F. Van-looij, P. Van-der-laan, W. H. Stork, D. J. Dicamillo, and J. Swain, Key parameters in deep hydrodesulfurization of diesel fuel, Appl. Catal. A, vol.170, pp.1-12, 1998.

P. Zeuthen, K. G. Knudsen, and D. D. Whitehurst, Organic nitrogen compounds in gas oil blends, their hydrotreated products and the importance to hydrotreatment, Catal. Today, vol.65, pp.307-314, 2001.

G. C. Laredo, J. A. De-los-reyes, J. L. Cano, J. J. Castillo, and E. Altamirano, Inhibition effects of nitrogen compounds on the hydrodesulfurization of dibenzothiophene, Appl Catal A, vol.207, pp.103-112, 2001.

M. S. Rana, A. Al-barood, R. Brouresli, A. W. Al-hendi, and N. Mustafa, Effect of organic nitrogen compounds on deep hydrodesulfurization of middle distillate, Fuel Process. Technol, vol.177, pp.170-178, 2018.

G. H. Prado, Y. Rao, and A. De-klerk, Nitrogen Removal from Oil: A Review, Energy Fuels, vol.31, pp.14-36, 2017.

D. Silva, J. M. Machado, M. E. Maciel, G. P. Dal-molin, D. Caramão et al., Speciation of nitrogen-containing compounds in an unfractionated coal tar sample by comprehensive twodimensional gas chromatography coupled to time-of-flight mass spectrometry, J. Chromatogr. A, pp.159-168, 1373.

N. Salazar, S. B. Schmidt, and J. V. Lauritsen, Adsorption of nitrogenous inhibitor molecules on MoS2 and CoMoS hydrodesulfurization catalysts particles investigated by scanning tunneling microscopy, J. Catal, vol.370, pp.232-240, 2019.

Z. Vít, L. Kalu?a, and D. Gulková, Comparison of nitrogen tolerance of PdMo/Al2O3 and

, CoMo/Al2O3 catalysts in hydrodesulfurization of model compounds, Fuel, vol.120, pp.86-90, 2014.

M. E. Machado, Comprehensive two-dimensional gas chromatography for the analysis of nitrogen-containing compounds in fossil fuels: A review, Talanta, vol.198, pp.263-276, 2019.

C. Von-mühlen, E. C. De-oliveira, P. D. Morrison, C. A. Zini, E. B. Caramão et al.,

P. , Qualitative and quantitative study of nitrogencontaining compounds in heavy gas oil using comprehensive two-dimensional gas chromatography with nitrogen phosphorus detection, J. Sep. Sci, vol.30, pp.3223-3232, 2007.

P. Wiwel, K. Knudsen, P. Zeuthen, and D. Whitehurst, Assessing Compositional Changes of Nitrogen Compounds during Hydrotreating of Typical Diesel Range Gas Oils Using a Novel Preconcentration Technique Coupled with Gas Chromatography and Atomic Emission Detection, Ind. Eng. Chem. Res, vol.39, pp.533-540, 2000.

G. W. Mushrush, E. J. Beal, D. R. Hardy, and J. M. Hughes, Nitrogen compound distribution in middle distillate fuels derived from petroleum, oil shale, and tar sand sources, Fuel Process. Technol, vol.61, pp.197-210, 1999.

X. Cheng, T. Zhao, X. Fu, and Z. Hu, Identification of nitrogen compounds in RFCC diesel oil by mass spectrometry, Fuel Process. Technol, vol.85, pp.1463-1472, 2004.

F. Adam, F. Bertoncini, N. Brodusch, E. Durand, D. Thiébaut et al.,

M. , New benchmark for basic and neutral nitrogen compounds speciation in middle distillates using comprehensive two-dimensional gas chromatography, J. Chromatogr. A, pp.55-64, 1148.

T. Dutrieza, J. Borrasa, M. Courtiadea, D. Thiébautb, H. Dulota et al., Challenge in the speciation of nitrogen-containing compounds in heavy petroleum fractions by high temperature comprehensive two-dimensional gas chromatography, J. Chromatogr. A, pp.3190-3199, 1218.

P. Wiwel, B. Hinnemann, A. Hidalgo-vivas, P. Zeuthen, .. O. Bpetersen et al., Characterization and Identification of the most Refractory Nitrogen Compounds in Hydroprocessed Vacuum Gas Oil, Ind. Eng. Chem. Res, vol.49, pp.3184-3193, 2010.

