetic Modeling, J. Catal, vol.330, pp.28-45, 2015.

M. John, K. Alexopoulos, M. Reyniers, and G. B. Marin, First-Principles Kinetic Study on the Effect of the Zeolite Framework on 1-Butanol Dehydration, ACS Catal, vol.6, pp.4081-4094, 2016.

M. John, K. Alexopoulos, M. Reyniers, and G. B. Marin, Mechanistic Insights into the Formation of Butene Isomers from 1-Butanol in H-ZSM-5: DFT based Microkinetic Modelling, Catal. Sci. Technol, vol.7, pp.1055-1072, 2017.

M. John, K. Alexopoulos, M. Reyniers, and G. B. Marin, Effect of Zeolite Confinement on the Conversion of 1-Butanol to Butene Isomers: Mechanistic Insights from DFT Based Microkinetic Modelling, Catal. Sci. Technol, vol.7, pp.2978-2997, 2017.

P. N. Plessow, A. Smith, S. Tischer, and F. Studt, Identification of the Reaction Sequence of the MTO Initiation Mechanism Using Ab Initio-Based Kinetics, J. Am. Chem. Soc, vol.141, pp.5908-5915, 2019.

M. K. Sabbe, G. Canduela-rodriguez, J. Joly, M. Reyniers, and G. B. Marin, Ab Initio Coverage-Dependent Microkinetic Modeling of Benzene Hydrogenation on Pd(111), Catal. Sci. Technol, vol.7, pp.5267-5283, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01702684

C. Liu, R. A. Van-santen, A. Poursaeidesfahani, T. J. Vlugt, E. A. Pidko et al., Hydride Transfer versus Deprotonation Kinetics in the Isobutane-Propene Alkylation Reaction: A Computational Study, ACS Catal, vol.7, pp.8613-8627, 2017.

J. M. Ruiz, M. H. Mcadon, and J. M. Garcés, Aluminum Complexes as Models for Broensted Acid Sites in Zeolites: Structure and Energetics of [Al(OH) 4 ] -, [Al(H 2 O) 6 ] 3+ , and Intermediate Monomeric Species [Al(OH) x (H 2 O) n-x ·mH 2 O] 3-x Obtained by Hydrolysis, J. Phys. Chem. B, vol.101, pp.1733-1744, 1997.

L. Benco, T. Demuth, J. Hafner, F. Kutschka, and H. Toulhoat, Extraframework Aluminum Species in Zeolites: Ab Initio Molecular Dynamics Simulation of Gmelinite, J. Catal, vol.209, pp.480-488, 2002.

D. L. Bhering, A. Ramirez-solis, and C. J. Mota, A Density Functional Theory Based Approach to Extraframework Aluminum Species in Zeolites, J. Phys. Chem. B, vol.107, pp.4342-4347, 2003.

S. Li, A. Zheng, Y. Su, H. Fang, W. Shen et al., Extra-Framework Aluminium Species in Hydrated Faujasite Zeolite as Investigated by Two-Dimensional Solid-State NMR Spectroscopy and Theoretical Calculations, Phys. Chem. Chem. Phys, vol.12, pp.3895-3903, 2010.

L. Benco, T. Bucko, J. Hafner, and H. Toulhoat, Ab Initio Simulation of Lewis Sites in Mordenite and Comparative Study of the Strength of Active Sites via CO Adsorption, J. Phys. Chem. B, vol.108, pp.13656-13666, 2004.

C. Liu, G. Li, E. J. Hensen, and E. A. Pidko, Nature and Catalytic Role of Extraframework Aluminum in Faujasite Zeolite: A Theoretical Perspective, ACS Catal, vol.5, pp.7024-7033, 2015.

C. Liu, G. Li, E. J. Hensen, and E. A. Pidko, Relationship Between Acidity and Catalytic Reactivity of Faujasite Zeolite: A Periodic DFT Study, J. Catal, vol.344, pp.570-577, 2016.

M. Silaghi, C. Chizallet, J. Sauer, and P. Raybaud, Dealumination Mechanisms of Zeolites and Extra-Framework Aluminum Confinement, J. Catal, vol.339, pp.242-255, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01372662

C. Mirodatos and D. Barthomeuf, Superacid Sites in Zeolites, J. Chem. Soc., Chem. Commun, pp.39-40, 1981.

C. J. Mota, D. L. Bhering, and N. Rosenbach, A DFT Study of the Acidity of Ultrastable Y Zeolite: Where Is the Brønsted/Lewis Acid Synergism?, Angew. Chem. Int. Ed, vol.43, pp.3050-3053, 2004.

N. Rosenbach and C. J. Mota, A DFT-ONIOM Study on the Effect of Extra-Framework Aluminum on USY Zeolite Acidity, Appl. Catal. A, vol.336, pp.54-60, 2008.

S. Li, A. Zheng, Y. Su, H. Zhang, J. Yang et al., Brønsted/Lewis Acid Synergy in Dealuminated HY Zeolite: A Combined Solid-State NMR and Theoretical Calculation Study, J. Am. Chem. Soc, vol.129, pp.11161-11171, 2007.

X. Yi, K. Liu, W. Chen, J. Li, S. Xu et al., Origin and Structural Characteristics of Tri-coordinated Extra-framework Aluminum Species in Dealuminated Zeolites, J. Am. Chem. Soc, vol.140, pp.10764-10774, 2018.

