R. Ababou, Solution of stochastic groundwater flow by infinite series, and convergence of the one-dimensional expansion, Stochastic Hydrology and 650 Hydraulics, vol.8, pp.139-155, 1994.

R. Ababou, Random porous media flow on large 3-D grids: numerics, performance, and application to homogenization, Environmental Studies, pp.1-25, 1996.

R. Ababou, D. Mclaughlin, L. W. Gelhar, and A. F. Tompson, Numerical 655 simulation of three-dimensional saturated flow in randomly heterogeneous porous media, Transport in Porous Media, vol.4, pp.549-565, 1989.

B. Abramovich and P. Indelman, Effective permittivity of log-normal isotropic random media, Journal of Physics A: Mathematical and General, vol.28, p.693, 1995.

C. G. Aguilar-madera, E. C. Herrera-hernández, and G. Espinosa-paredes, Solute transport in heterogeneous reservoirs: Upscaling from the darcy to the reservoir scale, Advances in Water Resources, vol.124, pp.9-28, 2019.

A. Hassan, W. A. Jiang, and X. , Upscaling and its application in numerical simulation of long-term CO2 storage, Greenhouse Gases: Science and 665 Technology, vol.2, pp.408-418, 2012.

S. Armstrong, T. Kuusi, and J. C. Mourrat, Quantitative stochastic homogenization and large-scale regularity, vol.352, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01728747

S. Attinger, Generalized coarse graining procedures for flow in porous media, Computational Geosciences, vol.7, pp.253-273, 2003.

J. Auriault, Effective macroscopic description for heat conduction in periodic composites, International Journal of Heat and Mass Transfer, vol.26, pp.861-869, 1983.

D. Bauer, L. Talon, and A. Ehrlacher, Computation of the equivalent macroscopic permeability tensor of discrete networks with heterogeneous segment 675 length, Journal of Hydraulic Engineering, vol.134, pp.784-793, 2008.

B. Berkowitz and I. Balberg, Percolation theory and its application to groundwater hydrology, Water Resources Research, vol.29, pp.775-794, 1993.

Y. Bernabé, M. Li, Y. B. Tang, and B. Evans, Pore space connectivity and the transport properties of rocks. Oil & Gas Science and Technology-Revue 680 d'IFP Energies nouvelles 71, p.50, 2016.

Y. Bernabé, U. Mok, B. Evans, and F. Herrmann, Permeability and storativity of binary mixtures of high-and low-permeability materials, Journal of Geophysical Research: Solid Earth, vol.109, 2004.

H. Beucher and D. Renard, Truncated gaussian and derived methods, p.685, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01302355

, Comptes Rendus Geoscience, vol.348, pp.510-519

Ø. Bøe, Analysis of an upscaling method based on conservation of dissipation, Transport in Porous Media, vol.17, pp.77-86, 1994.

A. Boschan and B. Noetinger, Scale dependence of effective hydraulic conductivity distributions in 3D heterogeneous media: a numerical study, Trans-690 port in Porous Media, vol.94, pp.101-121, 2012.

V. D. Bruggeman, Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. i. dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen, Water Resources Research, vol.416, pp.6846-6892, 1935.

Y. Chen, L. J. Durlofsky, M. Gerritsen, and X. H. Wen, A coupled localglobal upscaling approach for simulating flow in highly heterogeneous formations, Advances in Water Resources, vol.26, pp.1041-1060, 2003.

G. Dagan, Flow and transport in porous formations, 1989.

G. Dagan, Higher-order correction of effective permeability of heterogeneous isotropic formations of lognormal conductivity distribution, Transport in Porous Media, vol.12, pp.279-290, 1993.

G. Dagan, A. Fiori, and I. Jankovic, Upscaling of flow in heterogeneous porous formations: Critical examination and issues of principle, Advances in Water Resources, vol.51, pp.67-85, 2013.

Y. Davit and M. Quintard, Technical notes on volume averaging in porous media I: How to choose a spatial averaging operator for periodic and quasiperi-710 odic structures, Transport in Porous Media, vol.119, pp.555-584, 2017.

