T. , Well-established commercial software tools exist for process 653 simulation, but not yet for process synthesis, 2018.

, As a result, standard industrial practice for synthesis remains ei-655 ther trial-and-error using simulators

, To be successful, our community needs software taols ta ac

, Actively developed syntl1esis software packages include Pro

. Cafd-(tula, , 2017.

. Mipsyn-(kravanja, ;. Grassmann, and . Synopsis-(tian, ail of which find their roots raw materials, products, and reactions. It builds upon pre-687 existing work in the ICAS (Gani et al., 1997) tao! set. P-Graph Stu-GDP models (Ropotar and Kravanja, 2009), 694 which are solved via an integration with tl1e GAMS algebraic mod-695 eling platform (Brook et al., 1988 ). SYNOPSIS and Pyosyn are bath 696 newer synthesis frameworks, vol.682, 1990.

. Idaes-(miller, As with MIPSYN, an integration witl1 101 GAMS allows solution of the resulting MINLP models. Pyosyn, on 102 the other hand, does not prescribe a choice of superstructure, in-703 stead focusing on support for high level modeling representations 704 and solution strategies. Pyosyn supports GDP modeling with the 705 open-source Pyomo, 2018}, respectively. SYNOPSIS is built upon the 699 GMF superstructure representation, though the tool itself has not 100 yet been publicly released, 2018.

. Lee, Specialized chemical engineering support is provided by the IDAES 708 unit mode! library, 2018.

J. A. Caballero,

I. Grassmann and . E_, Generalized disjonctive programming mode! for the optimal synthesis of thermally linked distillation columns, Ind. Eng. Chem. Res, vol.40, issue.10, pp.2260-2274, 2001.

J. A. Caballero and . I. Grossmann, An algorithm for the use of surrogate models in modular flowsheet optimization, AIChE J, vol.54, issue.10, pp.2633-2650, 2008.

Q. Chen and !. Grassmann, Recent developments and challenges in optimization based process synthesis, Annu Rev Chem Biomol Eng, vol.8, pp.249-283, 2017.

Q. Chen and I. Grassmann, Modem modeling paradigms using gt!neralized dis junctive programming, Processes, vol.7, issue.11, p.839, 2019.

Q. Chen, J. E. Siirola, J. D. Grassmann, and I. E. , Pyomo.GDP: disjonctive models in python, Prooeed ings of the 13th International Symposium on Process Systems Engineering, pp.889-894, 2018.

Q. Chen,

S. Kale, . Dates, R. Valentin, D. E. Bernai, M. Bynum et al., Pyosyn: a collaborative ecosystem for process design advance ment, AIChE Annual Meeting, 2019.

H. H. Chin, D. C. Foc, . Lam, and . Hl, Simultaneous water and energy integration with isothermal and non-isothermal mixing a P-graph approach, Resour. Con serv. Recyd, vol.149, pp.687-713, 2018.

A. Cozad, N. V. Sahinidis, and D. C. Miller, Learning surrogate models for simulation-based optimization, AIChE J, vol.60, issue.6, pp.2211-2227, 2014.

S. Cremaschi, A perspective on process synthesis: challenges and prospects, Comput. Chem. Eng, vol.81, issue.2, pp.130-137, 2015.

C. Cui, X. Li, H. Sui, and J. Sun, Optimization of coal-based methanol distillation scheme using process superstructure method to maximize energy efficiency, En ergy, vol.119, pp.110-120, 2017.

M. Daichendt and . Grossmann, Integration of hierarchical decomposition and mathematical programming for the synthesis of process flowsheets, Comput. Chem. Eng, vol.22, issue.1-2, pp.147-175, 1997.

T. Damartzls, A. Papadopoulos, P. Seferils, L. Anterroches, and R. Gani, Process flowsheet design op timization for various amine-based sohients in post-combustion C02 capture plants, Comput. Aided Chem. Eng, vol.111, pp.379-384, 2004.

L. Anterroches and R. Gani, Group contribution based process flowsheet syn thesis, design and modelling, Fluid Phase Equilib, pp.141-146, 2005.

E. Davis and M. Ierapetritou, Pyrolysis of heavy oil in the presence of supercritical water: the reaction kinetics in different phases, AIChE J, vol.61, issue.3, pp.857-866, 2015.

S. E. Demirel, . J. Li, and M. M. Hasan, Systematic prooess intensification using building blocks, Comput. Chem. Eng, vol.105, 2017.