S. Bordiga, P. Ugliengo, A. Damin, C. Lamberti, G. Spoto et al., Hydroxyls Nests in Defective Silicalites and Strained Structures Derived upon Dehydroxylation: Vibrational Properties and Theoretical Modelling, Topics Catal, vol.15, pp.43-52, 2001.

J. I. D?de?ek, S. Sklenak, C. Li, F. Gao, J. I. Brus et al., Effect of Al/Si Substitutions and Silanol Nests on the Local Geometry of Si and Al Framework Sites in Silicone-Rich Zeolites: A Combined High Resolution 27 Al and 29 Si NMR and Density Functional Theory/Molecular Mechanics Study, J. Phys. Chem. C, vol.113, pp.14454-14466, 2009.

C. R. Catlow, P. S. Baram, S. C. Parker, J. Purton, and K. V. Wright, Protons in Oxides, Radiat. Eff. Defects Solids, vol.134, pp.57-64, 1995.

A. A. Sokol, C. R. Catlow, J. M. Garces, and A. Kuperman, Defect Centers in Microporous Aluminum Silicate Materials, J. Phys. Chem. B, vol.102, pp.10647-10649, 1998.

A. A. Sokol, C. R. Catlow, J. M. Garces, and A. Kuperman, Computational Investigation into the Origins of Lewis Acidity in Zeolites, Adv. Mater, vol.12, pp.1801-1805, 2000.

A. A. Sokol, C. R. Catlow, J. M. Garcés, and A. Kuperman, Local States in Microporous Silica and Aluminum Silicate Materials. 1. Modeling Structure, Formation, and Transformation of Common Hydrogen Containing Defects, J. Phys. Chem. B, vol.106, pp.6163-6177, 2002.

A. A. Sokol, C. R. Catlow, J. M. Garcés, and A. Kuperman, Transformation of Hydroxyl Nests in Microporous Aluminosilicates upon Annealing, J. Phys.: Condens. Matter, vol.16, pp.2781-2794, 2004.

E. Senderov, I. Halasz, and D. H. Olson, On Existence of Hydroxyl Nests in Acid Dealuminated Zeolite Y, Microporous Mesoporous Mater, vol.186, pp.94-100, 2014.

I. Halasz, E. Senderov, D. H. Olson, and J. Liang, Further Search for Hydroxyl Nests in Acid Dealuminated Zeolite Y, J. Phys. Chem. C, vol.119, pp.8619-8625, 2015.

O. Lisboa, M. Sánchez, and F. Ruette, Modeling Extra Framework Aluminum (EFAL) Formation in the Zeolite ZSM-5 Using Parametric Quantum and DFT Methods, J. Mol. Catal. A, vol.294, pp.93-101, 2008.

S. Malola, S. Svelle, F. L. Bleken, and O. Swang, Detailed Reaction Paths for Zeolite Dealumination and Desilication From Density Functional Calculations, Angew. Chem. Int. Ed, vol.51, pp.652-655, 2012.

T. Fjermestad, S. Svelle, and O. Swang, Desilication of SAPO-34: Reaction Mechanisms from Periodic DFT Calculations, J. Phys. Chem. C, vol.119, pp.2073-2085, 2015.

M. Silaghi, C. Chizallet, E. Petracovschi, T. Kerber, J. Sauer et al., Regioselectivity of Al-O Bond Hydrolysis During Zeolites Dealumination Unified by Brønsted-Evans-Polanyi Relationship, ACS Catal, vol.5, pp.11-15, 2015.

M. Nielsen, R. Y. Brogaard, H. Falsig, P. Beato, O. Swang et al., Kinetics of Zeolite Dealumination: Insights from H-SSZ-13, ACS Catal, vol.5, pp.7131-7139, 2015.

K. Valdiviés-cruz, A. Lam, and C. M. Zicovich-wilson, Full Mechanism of Zeolite Dealumination in Aqueous Strong Acid Medium: Ab Initio Periodic Study on H-Clinoptilolite, J. Phys. Chem. C, vol.121, pp.2652-2660, 2017.

J. Sun, H. Fang, P. I. Ravikovitch, and D. S. Sholl, Understanding Dealumination Mechanisms in Protonic and Cationic Zeolites, J. Phys. Chem. C, vol.124, pp.668-676, 2020.

J. N. Louwen, S. Simko, K. Stanciakova, R. E. Bulo, B. M. Weckhuysen et al., Role of Rare Earth Ions in the Prevention of Dealumination of Zeolite Y for Fluid Cracking Catalysts, J. Phys. Chem. C, vol.124, pp.4626-4636, 2020.

C. J. Heard, L. Grajciar, C. M. Rice, S. M. Pugh, P. Nachtigall et al., Fast Room Temperature Lability of Aluminosilicate Zeolites, Nature Commun, vol.10, p.4690, 2019.

K. Valdivies-cruz, A. Lam, and C. M. Zicovich-wilson, Chemical Interaction of Water Molecules with Framework Al in Acid Zeolites: a Periodic Ab Initio Study on H-Clinoptilolite, Phys. Chem. Chem. Phys, vol.17, pp.23657-23666, 2015.