K. Lissitsyna, S. Huertas, L. C. Quintero, and L. M. Polo, Novel simple method for quantitation of nitrogen compounds in middle distillates using solid phase extraction and comprehensive two-dimensional gas chromatography, Fuel, vol.104, pp.752-757, 2013.

L. Chahen, A. Quoineaud, D. Proriol, S. Artero, M. Vidalie et al.,

M. Rivallan, Speciation of Basic Nitrogen Compounds in Gas Oils and Vacuum Gas Oils by Derivatization with BF3 prior to NMR Analysis, Energy Fuels, vol.31, pp.10752-10759, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01702373

. Acd/labs, , 2019.

A. M. Bergmann, A. M. Oldham, W. You, and M. K. Brown, Copper-catalyzed cross-coupling of aryl-, primary alkyl-, and secondary alkylboranes with heteroaryl bromides, Chem. Commun, vol.54, pp.5381-5384, 2018.

J. N. Sanderson, A. P. Dominey, and J. M. Percy, Iron-Catalyzed Isopropylation of Electron

, Deficient Aryl and Heteroaryl Chlorides, Adv. Synth. Catal, vol.359, pp.1007-1017, 2017.

T. Liu, Y. Zeng, H. Zhang, T. Wei, X. Wu et al., Facile Pd-catalyzed chemoselective transfer hydrogenation of olefins using formic acid in water, Tetrahedron Lett, vol.57, pp.4845-4849, 2016.

E. Pretch, T. Clerc, J. Seibl, W. Simon, and . 1h-nmr, Table of Spectral Data for

W. Fresenius, J. F. Huber, E. Pungor, G. A. Rechnitz, and W. Simon, Structure Determination of Organic Compounds, vol.2, p.315, 1989.

J. Li, J. Zhang, H. Yang, and G. Jiang, Assembly of Diversely Substituted Quinolines via

, Aerobic Oxidative Aromatization from Simple Alcohols and Anilines, J. Org. Chem, vol.82, p.3290, 2017.

P. A. Claret and A. G. Osborne, NMR spectral studies of quinoline derivatives. Long range 13C-1H coupling constants in methylquinoline derivatives, Org. Magn. Reson, vol.8, pp.147-150, 1976.

X. Yi and C. Xi, Copper-Promoted Tandem Reaction of Azobenzenes with Allyl Bromides via N?N Bond Cleavage for the Regioselective Synthesis of Quinolines, Org.Lett, vol.17, pp.5836-5839, 2015.

S. Rousseaux, B. Liégault, and K. Fagnou, Palladium(0)-catalyzed cyclopropane C-H bond functionalization: synthesis of quinoline and tetrahydroquinoline derivatives, Chem. Sci, vol.2012, pp.244-248
URL : https://hal.archives-ouvertes.fr/hal-00647081

W. Wei, Y. Cheng, Y. Hu, Y. Chen, X. Zhang et al., Concise Synthesis of 4-Arylquinolines via Intramolecular Cyclization of Allylamines and Ketones, Adv. Synth. Catal, vol.357, pp.3474-3478, 2015.

D. E. Stephens, J. Lakey-beitia, J. E. Burch, H. D. Arman, and O. V. Larionov, Mechanistic insights into the potassium tert-butoxide-mediated synthesis of N-heterobiaryls, Chem. Commun, vol.52, pp.9945-9948, 2016.

A. S. Edison and F. C. Schroeder, Modern Methods in Natural Products Chemistry, Comprehensive Natural Products, Comprehensive Natural Products, vol.9, pp.169-196, 2010.

H. Koskela, O. Heikkilä, I. Kilpeläinen, and S. Heikkinen, Quantitative two-dimensional HSQC experiment for high magnetic field NMR spectrometers, J. Magn. Reson, vol.202, pp.24-33, 2010.

J. Farjon, C. Milande, E. Martineau, S. Akoka, P. Giraudeau et al.,

, QUantitative, hIghly Resolved and sEnsitivity Enhanced 1H, 13C Data, Anal. Chem, vol.90, pp.1845-1851, 2018.

J. Schleucher, M. Schwendinger, M. Sattler, P. Schmidt, O. Schedletzky et al., A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients, J. Biomol. NMR, vol.4, pp.301-306, 1994.

D. Sarma, B. Majumdar, and T. K. Sarma, Carboxyl-Functionalized Carbon Dots as

, Competent Visible Light Photocatalysts for Aerobic Oxygenation of Alkyl Benzenes: Role of Surface Functionality, ACS Sustainable Chem. Eng, vol.6, pp.16573-16585, 2018.