M. Dimian, Integrated Design and Simulation of Chemical processes, vol.13, pp.229-298, 2003.

H. G. Dong, C. Y. Lin, and C. T. Chang, Simultaneous optimization approach for in tegrated water-allocation and heat-exchange networks, Chem. Eng. Sei, vol.63, issue.14, pp.3664-3678, 2008.

J. Douglas, A hierarchical decision procedure for process synthesis, AIChE J, vol.31, issue.2, pp.353-362, 1985.

R. Drobef and . Z. Novale-pintarl?,

B. Pahor and . Kravanja, MINLP synthesis of processes for the production of biogas from organic and animal wasoe, Chem. Biochem. Eng. Q, vol.23, issue.4, pp.455-459, 2009.

G. Dünnebier and C. C. Pantelides, Optimal design of thermally coupled distilla tion columns, Ind. Eng. Chem. Res, vol.38, issue.1, pp.162-176, 1999.

M. A. Duran and I. E. Grassmann, An outer-approximation algorithm for a class of mixed-integer nonlinear programs, Math. Program, vol.36, issue.3, p.307, 1986.

M. A. Duran and . I. Grassmann, Simultaneous optimization and heat integration of chemical processes, AICllEJ, vol.32, issue.1, pp.123-138, 1986.

J. P. Eason and L. T. Biegler, A trust region !ilter method for glass box/black box optimization, AIChE J, vol.62, issue.9, pp.3124-3136, 2016.

O. Edeleva and V. Stennikov, Energy consumption optimization of a manufacturing plant by the application of the P-graph framework, E3S Web of Conferences, 69 doi:10.1051/ e3sconf/20186902007. ?les, A., Halâsz, L. Heckl, 1., cabezas, H_ 2018, vol.70, pp.1783-1788, 2018.

.. A. Emhamed, B. Czuczai, .. L. Horvath, E. Rev, and . Z. Lelloes, Optimization of desalination location problem using MILP, AlChE J, vol.53, issue.9, pp.2367-2383, 2007.

L. Fahmi and S. Cremaschi, Process synthesis of biodiesel production plant using artificial neural networks as the surrogate models, Comput. Chem. Eng, vol.46, pp.105-123, 2012.

T. Farkas, E. Rev, B. Czuczai, Z. Fonyo, and . Lelkes, R-graph-based distillation column superstructure and MINIP mode!, Comput Aided Chem. Eng, vol.20, pp.889-894, 2005.

T. Farkas, E. Rev, and . Lelkes, Process flowsheet superstructures: structural mul tlpliclty and redundancy. Part I: Basic GDP and MINLP representations, Comput. Chem. Eng, vol.29, issue.10, pp.2180-2197, 2005.

T. Farkas, E. Rev, and Z. Lelkes, Process flowsheet superstructures: structural mul tiplicity and redundancy. Part Il: Ideal and binarily minimal MINLP representa tions, Comput. Chem. Eng, vol.29, issue.10, pp.2198-2214, 2005.

J. Hooloer, C. Méndez, . G. Sand, and J. Wassick, Scope for industrial applica tions of production scheduling models and solution methods, Comput. Chem, 2014.

. Eng, , vol.62, pp.161-193

L. S. Hauan, A phenomena based design approach ta reactive distillation, Chem. Eng. Res. Des, vol.76, issue.3, pp.396-407, 1998.

I. Heckl, L. Halâsz, . Szlama, H. Cabezas, and F. Priedler, Process synthesis in volving multi-period operations by the P.graph framework, COmput. ChenL Eng, vol.83, pp.157-164, 2015.

C. .. Henao and . C. Maravelias, Surrogate-based process synthesis, COmput. Aided Chem. Eng, vol.28, pp.1129-1134, 2010.

C. Henao and . Maravelias, Surrog:ate-based superstructure optimization frame work, AlChE J, vol.57, issue.5, pp.1216-1232

E. C. Hohrnan, Optimum Networks for Heat Exchange, 1971.

J. Holtbruegge, . H. Kuhlmann, and P. Lutze, Conceptual design of Oowsheet op tions based on thermodynamic insights for (reaction-Jseparation processes ap plying prooess intensification, lnd. Eng. Chem. Res, vol.53, issue.34, pp.13412-13429, 2014.