K. Stanciakova, B. Ensing, F. Göltl, R. E. Bulo, and B. M. Weckhuysen, Cooperative Role of Water Molecules during the Initial Stage of Water-Induced Zeolite Dealumination, ACS Catal, vol.9, pp.5119-5135, 2019.

T. Ohsuna, B. Slater, F. Gao, J. Yu, Y. Sakamoto et al., Fine Structures of Zeolite-Linde-L (LTL): Surface Structures, vol.10, pp.5031-5040, 2004.

M. C. Pitman and A. C. Van-duin, Dynamics of Confined Reactive Water in Smectite Clay-Zeolite Composites, J. Am. Chem. Soc, vol.134, pp.3042-3053, 2012.

C. Bai, L. Liu, and H. Sun, Molecular Dynamics Simulations of Methanol to Olefin Reactions in HZSM-5 Zeolite Using a ReaxFF Force Field, J. Phys. Chem. C, vol.116, pp.7029-7039, 2012.

K. L. Joshi and A. C. Van-duin, Molecular Dynamics Study on the Influence of Additives on the High-Temperature Structural and Acidic Properties of ZSM-5 Zeolite, vol.27, pp.4481-4488, 2013.

K. L. Joshi, G. Psofogiannakis, A. C. Van-duin, and S. Raman, Reactive Molecular Simulations of Protonation of Water Clusters and Depletion of Acidity in H-ZSM-5 Zeolite, Phys. Chem. Chem. Phys, vol.16, pp.18433-18441, 2014.

A. Prestianni, R. Cortese, and D. Duca, Propan-2-ol Dehydration on H-ZSM-5 and H-Y Zeolite: a DFT Study, React. Kinet. Catal, vol.108, pp.565-582, 2013.

S. D. Loades, S. W. Carr, D. H. Gay, and A. L. Rohl, Calculation of the Morphology of Silica Sodalite, J. Chem. Soc., Chem. Commun, pp.1369-1370, 1994.

P. S. Baram and S. C. Parker, Atomistic Simulation of Hydroxide Ions in Inorganic Solids, Philosophical Magazine B, vol.73, pp.49-58, 1996.

B. Civalleri, S. Casassa, E. Garrone, C. Pisani, and P. Ugliengo, Quantum Mechanical ab Initio Characterization of a Simple Periodic Model of the Silica Surface, J. Phys. Chem. B, vol.103, pp.2165-2171, 1999.

T. Bucko, L. Benco, and J. Hafner, Defect Sites at the (001) Surface of Mordenite: An Ab Initio Study, J. Chem. Phys, vol.118, pp.8437-8445, 2003.

T. Bucko, J. Hafner, and L. Benco, Adsorption and Vibrational Spectroscopy of Ammonia at Mordenite: Ab Initio Study, J. Chem. Phys, vol.120, pp.10263-10277, 2004.

I. Khalil, C. M. Celis-cornejo, K. Thomas, P. Bazin, A. Travert et al., Situ IR-ATR Study of the Interaction of Nitrogen Heteroaromatic Compounds with HY Zeolites: Experimental and Theoretical Approaches, vol.12, pp.1095-1108, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02347138

S. R. Stoyanov, S. Gusarov, S. M. Kuznicki, and A. Kovalenko, Theoretical Modeling of Zeolite Nanoparticle Surface Acidity for Heavy Oil Upgrading, J. Phys. Chem. C, vol.112, pp.6794-6810, 2008.

B. Slater, C. R. Catlow, Z. Liu, T. Ohsuna, O. Terasaki et al., Surface Structure and Crystal Growth of Zeolite Beta C, Angew. Chem. Int. Ed, vol.41, pp.1235-1237, 2002.

B. Slater, J. O. Titiloye, F. M. Higgins, and S. C. Parker, Atomistic Simulation of Zeolite Surfaces, Curr. Opin. Solid State Mater. Sci, vol.5, pp.417-424, 2001.

D. M. Abril, B. Slater, and C. Blanco, Modeling Dynamics of the External Surface of Zeolite LTA, Microporous Mesoporous Mater, vol.123, pp.268-273, 2009.

W. Gre?, S. C. Parker, B. Slater, and D. W. Lewis, Structure of Zeolite A (LTA) Surfaces and the Zeolite A/Water Interface, J. Phys. Chem. C, vol.114, pp.9739-9747, 2010.

J. Hermann, M. Trachta, P. Nachtigall, and O. Bludský, Theoretical Investigation of Layered Zeolite Frameworks: Surface Properties of 2D Zeolites, Catal. Today, vol.227, pp.2-8, 2014.

L. Whitmore, B. Slater, and C. R. Catlow, Adsorption of Benzene at the Hydroxylated (111) External Surface of Faujasite, Phys. Chem. Chem. Phys, vol.2, pp.5354-5356, 2000.

M. Kubo, Y. Oumi, H. Takaba, A. Chatterjee, and A. Miyamoto, Chemical Vapor Deposition Process on the ZSM-5(010) Surface as Investigated by Molecular Dynamics, J. Phys. Chem. B, vol.103, pp.1876-1880, 1999.

T. V. Ho, P. Nachtigall, and L. Grajciar, The Lewis Acidity of Three-and Two-Dimensional Zeolites: The Effect of Framework Topology, Catal. Today, vol.304, pp.12-21, 2018.

