R. Explorer, Deepwater Exploration of the Marianas, cruise EX1605-Leg3, vol.4, 2016.

R. Explorer, Deepwater Exploration of the Marianas,' cruise EX1605-Leg3, Dive, vol.16, 2016.

P. Fryer, C. G. Wheat, and T. Williams, Mariana Convergent Margin and South Chamorro Seamount, Proceedings of the international ocean discovery program, vol.366, 2018.

P. Fryer, Serpentinite mud volcanism: observations, processes, and implications, Annu. Rev. Mar. Sci, vol.4, pp.345-373, 2012.

P. Fryer, C. G. Wheat, and M. J. Mottl, Mariana Blueschist mud volcanism: implications for conditions within the subduction zone, Geology, vol.27, pp.103-106, 1999.

J. W. Shervais, P. Kolesar, and K. Andreasen, Field and chemical study of serpentinization -Stonyford, California: chemical fluxes and mass balance, Int. Geol. Rev, vol.47, pp.1-23, 2005.

F. Klein, W. Bach, M. Thomas, and T. M. Mccollom, Compositional controls on hydrogen generation during serpentinization of ultramafic rocks, Lithos, vol.178, pp.55-69, 2013.

M. Andreani, M. Muñoz, C. Marcaillou, and A. Delacour, 2013 ?XANES study of iron redox state in serpentine during oceanic serpentinization, Lithos, vol.178, pp.70-83

B. Debret, Shallow forearc mantle dynamics and geochemistry: new insights from IODP Expedition 366, Lithos, vol.326, issue.327, 2018.

R. Sakai, M. Kusakabe, M. Noto, and T. Ishii, Origin of waters responsible for serpentinization of the Izu-Ogasawara-Mariana forearc seamounts in view of hydrogen and oxygen isotope ratios, Earth Planet. Sci. Lett, vol.100, pp.291-303, 1990.

J. C. Alt and W. C. Shanks, Stable isotope compositions of serpentinite seamounts in the Mariana forearc: serpentinization processes, fluid sources and sulfur metasomatism, Earth Planet. Sci. Lett, vol.242, pp.272-285, 2006.

W. Kahl, N. Jöns, W. Bach, F. Klein, and J. C. Alt, Ultramafic clasts from the South Chamorro serpentine mud volcano reveal a polyphase serpentinization history of the Mariana forearc mantle, Lithos, vol.227, pp.1-20, 2015.

J. A. Haggerty, J. Fisher, J. Fryer, . Pearce, and . Stoking, Short-Chain Organic Acids in Interstitial Waters from Mariana and Bonin Forearc Serpentines: Leg 125, Proceedings of the ocean drilling program, scientific results, vol.125, pp.387-395, 1992.

A. C. Curtis, C. G. Wheat, P. Fryer, and C. L. Moyer, Mariana forearc serpentine mud volcanoes harbor novel communities of extremophilic Archaea, Geomicrobiol. J, vol.30, pp.430-441, 2013.

O. Plümper, H. King, T. Geisler, Y. Liu, S. Pabst et al., Subduction zone forearc serpentinites as incubators for deep microbial life?, Proc. Natl Acad. Sci. USA, vol.114, pp.4323-4329, 2017.

C. R. Ranero, A. Villaseñor, J. Phipps-morgan, and W. Weinrebe, Relationship between bendfaulting at trenches and intermediate-depth seismicity, Geochem. Geophys. Geosyst, vol.6, 2005.

E. B. Burov and M. Diament, The effective elastic thickness (Te) of continental lithosphere: what does it really mean?, J. Geophys. Res. Solid Earth, vol.100, pp.3905-3927, 1995.
URL : https://hal.archives-ouvertes.fr/insu-01354129

K. M. Arredondo and M. I. Billen, Rapid weakening of subducting plates from trench-parallel estimates of flexural rigidity, Phys. Earth Planet. Inter, 2012.

J. H. Bodine and A. B. Watts, On lithospheric flexure seaward of the Bonin and Mariana trenches, Earth Planet. Sci. Lett, vol.43, pp.132-148, 1979.