X. Hong and . Llao,

B. Jiang, . J. Wang, and . Y. Yang, Simultaneous optimization of heat-lntegrated water allocation networks, Appl Energy, vol.169, pp.395-407, 2016.

F. Hom, Attainable and non-attainable regions in chemical reaction technique, Prooeedings of the European Symposium on Chemical Reaction Engineering, 1964.

B. S. Yeoh, T. T. Tan, . K. Chong, . D. Ganga, and H. Lam, Debottlenec? ing of sustainability performance for integrated biomass supply chain: P-graph approach, J. Oean. Prod, vol.193, pp.720-733, 2018.

R. Karuppiah, !. Pesche, A. Grassmann, I. E. Mantn, M. W. Martinson et al., Energy optimization for the design of com-based ethanol plants, AIChE J, vol.54, issue.6, pp.1499-1525, 2008.

J. Kelly, Production modeling for multimodal operations, vol.100, pp.44-46, 2004.

J. Kelly, The unit-operation-stock superstructure (UOSS) and the quantity-1031 logic-quality paradigm (QJ.QJ') for production scheduling in the process indus-1032 tries, Proceedings of MISI'A 2005, pp.18-21, 1033.

K. Klatt and M. Marqllill'dt, Perspectives for process systems engineering -1035 persona! views from academia and industry, Comput. Chem. Eng, vol.33, issue.3, p.1037, 2009.

!. Kleme and J. J. Kravanja, Forty years of heat integration: pinch analysis (PA) 1038 and mathematical programming (MP), Curr. Opin. Chem. Eng, vol.2, issue.4, pp.461-474, 1039.

G. Kocis and . Grossmann, Global optimization of nonconvex mixed-integer non-1041 linear programming (MINI.P) problems in process synthesis, 1988.

. Res, , vol.27, pp.1407-1421

G. Kocis and !. Grossmann, A modelling and decomposition strategy for the 1044 MINLP optimization of process !lowsheets, Comput. Chem. Eng, issue.7, p.13, 1989.

E. Kondili, C. Pantelides, and R. Sargent, A general algorithm for short-term 1047 scheduling of batch operations -1. MIIP formulation, Comput. Chem. Eng, vol.17, issue.2, pp.211-227, 1993.

Z. Krava[tja and I. E. Grossmann, Prosyn-an MINLP process synthesizer, 1990.

, Chem. Eng, issue.12, pp.1363-1378

. H. Kuhlmann,

. M. Moller and . Skiborowski, Analysis of TBA-based ETBE 1052 production by means of an optimization-based process-synthesis approach, p.1053

, Chem. Ing. Tech, vol.91, issue.3

H. Kuhlmann,

M. Skiborowski, Synthesis of inoensified processes from a su-1055 perstructure of phenornena building blocks, Comput. Aided ChenL Eng, vol.38, p.1057, 2016.

H. Kuhlmann and M. Skiborowski, Optimization-based approach ta process syn-1058 thesis for process intensification: general approach and application ta ethanol 1059 dehydration, Ind. Eng. Chem. Res, vol.56, issue.45, pp.13461-13481, 2017.

H. Kuhlmann, H. Velth, M. Moller, K. Nguyen, A. Gofak et al., 1061 Optimization-based approach ta prooess synthesis for process intensification: 1062 synthesis of reaction-separation prooesses, Ind. Eng. Chem. Res, vol.57, issue.10, p.3655, 2018.

H. Lam, Extended P-graph applications in supply chain and prooess network 1065 synthesis, Curr. Opin Chem. Eng, vol.2, issue.4, pp.475-486, 2013.

.. Lang, L. Biegler, and L. Grossmann, Simultaneous optimization and heat in-1067 tegration wlth process slmulators, Comput. Chem. Eng, vol.12, issue.4, pp.85044-85044, 1988.

A. Lee, J. H. Ghouse, . Q. Chen, J. C. Eslick, J. D. Sürola et al., A flexible framework and mode! library for process simulation. opti-1071 mization and Contre!, 1072 13th International Symposium on Process Systems Engineering (PSE 2018). ln: 1073 Computer Aided Chemical Engineering, vol.44, pp.937-942, 2018.

S. Lee and I. E. Grossrnann, New algorithms for nonlinear generalized disjunc-1076 tive programrning, Comput. Chem. Eng, vol.24, issue.9, pp.581-581, 2000.

S. Lee and . I. Grossmann, A global optimization algorithm for nonconvex gen-1079 eralized disjonctive programming and applications ta process systems, Comput, p.1080, 2001.