A. De-wit, Correlation structure dependence of the effective permeability of heterogeneous porous media, Physics of Fluids, vol.7, pp.2553-2562, 1995.

A. Desbarats, Spatial averaging of hydraulic conductivity in threedimensional heterogeneous porous media, Mathematical Geology, vol.24, pp.249-267, 1992.

A. Desbarats and R. Srivastava, Geostatistical characterization of groundwater flow parameters in a simulated aquifer, Water Resources Research, vol.27, pp.687-698, 1991.

L. Durlofsky, Coarse scale models of two phase flow in heterogeneous reservoirs: volume averaged equations and their relationship to existing up-720 scaling techniques, Computational Geosciences, vol.2, pp.73-92, 1998.

L. J. Durlofsky, Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media, Water Resources Research, vol.27, pp.699-708, 1991.

L. J. Durlofsky, Representation of grid block permeability in coarse scale 725 models of randomly heterogeneous porous media, Water Resources Research, vol.28, pp.1791-1800, 1992.

J. Eberhard, S. Attinger, and G. Wittum, Coarse graining for upscaling of flow in heterogeneous porous media, Multiscale Modeling & Simulation, vol.2, pp.269-301, 2004.

L. W. Gelhar, Stochastic subsurface hydrology, 1993.

V. A. Godoy, L. V. Zuquette, and J. J. Gómez-hernández, Stochastic analysis of three-dimensional hydraulic conductivity upscaling in a heterogeneous tropical soil, Computers and Geotechnics, vol.100, pp.174-187, 2018.

W. G. Gray and C. T. Miller, Thermodynamically constrained averaging the-735 ory approach for modeling flow and transport phenomena in porous medium systems: 1. motivation and overview, Advances in Water Resources, vol.28, pp.161-180, 2005.

A. Guadagnini, M. Riva, and S. P. Neuman, Recent advances in scalable non-gaussian geostatistics: The generalized sub-gaussian model, Journal, vol.740, 2018.

A. Guin and R. W. Ritzi, Studying the effect of correlation and finitedomain size on spatial continuity of permeable sediments. Geophysical Research Letters 35, 2008.

A. W. Harbaugh, MODFLOW-2005, the US Geological Survey modular 745 ground-water model: the ground-water flow process, US Geological Survey, 2005.

Z. Hashin and S. Shtrikman, A variational approach to the theory of the effective magnetic permeability of multiphase materials, Journal of Applied Physics, vol.33, pp.3125-3131, 1962.

Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials, Journal of the Mechanics and Physics of Solids, vol.11, pp.127-140, 1963.

M. Hassanizadeh and W. G. Gray, General conservation equations for multiphase systems: 1. averaging procedure, Advances in water resources, vol.2, pp.131-755, 1979.

D. T. Hristopulos, Random Fields for Spatial Data Modeling A Primer for Scientists and Engineers, 2020.

A. Hunt, R. Ewing, and B. Ghanbarian, Percolation theory for flow in porous media, vol.880, 2014.

A. Hunt and M. Sahimi, Transport and reaction in porous media: Percolation scaling, critical-path analysis, and effective-medium approximation, Reviews of Geophysics, vol.55, 2017.

P. Indelman and B. Abramovich, A higher-order approximation to effective conductivity in media of anisotropic random structure, Water Resources 765 Research, vol.30, pp.1857-1864, 1994.

P. Indelman and G. Dagan, Upscaling of conductivity of heterogeneous formations: General approach and application to isotropic media, Transport in Porous Media, vol.12, pp.161-183, 1993.

P. Indelman and G. Dagan, Upscaling of permeability of anisotropic het-770 erogeneous formations: 2. general structure and small perturbation analysis, Water Resources Research, vol.29, pp.925-933, 1993.

P. Jacquard, Permeability distribution from field pressure data, Society of Petroleum Engineers Journal, vol.5, pp.281-294, 1965.

V. V. Jikov, S. M. Kozlov, and O. A. Oleinik, Homogenization of differential 775 operators and integral functionals, 2012.

A. Journel, C. Deutsch, and A. Desbarats, Power averaging for block effective permeability, SPE California Regional Meeting, 1986.