K. Varoon, X. Zhang, B. Elyassi, D. D. Brewer, M. Gettel et al., Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane, Science, vol.334, p.72, 2011.

H. V. Thang, J. Vaculík, J. P?ech, M. Kub?, J. ?ejka et al., The Brønsted Acidity of Three-and Two-Dimensional Zeolites, Microporous Mesoporous Mater, vol.282, pp.121-132, 2019.

M. Rybicki and J. Sauer, Acidity of Two-Dimensional Zeolites, Phys. Chem. Chem. Phys, vol.17, pp.27873-27882, 2015.

J. A. Boscoboinik, X. Yu, B. Yang, F. D. Fischer, R. Wlodarczyk et al., Modeling Zeolites with Metal-Supported Two-Dimensional Aluminosilicate Films, Angew. Chem. Int. Ed, vol.51, pp.6005-6008, 2012.

H. V. Thang, M. Rubes, O. Bludsky, and P. Nachtigall, Computational Investigation of the Lewis Acidity in Three-Dimensional and Corresponding Two-Dimensional Zeolites: UTL vs IPC-1P, J. Phys. Chem. A, vol.118, pp.7526-7534, 2014.

J. A. Boscoboinik, X. Yu, E. Emmez, B. Yang, S. Shaikhutdinov et al., Interaction of Probe Molecules with Bridging Hydroxyls of Two-Dimensional Zeolites: A Surface Science Approach, J. Phys. Chem. C, vol.117, pp.13547-13556, 2013.

M. Witman, S. Ling, P. Boyd, S. Barthel, M. Haranczyk et al., Cutting Materials in Half: A Graph Theory Approach for Generating Crystal Surfaces and Its Prediction of 2D Zeolites, ACS Cent. Sci, vol.4, pp.235-245, 2018.

C. E. Kirschhock, R. Ravishankar, L. V. Looveren, P. A. Jacobs, and J. A. Martens, Mechanism of Transformation of Precursors into Nanoslabs in the Early Stages of MFI and MEL Zeolite Formation from TPAOH?TEOS?H 2 O and TBAOH?TEOS?H 2 O Mixtures, J. Phys. Chem. B, vol.103, pp.4972-4978, 1999.

I. J. Drake, Y. Zhang, M. K. Gilles, C. N. Liu, P. Nachimuthu et al., An In Situ Al K-Edge XAS Investigation of the Local Environment of H + -and Cu + -Exchanged USY and ZSM-5 Zeolites, J. Phys. Chem. B, vol.110, pp.11665-11676, 2006.

M. Ravi, V. L. Sushkevich, and J. A. Van-bokhoven, Lewis Acidity Inherent to the Framework of Zeolite Mordenite, J. Phys. Chem. C, vol.123, pp.15139-15144, 2019.

T. Bucko, J. Hafner, and L. Benco, Adsorption and Vibrational Spectroscopy of CO on Mordenite: Ab Initio Density-Functional Study, J. Phys. Chem. B, vol.109, pp.7345-7357, 2005.

C. E. Hernandez-tamargo, A. Roldan, and N. H. De-leeuw, DFT Modeling of the Adsorption of Trimethylphosphine Oxide at the Internal and External Surfaces of Zeolite MFI, J. Phys. Chem. C, vol.120, pp.19097-19106, 2016.

F. Leydier, C. Chizallet, D. Costa, and P. Raybaud, CO Adsorption on Amorphous Silica-Alumina: Electrostatic or Brønsted Acidity Probe?, Chem. Commun, vol.48, pp.4076-4078, 2012.

T. Bucko, J. Hafner, and L. Benco, Active Sites for the Vapor Phase Beckmann Rearrangement over Mordenite: An ab Initio Study, J. Phys. Chem. A, vol.108, pp.11388-11397, 2004.

C. E. Hernandez-tamargo, A. Roldan, and N. H. De-leeuw, Density Functional Theory Study of the Zeolite-Mediated Tautomerization of Phenol and Catechol, Molecular Catalysis, vol.433, pp.334-345, 2017.

F. Leydier, C. Chizallet, D. Costa, and P. Raybaud, Revisiting Carbenium Chemistry on Amorphous Silica-Alumina: Unraveling their Milder Acidity as Compared to Zeolites, J. Catal, vol.325, pp.35-47, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01176479

H. Takaba, A. Koyama, and S. Nakao, Dual Ensemble Monte Carlo Simulation of Pervaporation of an Ethanol/Water Binary Mixture in Silicalite Membrane Based on a Lennard-Jones Interaction Model, J. Phys. Chem. B, vol.104, pp.6353-6359, 2000.

S. K. Schnell, L. Wu, A. J. Koekkoek, S. Kjelstrup, E. J. Hensen et al., Adsorption of Argon on MFI Nanosheets: Experiments and Simulations, J. Phys. Chem. C, vol.117, pp.24503-24510, 2013.

Y. Liu and X. Chen, High Permeability and Salt Rejection Reverse Osmosis by a Zeolite Nano-Membrane, Phys. Chem. Chem. Phys, vol.15, pp.6817-6824, 2013.