, Chem. Eng, vol.25, pp.732-735

U. , J. Demirel, and S. M. Faruque-hasan, Process synthesis using block superstruc-1082 ture with automated flowsheet generation and optimization, AIChE J, vol.64, issue.8, pp.1083-3082, 2018.

U. , J. Demirel, and S. E. Hasan, Pue! gas network synthesis using block su-1085 perstructure, Processes, vol.6, issue.3, 2018.

Z. Uao, . Wang, Y. Yang, and . Rong, lntegrating purifiers in refinery hydrogen 1087 networks: a retrofi t case study, J. CTean. Prod, vol.18, issue.3, pp.233-241

G. Uesche, D. Schack, and K. Sundmacher, The FluxMax approach for simulta-1090 neous process synthesis and heat integration: production of hydrogen cyanide, p.1091, 2019.

, AIChE J, vol.65, issue.7

P. Linloe and . Kokossis, Attainable reaction and separation processes from 1093 a superstructure-based method, AIChE J, vol.49, issue.6, pp.1451-1470, 2003.

P. Unke and A. C. Kokossls, A multi-level methodology for conceptUal reaction-1096 separation prooess design, Chem. Prod. Process Madel, vol.2, issue.3, 2007.

B. Unnhoff and . E. Hindmarsh, The pinch design method for heat exchanger net-1099 works, ChenL Eng. Sei, vol.38, issue.5, pp.80185-80192, 1983.

J. Uu, L. T. Fan, P. Seib, F. Friedler, and B. Bertok, Holistic approach ta process 1101 retrofi tting: application ta downstream process for biochemical production of 1102 organics, Ind. Eng. Chem. Res, vol.45, issue.12, pp.4200-4207, 2006.

F. Lucay, L. A. Cisternas, and E. D. Gfilvez, A new group contribution method for 1104 minerai concentration processes, Comput. Chem. Eng, vol.74, pp.28-33, 2015.

I. Babi, D. Woodley, J. Gani, and R. , Phenomena based methodology for 1107 process synthesis incorporating process intensification, Ind. Eng. Chem. Res, vol.52, issue.22, pp.7127-7144, 2013.

G. Madenoor-ramapriya, W. Won, and C. T. Maravelias, A superstructure op-1110 timization approach for process synthesis under complex reaction networks, p.1111, 2018.

, ChenL Eng. Res. Des, vol.137, pp.589-608

M. Mantn, I. I. Adams, and T. A. , Challenges and future directions for process and 1113, 2019.

L. Mencarelli, Q. , C. , and A. Pagot, A review on superstructure optimization approaches in process system engineering, Computers and Chemical Engineering, vol.128, pp.421-436
URL : https://hal.archives-ouvertes.fr/hal-02551342

M. Martfn and I. E. Grossmann, On the systematic synthesis of sustainable biore-1117 fineries, Ind. Eng. Chem Res, vol.52, issue.9, pp.3044-3064, 2013.

K. Matsunami, F. Stema?, K. Yaginuma, S. Tanabe, . Nakagawa et al., Superstructure-based prooess synthesis and economic assessment under 1120 unoertainty for solid drug product manufacturing, BMC C!em. Eng, vol.1119, issue.2020, pp.1-16, 1121.

K. Mcbride and K. Surulmacher, OVerview of surrogate modeling in chemical 1123 process engineering, Chemie-Ingenieur-Technik, vol.91, issue.3, pp.228-239, 2019.

L. Mencarelli, P. Duchêne, and A. Pagot, Optimization Approaches to the Inte-1126 grated System of catalytic Reforming and Isomerization Processes in Petroleum 1127 Refineiy, 2019.

D. C. Miller, .. D. Siirola, . Agarwal, A. P. Burgard, A. Lee et al., Next generation multi-scale process systems 1131 engineering framework, Comput. Aided Chem Eng, vol.44, 2018.

A. Mitsos, . N. Asprion, .. A. Floudas, M. Bonz, M. Baldea et al., , p.1134

P. Schmr, Challenges in pracess optimization for new feedstocks and 1135 energy sources, Comput Chem Eng, vol.113, pp.209-221, 2018.

. D. Montolio-rodriguez, D. Unloe, and P. Ünloe, Systematic identification of op-1138 timal process designs for the production of aoetic acid via ethane axidation, 2007.

