T. V. Bruno, C. Christensen, and R. T. Hill, History and development of TM0284, Corrosion, p.422, 1999.

T. Hara, H. Asahi, and H. Ogawa, Conditions of hydrogen-induced corrosion occurrence of X65 grade line pipe steels in sour environments, vol.60, pp.1113-1121, 2004.

R. D. Kane and M. S. Cayard, NACE committee report 8X294: review of published litterature on wet H2S cracking, vol.420, 1999.

S. E. Mahmoud, C. W. Petersen, and R. J. Franco, Overview of hydrogen induced cracking (HIC) of pressure vessels in upstream operations, Corrosion, 1991.

E. M. Moore, Hydrogen-induced damage in sour, wet crude pipelines, Journal of Petroleum Technology, pp.613-618, 1984.

L. Smith, An overview of european federation of corrosion documents EFC16 and EFC17, Corrosion, p.423, 1999.

S. N. Smith and M. W. Joosten, Corrosion of carbon steel by H2S in CO2 containing oilfield environments, 2006.

C. Bosch, J. P. Jansen, and T. Herrmann, Fit-for-purpose HIC assessment of large diameter pipes for sour service application, 2006.

T. Hara, H. Asahi, Y. Terada, T. Shigenobu, and H. Ogawa, The condition of HIC occurence of X65 linepipe in wet H2S environments, Corrosion, 1999.

T. Hermann, C. Bosch, and J. Martin, HIC assessment of low alloy steel line pipe for sour service application -Literature survey, 3R International, vol.44, pp.409-417, 2005.

J. Kittel, J. W. Martin, T. Cassagne, and C. Bosch, Hydrogen induced cracking (HIC) -Laboratory testing assessment of low alloy steel linepipe, Corrosion, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02475529

R. W. Revie, V. S. Sastri, G. R. Hoey, R. R. Ramsingh, D. K. Mak et al., Hydrogen-Induced Cracking of Linepipe Steels .1. Threshold Hydrogen Concentration and Ph, vol.49, pp.17-23, 1993.

R. W. Revie, V. S. Sastri, M. Elboujdaini, R. R. Ramsingh, and Y. Lafrenière, Hydrogen-induced cracking of line pipe steels used in sour service, Corrosion, vol.49, issue.7, pp.531-535, 1993.

G. P. Tiwari, A. Bose, J. K. Chakravartty, S. L. Wadekar, M. K. Totlani et al., A study of internal hydrogen embrittlement of steels, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, vol.286, issue.2, pp.269-281, 2000.

H. Asahi, M. Ueno, and T. Yonezawa, Prediction of sulfide stress cracking in high-strength tubulars, Corrosion, vol.50, issue.7, pp.537-545, 1994.

S. U. Koh, J. S. Kim, B. Y. Yang, and K. Y. Kim, Effect of line pipe steel microstructure on susceptibility to sulfide stress cracking, vol.60, pp.244-253, 2004.

J. Leyer, P. Sutter, H. Marchebois, C. Bosch, A. Kulgemeyer et al., SSC resistance of a 125 KSI steel grade in slightly sour environments, Corrosion, 2005.

C. M. Liao and J. L. Lee, Effect of Molybdenum on Sulfide Stress Cracking Resistance of Low-Alloy Steels, Corrosion, vol.50, issue.9, pp.695-704, 1994.

J. Marsh, Comparing hydrogen permeation rates, corrosion rates ans sulphide stress cracking resistance for C-110 and P-110 casing steel, Corrosion, 2007.

C. Mendez, I. Martinez, L. Melian, and J. Vera, Application of hydrogen permeation for monitoring sulfide stress cracking susceptibility, p.2342, 2002.

J. Mougin, M. S. Cayard, R. D. Kane, B. Ghys, and C. Pichard, Sulfide stress cracking and corrosion fatigue of steels dedicated to bottom hole assembly components, Corrosion, 2005.

K. E. Szklarz, Sulfide stress cracking of a pipeline weld in sour gas service, Corrosion, p.428, 1999.

L. W. Tsay, Y. C. Chen, and S. L. Chan, Sulfide stress corrosion cracking and fatigue crack growth of welded TMCP API 5L X65 pipe-line steel, International Journal of Fatigue, vol.23, issue.2, pp.103-113, 2001.

/. Nace-mr0175 and . Iso, Petroleum and natural gas industries -Materials for use in H2S containing environments in oil and gas production -Part 2: Cracking-resistant carbon and low alloy steel, and the use of cast iron, p.25, 2003.

J. Kittel, F. Ropital, and J. Pellier, EFC publication n°16 : "Guidelines on materials requirements for carbon and low alloy steels for H2S-containing environments in Oil and Gas production, The Institute of Materials, vol.64, issue.10, pp.788-799, 1995.

M. A. Devanathan and Z. Stachurski, The mechanism of hydrogen evolution on iron in acid solutions by determination of permeation rates, Journal of the Electrochemical Society, vol.111, issue.5, pp.619-623, 1964.

P. Manolatos, M. Jerome, and J. Galland, Necessity of A Palladium Coating to Ensure Hydrogen Oxidation During Electrochemical Permeation Measurements on Iron, Electrochimica Acta, vol.40, issue.7, pp.867-871, 1995.

P. Manolatos, M. Jerome, C. Duret-thual, and J. Le-coze, The electrochemical permeation of hydrogen in steels without palladium coating. Part I: Interpretation difficulties, Corrosion Science, vol.37, issue.11, pp.1773-1783, 1995.

P. Manolatos and M. Jerome, A thin palladium coating on iron for hydrogen permeation studies, Electrochimica Acta, vol.41, issue.3, pp.359-365, 1996.

J. L. Crolet and M. R. Bonis, Revisiting hydrogen in steel, part I: theoretical aspects of charging, stress cracking and permeation, Corrosion, p.1067, 2001.

J. Crank, The mathematics of diffusion, 1975.

. Astm-g148-97, Standard practice for evaluation of hydrogen uptake, permeation, and transport in metals by an electrochemical technique, 1997.

M. Kimura, N. Totsuka, T. Kurisu, T. Hane, and Y. Nakai, Effect of environmental factors on hydrogen permeation in line pipe steel, vol.44, pp.738-744, 1988.

S. Duval, R. Antano-lopez, C. Scomparin, M. Jerome, and F. Ropital, Hydrogen permeation through ARMCO iron membranes in sour media, Corrosion, 2004.