M. Karimi-fard and L. Durlofsky, A general gridding, discretization, and 780 coarsening methodology for modeling flow in porous formations with discrete geological features, Advances in Water Resources, vol.96, pp.354-372, 2016.

P. King, The use of renormalization for calculating effective permeability, Transport in Porous Media, vol.4, pp.37-58, 1989.

C. Knudby and J. Carrera, On the relationship between indicators of geo-785 statistical, flow and transport connectivity, Advances in Water Resources, vol.28, pp.405-421, 2005.

L. Landau and E. Lifshitz, Electrodynamics of continuous media, vol.8, 1960.

L. Loc, &. , and G. , Etude de la composition des perméabilités par des méthodes variationnelles, p.790, 1987.

G. Terre and . Paris, , 1987.

M. Le-ravalec, B. Noetinger, and L. Y. Hu, The FFT moving average (FFT-MA) generator: An efficient numerical method for generating and conditioning gaussian simulations, Mathematical Geology, vol.32, pp.701-723, 2000.

J. Y. Leung and S. Srinivasan, Scale-up of mass transfer and recovery per-795 formance in heterogeneous reservoirs, Journal of Petroleum Science and Engineering, vol.86, pp.71-86, 2012.

Q. Liao, G. Lei, D. Zhang, and S. Patil, Analytical solution for upscaling hydraulic conductivity in anisotropic heterogeneous formations, Advances in Water Resources, vol.128, pp.97-116, 2019.

N. Linde, P. Renard, T. Mukerji, and J. Caers, Geological realism in hydrogeological and geophysical inverse modeling: a review, Advances in Water Resources, vol.86, 2015.

Z. F. Liu and X. H. Wang, Finite analytic numerical method for twodimensional fluid flow in heterogeneous porous media, Journal of Compu-805 tational Physics, vol.235, pp.286-301, 2013.

I. Malinouskaya, C. Preux, N. Guy, and G. Etienne, Impact of geomechanical effects during sagd process in a meander belt, Gas Sciences and Technology 73, p.17, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01803775

M. Masihi, P. Gago, and P. King, Estimation of the effective permeability 810 of heterogeneous porous media by using percolation concepts, 2016.

G. Matheron, Eléments pour une théorie des milieux poreux, 1967.

J. C. Maxwell, A treatise on electricity and magnetism, vol.1, p.1873

S. P. Neuman and S. Orr, Prediction of steady state flow in nonuniform geologic media by conditional moments: Exact nonlocal formalism, effective conductivities, and weak approximation, Water Resources Research, vol.29, pp.341-364, 1993.

B. Noetinger, The effective permeability of a heterogeneous porous 820 medium, Transport in porous media 15, pp.99-127, 1994.

B. Noetinger, Computing the effective permeability of log-normal permeability fields using renormalization methods, Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science, vol.331, pp.353-357, 2000.

B. Noetinger, An explicit formula for computing the sensitivity of the 825 effective conductivity of heterogeneous composite materials to local inclusion transport properties and geometry, Multiscale Modeling & Simulation, vol.11, pp.907-924, 2013.

B. Noetinger and Y. Gautier, Use of the Fourier-Laplace transform and of diagrammatical methods to interpret pumping tests in heterogeneous reser-830 voirs, Advances in Water Resources, vol.21, pp.581-590, 1998.

B. Noetinger and G. Zargar, Multiscale description and upscaling of fluid flow in subsurface reservoirs, Oil & Gas Science and Technology, vol.59, pp.119-139, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02017298

M. Panzeri, M. Riva, A. Guadagnini, and S. P. Neuman, Theory and generation of conditional, scalable sub-gaussian random fields, Water Resources 835 Research, vol.52, pp.1746-1761, 2016.

E. Pardo-igúzquiza and P. A. Dowd, CONNEC3D: a computer program for connectivity analysis of 3D random set models, Computers & Geosciences, vol.29, pp.775-785, 2003.

S. Pozdniakov and C. F. Tsang, A self-consistent approach for calculating the 840 effective hydraulic conductivity of a binary, heterogeneous medium, Water Resources Research, vol.40, 2004.