, Chem. Eng. Sei, vol.62, pp.5602-5608

M. Moreno-benito, K. Frankl, A. Espulla, and W. Marquardt, A mocleling strategy 1141 for integrated batch process development based on mixed-logic dynamic opti-1142 mization, Comput Chem. Eng, vol.94, pp.287-311, 2016.

T. Neveux, Ab-initio process synthesis using evolutionaiy programming, 2018.

, Chem. Eng. Sei, vol.185, pp.209-221

R. T. Ng, P. Fasahatl, K. Huang, and C. T. Maravellas, Util!zlng stlllage in the 1147 biorefinery: economic, technological and energetic analysis, Appl. Energy, vol.241, pp.491-503, 2019.

Y. Nie, I. Biegler, and J. M. Wassick, Integrated schedullng and dynamic opti-1150 mization of batch prooesses using state equipment networks, AIChE J, vol.58, issue.11, pp.1151-3416, 2012.

N. Nishida, G. Stephanopoulos, and A. Westerberg, A review of process synthesis, 1981.

, AIChE J, vol.27, issue.3, pp.321-351

. B. Ong, T. G. Walmsley, M. J. Atkins, and M. R. Walmsley, Total site mass, heat 1155 and power integration using process integration and process graph. j. Clean 1156 Prod, vol.167, pp.32-43, 2017.

C. C. Pantelides, Unified frameworks for optimal process planning and 1158 scheduling, Proceedings on the Second Conferenoe on Foundations of Com-1159 puter Aided Operations, pp.253-274, 1994.

K. Papalexandri and E. N. Pistikopoulos, Generalized modular representatlon 1161 framework for prooess synthesis, AIChE J, vol.42, issue.4, pp.1010-1032, 1996.

X. Peng, T. W. Root, and C. T. Maravelias, Optimization based process synthesis 1164 Wlder seasonal and daily variability: application tD concentrating solar power, 2019.

, AIChE J, vol.65, issue.7

P. Pichardo and V. L. Manousiouthakis, Infinite dimensional state-space as a sys-1167 tematic process Intensification tool: energetic intensification of hydrogen pro-1168 duction, Chem. Eng. Res. Des, vol.120, pp.372-395, 2017.

D. W. Pierce and M. J. Realff, Process synthesis and design for multi-chip mod-1170 ule fabrication, Comput Chem. Eng, issue.SUPPL2, pp.225-231, 1996.

. M. Preuss, P. Vell, and A. Barlow,

R. G. , Looking for alternatives: 1173 optimization of energy supply systems without superstructure, 2014.

, Applications of Evolutlonaiy Computation. EvoAp-1175 plications, 2014.

P. Proios, N. F. Goula, and E. N. Pistilcopoulos, Generalized moclular framework for 1177 the synthesis of heat integrated distillation column sequences, Chem. Eng. ScL, vol.1178, issue.17, pp.4678-4701, 2005.

R. Raman and . Grossmann, Modelling and computational techniques for logic 1180 based integer programming, Comput Chem. Eng, vol.18, issue.7, pp.10-17, 1994.

G. Ramapriya, . W. Won, and C. Maravelias, A superstructure optimization ap-1183 proach for process synthesis under complex reaction networks, Chem. Eng. Res, 2018.

L. M. Rios and N. V. Sahinidis, Derivative-free optimization: a review of algorithms 1186 and comparison of software implementations, j. Global Optim, vol.56, issue.3, p.1293, 2013.

M. Ropotar and Z. Kravanja, Translation of variables and implementatlon of efli-1189 cient Iogic-based techniques in the MINLP process synthesizer MIPSYN, AIChE J. 1190, vol.55, pp.2896-2913, 2009.

J. Ryu, L. Kong, P. De-lima, A. Maravelias, and C. T. , A generalized 1192 superstructure-based framework for process synthesis, Comput Chem Eng, vol.133, p.106653, 2020.

Y. Saif and A. Elkamel, Integration of Membrane Prooesses for Optimal Wastew-1195 ater Management, pp.19-46, 2013.

Y. Saif, A. Elkamel, and . Pritzker, Superstructure optimization for the synthesis 1198 of chemical process flowsheeti;: application to optimal hybrid membrane sys-1199 tems, Eng. Optim, vol.41, issue.4, pp.327-350

R. Sargent and K. Gaminibandara, Optimum design of plate distillation column, Optimization in Jlction, p.1201, 1200.

A. M. Schweidtmann and A. Mitsos, Deterrninistic global optimization with 1202 artificial neural networks embedded, J. Optim Theory Appl, vol.180, issue.3, pp.925-948, 1203.

