B. Kinsella, Y. J. Tan, and S. Bailey, Electrochemical Impedance Spectroscopy and Surface Characterization Techniques to Study Carbon Dioxide Corrosion Product Scales, CORROSION, vol.54, issue.10, pp.835-842, 1998.

T. Berntsen, M. Seiersten, and T. Hemmingsen, Corrosion, 2011.

D. Burkle, R. De-motte, W. Taleb, A. Kleppe, T. Comyn et al., In situ SR-XRD study of FeCO3 precipitation kinetics onto carbon steel in CO2-containing environments: The influence of brine pH, Electrochimica Acta, vol.255, pp.127-144, 2017.

R. A. De-motte, R. Barker, D. Burkle, S. M. Vargas, and A. Neville, The early stages of FeCO3 scale formation kinetics in CO2 corrosion, Materials Chemistry and Physics, vol.216, pp.102-111, 2018.

W. Sun and S. Nesic, NACE standards translated to Chinese, Anti-Corrosion Methods and Materials, vol.53, issue.3, p.6365, 2006.

W. Sun, S. Ne?i?, and S. Papavinasam, Kinetics of Corrosion Layer Formation. Part 2?Iron Sulfide and Mixed Iron Sulfide/Carbonate Layers in Carbon Dioxide/Hydrogen Sulfide Corrosion, CORROSION, vol.64, issue.7, pp.586-599, 2008.

M. Gao, X. Pang, and K. Gao, The growth mechanism of CO2 corrosion product films, Corrosion Science, vol.53, issue.2, pp.557-568, 2011.

J. L. Crolet and M. R. Bonis, pH Measurements in Aqueous CO2Solutions under High Pressure and Temperature, CORROSION, vol.39, issue.2, pp.39-46, 1983.

A. Dugstad, Corrosion/98, vol.31, 1998.

C. Waard and D. E. Milliams, Corrosion, vol.31, issue.5, pp.177-181, 1975.

W. Li, B. Brown, D. Young, and S. Ne?i?, Investigation of Pseudo-Passivation of Mild Steel in CO2Corrosion, CORROSION, vol.70, issue.3, pp.294-302, 2014.

L. G. Gray, B. G. Anderson, M. J. Danysh, and P. R. Tremaine, Paper Coating Technique Uses Polka-Dot Pattern, Chemical & Engineering News, vol.40, issue.19, pp.84-87, 1962.

L. G. Gray, B. G. Anderson, M. J. Danysh, and P. R. Tremaine, Corrosion, vol.89, 1989.

T. Tanupabrungsun, B. Brown, and S. Nesic, NACE International Corrosion Certification Programming moves to the new NACE International Institute, Anti-Corrosion Methods and Materials, vol.60, issue.3, p.2348, 2013.

J. Han, Y. Yang, S. Nesic, and B. N. Brown, NACE International Corrosion Certification Programming moves to the new NACE International Institute, Anti-Corrosion Methods and Materials, vol.60, issue.3, p.8332, 2013.

J. Han, D. Young, H. Colijn, A. Tripathi, and S. Nes?ic?, Chemistry and Structure of the Passive Film on Mild Steel in CO2Corrosion Environments, Industrial & Engineering Chemistry Research, vol.48, issue.13, pp.6296-6302, 2009.

T. Tanupabrungsun, Thermodynamics and Kinetics of CO2 Corrosion of Mild Steel at Elevated Temperatures, 2013.

Z. T. Roland-de-marco, D. Jiang, M. John, B. Sercombe, and . Kinsella, Electrochimica Acta, vol.52, issue.11, pp.3746-3750, 2007.

Y. Yang, B. Brown, and S. Nesic, Study of Protective Iron Carbonate Layer Dissolution in a CO2 Corrosion Environment, 2013.

T. Das-chagas-almeida, M. C. Bandeira, R. M. Moreira, and O. R. Mattos, New insights on the role of CO 2 in the mechanism of carbon steel corrosion, Corrosion Science, vol.120, pp.239-250, 2017.

D. S. Carvalho, C. J. Joia, and O. R. Mattos, Corrosion rate of iron and iron?chromium alloys in CO2 medium, Corrosion Science, vol.47, issue.12, pp.2974-2986, 2005.

K. Lee and S. Nesic, The Effect of Trace Amount of H2S on CO2 Corrosion Investigated by Using the EIS Technique, 2005.

K. Lee and S. Nesic, EIS Investigation on the Electrochemistry of CO2/H2S Corrosion, 2004.

M. E. Orazem and B. Tribollet, Electrochemical Impedance Spectroscopy, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02880772

G. J. Brug, A. L. Van-den-eeden, M. Sluyters-rehbach, and J. H. Sluyters, The analysis of electrode impedances complicated by the presence of a constant phase element, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.176, issue.1-2, pp.275-295, 1984.

O. Devos, C. Gabrielli, and B. Tribollet, Simultaneous EIS and in situ microscope observation on a partially blocked electrode application to scale electrodeposition, Electrochimica Acta, vol.51, issue.8-9, pp.1413-1422, 2006.

G. A. Zhang, M. X. Lu, Y. B. Qiu, X. P. Guo, and Z. Y. Chen, The Relationship between the Formation Process of Corrosion Scales and the Electrochemical Mechanism of Carbon Steel in High Pressure CO2-Containing Formation Water, Journal of The Electrochemical Society, vol.159, issue.9, pp.C393-C402, 2012.

R. Jaouhari, A. Benbachir, A. Guenbour, C. Gabrielli, J. Garcia-jareno et al., Influence of Water Composition and Substrate on Electrochemical Scaling, Journal of The Electrochemical Society, vol.147, issue.6, p.2151, 2000.

C. H. Hsu and F. Mansfeld, Technical Note:Concerning the Conversion of the Constant Phase Element Parameter Y0into a Capacitance, CORROSION, vol.57, issue.9, pp.747-748, 2001.

R. Gary and . Olhoeft, Tables of Room Temperature Electrical Properties for Selected Rocks and Minerals with Dielectric Permittivity Statistics, 1979.

G. R. Joshi, K. Cooper, X. Zhong, A. B. Cook, E. A. Ahmad et al., Temporal evolution of sweet oilfield corrosion scale: Phases, morphologies, habits, and protection, Corrosion Science, vol.142, pp.110-118, 2018.

J. Han, S. Ne?i?, Y. Yang, and B. N. Brown, Spontaneous passivation observations during scale formation on mild steel in CO2 brines, Electrochimica Acta, vol.56, issue.15, pp.5396-5404, 2011.

M. Imran, A. Akbar, S. Riaz, S. Atiq, and S. Naseem, Electronic and Structural Properties of Phase-Pure Magnetite Thin Films: Effect of Preferred Orientation, Journal of Electronic Materials, vol.47, issue.11, pp.6613-6624, 2018.

C. A. Palacios and J. R. Shadley, Characteristics of Corrosion Scales on Steels in a CO2-Saturated NaCl Brine, CORROSION, vol.47, issue.2, pp.122-127, 1991.