C. Preux, About the use of quality indicators to reduce information loss when performing upscaling, Oil & Gas Science and Technology, vol.71, p.7, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01275011

M. Quintard and S. Whitaker, Transport in chemically and mechanically 845 heterogeneous porous media III. large-scale mechanical equilibrium and the regional form of darcy's law, Advances in Water Resources, vol.21, pp.617-629, 1998.

P. Renard and G. De-marsily, Calculating equivalent permeability: a review, Advances in Water Resources, vol.20, pp.253-278, 1997.

M. Riva, A. Guadagnini, and S. P. Neuman, Theoretical analysis of non-850 gaussian heterogeneity effects on subsurface flow and transport, Water Resources Research, vol.53, pp.2998-3012, 2017.

R. Romeu and B. Noetinger, Calculation of internodal transmissivities in finite difference models of flow in heterogeneous porous media, Water Resources Research, vol.31, pp.943-959, 1995.

Y. Rubin and J. J. Gómez-hernández, A stochastic approach to the problem of upscaling of conductivity in disordered media: Theory and unconditional numerical simulations, Water Resources Research, vol.26, pp.691-701, 1990.

X. Sánchez-vila, J. P. Girardi, and J. Carrera, A synthesis of approaches to upscaling of hydraulic conductivities, Water Resources Research, vol.31, pp.867-882, 1995.

X. Sanchez-vila, A. Guadagnini, and J. Carrera, Representative hydraulic conductivities in saturated groundwater flow, Reviews of Geophysics, vol.44, 2006.

D. Stauffer and A. Aharony, Introduction to percolation theory: revised second edition, 2014.

Y. A. Stepanyants and E. Teodorovich, Effective hydraulic conductivity of a 865 randomly heterogeneous porous medium, Water Resources research, p.39, 2003.

H. Vereecken, R. Kasteel, J. Vanderborght, and T. Harter, Upscaling hydraulic properties and soil water flow processes in heterogeneous soils a review, Vadose Zone J, vol.6, pp.1-28, 2007.

G. W. Wang, Z. F. Liu, and X. H. Wang, Finite analytic method for 2d steady 870 fluid flows in heterogeneous porous media with unstructured grids, International Journal for Numerical Methods in Engineering, vol.113, pp.742-766, 2018.

Y. F. Wang, Z. F. Liu, and X. H. Wang, Finite analytic numerical method for three-dimensional fluid flow in heterogeneous porous media, Journal of Computational Physics, vol.278, pp.169-181, 2014.

X. Wen, L. Durlofsky, and M. Edwards, Use of border regions for improved permeability upscaling, Mathematical Geology, vol.35, pp.521-547, 2003.

X. H. Wen and J. J. Gómez-hernández, Upscaling hydraulic conductivities in heterogeneous media: An overview, Journal of Hydrology, vol.183, pp.9-32, 1996.

S. Whitaker, The method of volume averaging, vol.13, 2013.

F. Willot and D. Jeulin, Elastic behavior of composites containing boolean random sets of inhomogeneities, International Journal of Engineering Science, vol.47, pp.313-324, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00426398

B. D. Wood and F. J. Valdés-parada, Volume averaging: Local and non local 885 closures using a Green's function approach, Advances in Water Resources, vol.51, pp.139-167, 2013.

B. Wu, Z. F. Liu, and X. H. Wang, Statistical behaviors for renormalization of correlated permeability field, Physica A: Statistical Mechanics and its Applications, vol.392, pp.3115-3121, 2013.

X. L. Zheng, Z. F. Liu, X. H. Wang, and A. F. Shi, Calculating the internodal transmissibilities using finite analytic method and its application for multi-phase flow in heterogeneous porous media, International Journal for Numerical and Analytical Methods in Geomechanics, vol.41, pp.79-92, 2017.

X. Y. Zhou, P. Gosling, C. Pearce, L. Kaczmarczyk, and Z. Ullah, , p.895, 2016.

, Perturbation-based stochastic multi-scale computational homogenization method for the determination of the effective properties of composite materials with random properties, Computer Methods in Applied Mechanics and Engineering, vol.300, pp.84-105