J. J. Sürola, G. J. Powers, and D. F. Rudd, Synthesis of system designs: III. Toward a 1205 process concept generatDr, AIChE J, vol.17, issue.3, pp.677-682, 1971.

. J. Sürala and D. Rudd, Computer-aided synthesis of chemical process designs. 1207 From reaction path data to the process task network, Ind. Eng. Cliem. FUrul, vol.10, issue.3, pp.353-362, 1971.

S. Sitter, Q. Chen, and I. E. Grossmann, An overview of process intensification 1210 methods, Curr. Opin. Chem Eng, 2019.

E. Smith and . Pantelides, Design of reaction/separation networks using detailed 1212 models, Comput Chem Eng, vol.19, pp.83-88, 1995.

Z. Szitkai, Z. Lelloes, E. Rev, and Z. Fonyo, Handling of removable discontinuities 1214 in MINLP models for process synthesis problems, formulations of the Kremser 1215 equation, Comput. Chem Eng, vol.26, issue.11, pp.1501-1516, 2002.

L. Tao, M. F. Malone, and M. F. Doherty, Synthesis of azeotropic distillation systems 1217 with recycles, Ind. Eng. Chem. Res, vol.42, issue.8, pp.1783-1794, 2003.

Y. Tian, S. E. Demirel, .. M. Hasan, and E. N. Pistikopoulos, An overview of pro-1219 cess systems engineering approaches for process intensification: state of the art, p.1220, 2018.

, Chem Eng. Process. 133 Ouly, pp.160-210

Y. Tian, !. Pappas, B. Burnak, J. Katz, and E. N. Pistikopoulos, A systematic 1222 framework for the synthesis of operable process intensification systems 1223 reactive separation systems, Comput. Chem. Eng, vol.134, p.106675, 2020.

Y. Tian, . Sam-mannan, Z. Kravanja, and E. Pistikopoulos, Towards the synthesis 1226 of modular process intensification systems with safety and operability consider-1227 ations -application to heat exchanger network, Comput Aided Chem. Eng, vol.43, pp.0-5, 1228.

Y. Tian, M. Sam-mannan, Z. Kravanja, and E. N. Pistikopoulos, Towanls 1230 the Synthesis of Modular Process Intensification Systems with Safety and, p.1231, 2018.

, Operabllity Considerations -Application to Heat Exchanger Network, p.710

F. Trespalacios and . Grassmann, Review of mixed-integer nonlinear and gen-1234 eralized disjunctive pragramming applications in process systems engineering, p.1235, 2014.

, Chem Ing. Tech, vol.86, issue.7, pp.991-1012

C. Tsay, . R. Pattison, M. R. Piana, and M. Baldea, A survey of optimal process 1237 design capabilities and practices in the chemical and petrochemical industries, p.1238, 2018.

, Comput. Chem. Eng, vol.112, pp.180-189

A. Tula, . M. Eden, and R. Gani, Process synthesis, design and analysis using 1240 process-group contribution method, Comput Aided Chem Eng, vol.34, pp.453-458, 2014.

A. Tula, . M. Eden, and R. Gani, Process synthesis, design and analysis using a 1242 process-group contribution method, Comput Chem Eng, vol.81, pp.245-259, 2015.

A. K. Tula, . Babi, . Dx, J. Bottlaender, M. R. Eden et al., A computer-aided 1244 software-toc! for sustainable process synthesis-intensification, Comput Chem, p.1245, 2017.

. Eng, , vol.105, pp.74-95

A. K. Tula, M. R. Eden, and R. Gani, Time for a new class of methods and computer 1247 aided tools to address the challenges facing us?, Chem. Eng. Trans, vol.70, pp.7-12, 1248.

T. A. Eden and R. Gani, Computer-aided prooess intensification: 1250 challenges. trends and opportunities, AIChE J, 2019.

A. K. Tula, M. R. Eden, and R. Gani, Hybrid method and associated tools for syn-1252 thesls of sustainable process flowsheets, Comput Chem Eng, 2019.

M. Türicay and !. Grassmann, Logic-based MINIP algorithms for the optimal 1255 synthesis of process networks, Comput. Chem. Eng, vol.20, issue.8, pp.219-226, 1996.