I. Inzoli, J. Simon, and S. Kjelstrup, Surface Adsorption Isotherms and Surface Excess Densities of n-Butane in Silicalite-1, Langmuir, vol.25, pp.1518-1525, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00454073

E. García-pérez, S. K. Schnell, J. M. Castillo, S. Calero, S. Kjelstrup et al., External Surface Adsorption on Silicalite-1 Zeolite Studied by Molecular Simulation, J. Phys. Chem. C, vol.115, pp.15355-15360, 2011.

N. E. Zimmermann, S. P. Balaji, and F. J. Keil, Surface Barriers of Hydrocarbon Transport Triggered by Ideal Zeolite Structures, J. Phys. Chem. C, vol.116, pp.3677-3683, 2012.

G. Sastre, J. Kärger, and D. M. Ruthven, Molecular Dynamics Study of Diffusion and Surface Permeation of Benzene in Silicalite, J. Phys. Chem. C, vol.122, pp.7217-7225, 2018.

N. E. Zimmermann, T. J. Zabel, and F. J. Keil, Transport into Nanosheets: Diffusion Equations Put to Test, J. Phys. Chem. C, vol.117, pp.7384-7390, 2013.

P. Bai, E. Haldoupis, P. J. Dauenhauer, M. Tsapatsis, and J. I. Siepmann, Understanding Diffusion in Hierarchical Zeolites with House-of-Cards Nanosheets, ACS Nano, vol.10, pp.7612-7618, 2016.

M. J. Mora-fonz, C. R. Catlow, and D. W. Lewis, Modeling Aqueous Silica Chemistry in Alkali Media, J. Phys. Chem. C, vol.111, pp.18155-18158, 2007.

T. T. Trinh, K. Tran, X. Zhang, R. A. Van-santen, and E. J. Meijer, The Role of a Structure Directing Agent Tetramethylammonium Template in the Initial Steps of Silicate Oligomerization in Aqueous Solution, Phys. Chem. Chem. Phys, vol.17, pp.21810-21818, 2015.

T. T. Trinh, X. Rozanska, F. Delbecq, and P. Sautet, The Initial Step of Silicate versus Aluminosilicate Formation in Zeolite Synthesis: a Reaction Mechanism in Water with a Tetrapropylammonium Template, Phys. Chem. Chem. Phys, vol.14, pp.3369-3380, 2012.

R. Y. Rohling, B. M. Szyja, and E. J. Hensen, Insight into the Formation of Nanostructured MFI Sheets and MEL Needles Driven by Molecular Recognition, J. Phys. Chem. C, vol.123, pp.5326-5335, 2019.

M. Ciantar, C. Mellot-draznieks, and C. Nieto-draghi, A Kinetic Monte Carlo Simulation Study of Synthesis Variables and Diffusion Coefficients in Early Stages of Silicate Oligomerization, J. Phys. Chem. C, vol.119, pp.28871-28884, 2015.

F. Bertoncini, A. Bonduelle-skrzypcak, J. Francis, and E. Guillon, Hydrocracking, In Catalysis by transition metal sulphides: from molecular theory to industrial applications

H. Toulhoat and P. Raybaud, , pp.609-677, 2013.

G. W. Huber, R. D. Cortright, and J. A. Dumesic, Renewable Alkanes by Aqueous-Phase Reforming of Biomass-Derived Oxygenates, Angew. Chem. Int. Ed, vol.43, pp.1549-1551, 2004.

J. Q. Bond, D. M. Alonso, D. Wang, R. W. West, and J. A. Dumesic, Integrated Catalytic Conversion of g-Valerolactone to Liquid Alkenes for Transportation Fuels, Science, vol.327, pp.1110-1114, 2010.

M. W. Hahn, J. R. Copeland, A. H. Van-pelt, and C. Sievers, Stability of Amorphous Silica-Alumina in Hot Liquid Water, ChemSusChem, vol.6, pp.2304-2315, 2013.

K. Larmier, C. Chizallet, S. Maury, N. Cadran, J. Abboud et al., Isopropanol Dehydration on Amorphous Silica-Alumina: Synergy of Bronsted and Lewis Acidities at Pseudo-Bridging Silanols, Angew. Chem. Int, vol.56, pp.230-234, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01518477

Z. Wang, T. Li, Y. Jiang, O. Lafon, Z. Liu et al., Acidity Enhancement Through Synergy of Penta-and Tetra-Coordinated Aluminum Species in Amorphous Silica Networks, Nature Commun, p.225, 2020.

D. M. Zirl and S. H. Garofalini, Structure of Sodium Aluminosilicate Glasses, J. Am. Ceram. Soc, vol.73, pp.2848-2856, 1990.

T. Charpentier, M. C. Menziani, and A. Pedone, Computational Simulations of Solid State NMR Spectra: a New Era in Structure Determination of Oxide Glasses, p.10550, 2013.

M. Benoit, S. Ispas, and M. Tuckerman, Structural Properties of Molten Silicates from Ab Initio Molecular-Dynamics Simulations: Comparison Between CaO-Al 2 O 3 -SiO 2 and SiO 2, Phys. Rev. B, p.224205, 2001.

R. Dongol, L. Wang, A. N. Cormack, and S. K. Sundaram, Molecular Dynamics Simulation of Sodium Aluminosilicate Glass Structures and Glass Surface-Water Reactions Using the Reactive Force Field (ReaxFF), Appl. Surf. Sci, vol.439, pp.1103-1110, 2018.

M. Bauchy, Deciphering the Atomic Genome of Glasses by Topological Constraint Theory and Molecular Dynamics: A Review, Comput. Mater. Sci, vol.159, pp.95-102, 2019.

C. Chizallet and P. Raybaud, Acidity of Amorphous Silica-Alumina: From Coordination Promotion of Lewis Sites to Proton Transfer, ChemPhysChem, issue.11, pp.105-108, 2010.

N. Katada and M. Niwa, Silica Monolayer Solid-Acid Catalyst Prepared by CVD, Chem. Vap. Deposition, vol.2, pp.125-134, 1996.

P. Sarrazin, S. Kasztelan, N. Zanier-szydlowski, J. P. Bonnelle, and J. Grimblot, Interaction of Oxomolybdenum Species with g-Al 2 O 3 and g-Al 2 O 3 Modified by Silicon. 1. The SiO 2 /g-Al 2 O 3 System, J. Phys. Chem, vol.97, pp.5947-5953, 1993.

M. Caillot, A. Chaumonnot, M. Digne, C. Poleunis, D. P. Debecker et al., Synthesis of Amorphous Aluminosilicates by Grafting: Tuning the Building and Final Structure of the Deposit by Selecting the Appropriate Synthesis Conditions, vol.185, pp.179-189, 2014.

M. Digne, P. Sautet, P. Raybaud, P. Euzen, and H. Toulhoat, Hydroxyl Groups on Gamma-Alumina Surfaces: a DFT Study, J. Catal, vol.211, pp.1-5, 2002.

M. Digne, P. Sautet, P. Raybaud, P. Euzen, and H. Toulhoat, Use of DFT to Achieve a Rational Understanding of Acid-Basic Properties of Gamma-Alumina Surfaces, J. Catal, vol.226, pp.54-68, 2004.

B. M. De-witte, P. J. Grobet, and J. B. Uytterhoeven, Pentacoordinated Aluminum in Noncalcined Amorphous Aluminosilicates, Prepared in Alkaline and Acid Medium, J. Phys. Chem, vol.99, pp.6961-6965, 1995.

J. P. Gilson, G. C. Edwards, A. W. Peters, K. Rajagopalan, R. F. Wormsbecher et al., Penta-Coordinated Aluminium in Zeolites and Aluminosilicates, J. Chem. Soc., Chem. Commun, pp.91-92, 1987.

A. S. Sandupatla, K. Alexopoulos, M. Reyniers, and G. B. Marin, DFT Investigation into Alumina ALD Growth Inhibition on Hydroxylated Amorphous Silica Surface, J. Phys. Chem. C, vol.119, pp.18380-18388, 2015.

J. Handzlik, R. Grybos, and F. Tielens, Isolated Chromium(VI) Oxide Species Supported on Al-Modified Silica: A Molecular Description, J. Phys. Chem. C, vol.120, pp.17594-17603, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01490433

S. Perez-beltran, P. B. Balbuena, and G. E. Ramírez-caballero, Surface Structure and Acidity Properties of Mesoporous Silica SBA-15 Modified with Aluminum and Titanium: First-Principles Calculations, J. Phys. Chem. C, vol.120, pp.18105-18114, 2016.

A. W. Moses, N. A. Ramsahye, C. Raab, H. D. Leifeste, S. Chattopadhyay et al., Methyltrioxorhenium Interactions with Lewis Acid Sites of an Amorphous Silica-Alumina, Organometallics, vol.25, pp.2157-2165, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00360921

R. Duchateau, R. J. Harmsen, H. C. Abbenhuis, R. Van-santen, A. Meetsma et al., Modeling Acidic Sites in Zeolites and Aluminosilicates by Aluminosilsesquioxanes, Chem. Eur. J, vol.5, pp.3130-3135, 1999.

K. Shyam-lokare, N. Frank, B. Braun-cula, I. Goikoetxea, J. Sauer et al., Trapping Aluminum Hydroxide Clusters with Trisilanols during Speciation in Aluminum(III)-Water Systems:Reproducible,Large Scale Access to Molecular Aluminate Models, Angew. Chem., Int. Ed, vol.55, pp.12325-12329, 2016.

K. S. Lokare, B. Braun-cula, C. Limberg, M. Jorewitz, J. T. Kelly et al., Structure and Reactivity of Al-O(H)-Al Moieties in Siloxide Frameworks: Solution and Gas-Phase Model Studies, Angew. Chem. Int. Edit, vol.58, pp.902-906, 2019.

F. Tielens, C. Gervais, J. F. Lambert, F. Mauri, and D. Costa, Ab Initio Study of the Hydroxylated Surface of Amorphous Silica: A Representative Model, Chem. Mater, vol.20, pp.3336-3344, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01361369

E. Lippmaa, M. Magi, A. Samoson, M. Tarmak, and G. Engelhardt, Investigation of the Structure of Zeolites by Solid-state High-Resolution 29 Si NMR Spectroscopy, J. Am. Chem. Soc, vol.103, pp.4992-4996, 1981.