T. Umeda, A. Hirai, and A. Ichikawa, Synthesis of optimal processing system by 1258 an integrated approach, Chem. Eng. Sei, vol.27, issue.4, pp.795-804, 1972.

L. Vance, H. Heckl, B. Bertok, and F. Friedler, Synthesls of sustainable 1260 energy supply chain by the P-graph framework, Ind. Eng. Chem Res, vol.52, issue.1, pp.1261-266, 2013.

!. Vol, P. Klaffloe, C. M. Hennen, and A. Barlow, Automated superstructure-based 1263 synthesis and optimization of distributed energy supply systems, Energy, vol.50, pp.1264-374, 2013.

!. Vol, M. Lampe, G. Wrobel, and A. Barlow, Superstructure-free synthesis and 1266 optlmlzatlon of dlstributed Industrial energy supply systems, Energy, vol.45, issue.1, pp.1267-424, 2012.

L. Wang, Y. , Y. C. Dong, T. Morosuk, and G. Tsatsaronis, Systematic 1269 optimization of the design of steam cycles using MINLP and differential 1270 evolution, J. Energy Resour. Technol, vol.136, issue.3, 2014.

A. Westerberg, Process engineering, perspectives in chemical engineering. re-1272 search and education, Advances in Chemical Engineering, vol.16, p.1273, 1991.

A. Westerberg, A retrospective on design and process synthesis, Comput, p.1275, 2004.

, CheIIL Eng, vol.28, issue.4, pp.447-458

W. Manousiouthakis and V. , IDEAS approach to process network synthe-1277 sis: application to multicomponent MEN, AIChE J, vol.46, issue.12, pp.2408-2416, 2000.

. W. Wu, . Henao, and C. Maravelias, A superstructure representation, generation, 1280 and moclellng framework for chemical prooess synthesis, AIC!E J, vol.62, issue.9, pp.3199-1281, 2016.

. W. Wu, K. Yenkie, and C. T. Maravelias, A superstructure-based framework for 1283 bio-separation network synthesis, Comput Chem. Eng, vol.96, pp.1-17, 2017.

L. Mencarelli, Q. , O. , and A. Pagot, A review on superstructure optimization approaches in process system engineering, Computers and Chemical Engineering
URL : https://hal.archives-ouvertes.fr/hal-02551342

X. Xu, C. Zhu, Y. Ma, and . Song, A robust combinatorial approach based on P-1287 graph for superstructure generation in downstream bioprocesses, Braz. J. O!em

. Eng, , vol.32, pp.259-267

T. Yee and . Grossmann, Simultaneous optimization models for heat integration 1290 II. Heat exchanger network synthesis, Comput. Chem. Eng, vol.14, issue.10, pp.1165-1184, 1291.

H. Yeomans and . Grossmann, A systematic modeling framework of superstruc-1293 ture optimization in process synthesis, Comput. ChellL Eng, vol.23, issue.6, pp.709-731, 1999.

L. Zadeh and . Desoer, Llnear System Theory: The State Space Approach, 1979.

. Krieger,

L. Zhang, . Babi, . Dk, and R. Gani, New vistas in chemical product and 1297 process design, Annu. Rev. Chem. Biomol. Eng, vol.7, issue.1, pp.557-582, 2016.

T. Zhang, N. Sahinidis, and J. J. Siirola, Pattern recognition in chemical process 1299 flowsheets, AIChEJ, vol.65, issue.2, pp.592-603, 2019.

L. Zhou and . Llao,

J. Wang, B. Jiang, and . Yang, Hydrogen sulfide removal process 1301 embedded optimization of bydrogen network. !nt, J. Hydrog. Energy, vol.37, issue.23, pp.1302-18163

R. Zhou, L. J. Dong, H. G. Grossmann, and I. E. , Synthesis of interplant water-1304 allocation and heat-exchange netwomi, 2012.

. Eng, Che!IL Res, vol.51, issue.11

. Zyngier and J. Kelly, UOPSS: a new paradigm for modeling production plan-1307 ning & scheduling systems, Pro-1308 ceedings of the 22nd European Symposium on Computer Aided Process Engi-1309 neering, pp.17-20, 2012.

L. Mencarelli, Q. , C. , and A. Pagot, A review on superstructure optimization approaches in process system engineering, Computers and Chemical Engineering
URL : https://hal.archives-ouvertes.fr/hal-02551342