E. Lippmaa, A. Samoson, G. Engelhardt, and A. R. Grimmer, Structural Studies of Silicates by Solid-State High-Resolution 29 Si NMR, J. Am. Chem. Soc, vol.102, pp.4889-4893, 1980.

J. B. Murdoch, J. F. Stebbins, I. E. Carmichael, and -. High, , vol.29

, Si NMR Study of Silicate and Aluminosilicate Glasses: the Effect of Network-Modifying Cations, Am. Mineral, vol.70, pp.332-343, 1985.

G. E. Maciel and D. W. Sindorf, Silicon-29 NMR Study of the Surface of Silica Gel by Cross Polarization and Magic-Angle Spinning, J. Am. Chem. Soc, vol.102, pp.7606-7607, 1980.

S. Sato, T. Sodesawa, and F. Nozaki, Solid-State NMR of Silica-Alumina Prepared by CVD, J. Mol. Catal, vol.66, pp.343-355, 1991.

L. Pauling, The nature of the chemical bond and the structure of molecules and crystals : an introduction to modern structural chemistry, 1960.

C. Chizallet, M. Digne, C. Arrouvel, P. Raybaud, F. Delbecq et al., Insights into the Geometry, Stability and Vibrational Properties of OH Groups on g-Al 2 O 3 , TiO 2 -Anatase and MgO from DFT Calculations, Topics Catal, vol.52, pp.1005-1016, 2009.

G. Busca, Catalytic Materials Based on Silica and Alumina: Structural Features and Generation of Surface Acidity, Prog. Mater. Sci, vol.104, pp.215-249, 2019.

M. Bevilacqua, T. Montanari, E. Finocchio, and G. Busca, Are the Active Sites of Protonic Zeolites Generated by the Cavities?, Catal. Today, vol.116, pp.132-142, 2006.

E. Garrone, B. Onida, B. Bonelli, C. Busco, and P. Ugliengo, Molecular Water on Exposed Al 3+ Cations Is a Source of Acidity in Silicoaluminas, J. Phys. Chem. B, vol.110, pp.19087-19092, 2006.

J. Blanchard, J. Krafft, C. Dupont, C. Sayag, T. Takahashi et al., On the Influence of Water Traces on the Acidity Measurement of Amorphous Aluminosilicates, Catal. Today, vol.226, pp.89-96, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01226880

T. K. Phung and G. Busca, Diethyl Ether Cracking and Ethanol Dehydration: Acid Catalysis and Reaction Paths, Chem. Eng. J, vol.272, pp.92-101, 2015.

K. Larmier, C. Chizallet, N. Cadran, S. Maury, J. Abboud et al., Mechanistic Investigation of Isopropanol Conversion on Alumina Catalysts: Location of Active Sites for Alkene/Ether Production, ACS Catal, vol.5, pp.4423-4437, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01172018

K. Larmier, A. Nicolle, C. Chizallet, N. Cadran, S. Maury et al., Influence of Coadsorbed Water and Alcohol Molecules on Isopropyl Alcohol Dehydration on ?-Alumina: Multiscale Modeling of Experimental Kinetic Profile, ACS Catal, vol.6, pp.1905-1920, 2016.

M. A. Makarova, C. Williams, K. I. Zamaraev, and J. M. Thomas, Mechanistic Study of Sec-Butyl Alcohol Dehydration on Zeolite H-ZSM-5 and Amorphous Aluminosilicate, J. Chem. Soc., Faraday Trans, vol.90, pp.2147-2153, 1994.

M. A. Makarova, E. A. Paukshtis, J. M. Thomas, C. Williams, and K. I. Zamaraev, Dehydration of n-Butanol on Zeolite H-ZSM-5 and Amorphous Aluminosilicate: Detailed Mechanistic Study and the Effect of Pore Confinement, J. Catal, vol.149, pp.36-51, 1994.

T. K. Phung, L. Proietti-hernández, A. Lagazzo, and G. Busca, Dehydration of Ethanol over Zeolites, Silica Alumina and Alumina: Lewis Acidity, Brønsted Acidity and Confinement Effects, Appl. Catal. A, vol.493, pp.77-89, 2015.

J. Weitkamp, Catalytic Hydrocracking-Mechanisms and Versatility of the Process, ChemCatChem, vol.4, pp.292-306, 2012.

C. Bouchy, G. Hastoy, E. Guillon, and J. A. Martens, Fischer-Tropsch Waxes Upgrading via Hydrocracking and Selective Hydroisomerization, Oil Gas Sci. Technol. -Rev. IFP, vol.64, pp.91-112, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02001400

J. Ze?evi?, A. M. Van-der-eerden, H. Friedrich, P. E. De-jongh, and K. P. Jong, Heterogeneities of the Nanostructure of Platinum/Zeolite Y Catalysts Revealed by Electron Tomography, ACS Nano, vol.7, pp.3698-3705, 2013.

J. Zecevic, G. Vanbutsele, K. P. De-jong, and J. A. Martens, Nanoscale Intimacy in Bifunctional Catalysts for Selective Conversion of Hydrocarbons, Nature, vol.528, pp.245-248, 2015.

E. Gutierrez-acebo, C. Leroux, C. Chizallet, Y. Schuurman, and C. Bouchy, Metal/Acid Bifunctional Catalysis and Intimacy Criterion for Ethylcyclohexane Hydroconversion: When Proximity Does Not Matter, ACS Catal, vol.8, pp.6035-6046, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01879819

P. B. Weisz, Polyfunctional Heterogeneous Catalysis, Adv. Catal, vol.13, pp.137-190, 1962.

V. K. Markova, G. N. Vayssilov, A. Genest, and N. Rosch, Adsorption and Transformations of Ethene on Hydrogenated Rhodium Clusters in Faujasite-Type Zeolite. A Computational Study, Catal. Sci. Technol, vol.6, pp.1726-1736, 2016.

R. Grybos, L. Benco, T. Bucko, and J. Hafner, Molecular Adsorption and Metal-Support Interaction for Transition-Metal Clusters in Zeolites: NO Adsorption on Pd n (n=1-6) Clusters in Mordenite, J. Chem. Phys, vol.130, pp.104501-104520, 2009.

A. M. Joshi, W. N. Delgass, and K. T. Thomson, Adsorption of Small Au n (n = 1?5) and Au?Pd Clusters Inside the TS-1 and S-1 Pores, J. Phys. Chem. B, vol.110, pp.16439-16451, 2006.

J. Moc, D. G. Musaev, and K. Morokuma, Zeolite-Supported Palladium Tetramer and Its Reactivity toward H 2 Molecules: Computational Studies, J. Phys. Chem. A, vol.112, pp.5973-5983, 2008.

M. N. Mikhailov, L. M. Kustov, and V. B. Kazansky, The State and Reactivity of Pt 6 Particles in ZSM-5 Zeolite, Catal. Lett, vol.120, pp.8-13, 2007.

M. N. Mikhailov, I. V. Mishin, L. M. Kustov, and V. Z. Mordkovich, The Structure and Activity of Pt 6 particles in ZSM-5 Type Zeolites, Catal. Today, vol.144, pp.273-277, 2009.

M. N. Mikhailov, I. V. Mishin, and L. M. Kustov, Platinum Nanoparticles as Active Sites for C-? Bond Activation in High-Silica Zeolites, Microporous Mesoporous Mater, vol.117, pp.603-608, 2009.

P. S. Petkov, G. P. Petrova, G. N. Vayssilov, and N. Rösch, Saturation of Small Supported Metal Clusters by Adsorbed Hydrogen. A Computational Study on Tetrahedral Models of Rh 4 , Ir 4 , and Pt 4, J. Phys. Chem. C, vol.114, pp.8500-8506, 2010.

G. N. Vayssilov and N. Rösch, Reverse Hydrogen Spillover in Supported Subnanosize Clusters of the Metals of Groups 8 to 11. A Computational Model Study, Phys. Chem. Chem. Phys, vol.7, pp.4019-4026, 2005.

C. H. Hu, C. Chizallet, C. Mager-maury, M. Valero, P. Sautet et al., Modulation of Catalyst Particle Structure upon Support Hydroxylation: Ab Initio Insights for Pd 13 and Pt 13 / Gamma-Al 2 O 3, J. Catal, vol.274, pp.99-110, 2010.

C. Mager-maury, G. Bonnard, C. Chizallet, P. Sautet, and P. Raybaud, H 2 -Induced Reconstruction of Supported Pt Clusters: Metal-Support Interaction versus Surface Hydride, ChemCatChem, vol.3, pp.200-207, 2011.

A. Jahel, V. Moizan-baslé, C. Chizallet, P. Raybaud, J. Olivier-fourcade et al., Effect of Indium-Doping of Gamma-Alumina on the Stabilization of PtSn Alloy Clusters Prepared by Surface Organostannic Chemistry, J. Phys. Chem. C, vol.116, pp.10073-10083, 2012.

C. Mager-maury, C. Chizallet, P. Sautet, and P. Raybaud, Platinum Nano-Clusters Stabilized on g-alumina by Chlorine Used as a Capping Surface Ligand: a DFT Study, ACS Catal, vol.2, pp.1346-1357, 2012.

A. Gorczyca, V. Moizan, C. Chizallet, O. Proux, W. Del-net et al., Monitoring Morphology and Hydrogen Coverage of Nanometric Pt/Gamma-Al 2 O 3 Particles by in situ HERFD-XANES and Quantum Simulations, Angew. Chem., Int. Ed, vol.53, pp.12426-12429, 2014.

A. Gorczyca, P. Raybaud, V. Moizan, Y. Joly, and C. Chizallet, Atomistic Models for Highly-Dispersed PtSn/?-Al 2 O 3 Catalysts: Ductility and Dilution Affect the Affinity for Hydrogen, vol.11, pp.3941-3951, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02276526

P. Raybaud, C. Chizallet, C. Mager-maury, M. Digne, H. Toulhoat et al., From Gamma-Alumina to Supported Platinum Nanoclusters in Reforming Conditions: 10 years of DFT Modeling and Beyond, J. Catal, vol.308, pp.328-340, 2013.

W. Zhao, C. Chizallet, P. Sautet, and P. Raybaud, Dehydrogenation Mechanisms of Methyl-Cyclohexane on ?-Al 2 O 3 Supported Pt 13 : Impact of Cluster Ductility, J. Catal, vol.370, pp.118-129, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01999587