P. Fryer and N. C. Smoot, Processes of seamount subduction in the Mariana and Izu-Bonin Trenches, Mar. Geol, vol.64, pp.90161-90167, 1985.

S. Uyeda and H. Kanamori, Back-arc opening and the mode of subduction, J. Geophys. Res, vol.84, pp.1049-1061, 1979.

P. Fryer, K. L. Saboda, L. E. Johnson, M. E. Mackay, G. F. Moore et al., Conical Seamount: SeaMARC II, Alvin submersible, and seismic reflection studies, Proceedings of the ocean drilling program, vol.125, pp.5-14, 1990.

C. L. Mrozowski and D. Hayes, Seismic reflection study of faulting in the Mariana fore arc, The tectonic and geologic evolution of Southeast Asian seas and islands, vol.23, pp.223-234, 1980.

M. J. Mottl, J. A. Fryer, . Pearce, and . Stokking, Pore Waters from Serpentinite Seamounts in the Mariana and Izu-Bonin Forearcs. Leg 125: Evidence for Volatiles from the Subducting Slab, Proceedings of the ocean drilling program, scientific results, vol.125, pp.373-385, 1992.

P. Fryer, Evolution of the Mariana convergent plate margin system, Rev. Geophys, vol.34, pp.89-125, 1996.

S. G. Nielsen, F. Klein, T. Kading, J. Blusztajn, and K. Wickham, Thallium as a tracer of fluid-rock interaction in the shallow Mariana forearc, Earth Planet. Sci. Lett, vol.430, pp.416-426, 2015.

S. Lallemand, R. Culotta, and R. Von-huene, Subduction of the Daiichi Kashima Seamount in the Japan Trench, Tectonophysics, vol.160, pp.231-247, 1989.

A. B. Watts, A. Koppers, and D. P. Robinson, Seamount subduction and earthquakes, Oceanography, vol.23, pp.166-173, 2010.

K. Wang and S. L. Bilek, Invited review paper: fault creep caused by subduction of rough seafloor relief, Tectonophysics, vol.610, pp.1-24, 2014.

D. G. Masson, L. M. Parson, J. Milsom, G. Nichols, N. Sikumbang et al., Subduction of seamounts at the Java Trench: a view with long-range sidescan sonar, Tectonophysics, vol.185, pp.51-65, 1990.

B. Marcaillou, J. Collot, A. Ribodetti, E. Acremont, A. Mahamat et al., Seamount subduction at the North-Ecuadorian convergent margin: effects on structures, inter-seismic coupling and seismogenesis, Earth Planet. Sci. Lett, vol.433, pp.146-158, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01256399

R. J. Stern and N. C. Smoot, A bathymetric overview of the Mariana Forearc, The Island Arc, vol.7, pp.525-540, 1998.

F. Zhang, J. Lin, and W. Zhan, Variations in oceanic plate bending along the Mariana Trench, Earth Planet. Sci. Lett, vol.401, pp.206-214, 2014.

K. D. Morell, Seamount, ridge and transform subduction in southern Central America, Tectonics, vol.35, pp.357-385, 2016.

P. Fryer and M. H. Salisbury, Leg 195 Synthesis; Site 1200; serpentinite seamounts of the Izu-Bonin/Mariana convergent plate margin, ODP Leg 125 and 195 drilling results, Proceedings of the ocean drilling program, scientific results (CD-ROM), vol.195, p.p, 2006.

P. Fryer, G. Fryer, P. Keating, R. Fryer, and . Batiza, Origins of non-volcanic seamounts in forearc environments, In Seamount islands and atolls, vol.43, pp.61-69, 1987.

P. Fryer, J. Lockwood, N. Becker, C. Todd, S. Phipps et al., Significance of serpentine and blueschist mud volcanism in convergent margin settings, Ophiolites and oceanic crust: new insights from field studies and ocean drilling program, vol.349, pp.35-51, 2000.

R. D. Hyndman and S. M. Peacock, Serpentinization of the forearc mantle, Earth Planet. Sci. Lett, vol.212, pp.417-432, 2003.

S. H. Bloomer and J. W. Hawkins, Gabbroic and ultramafic rocks from the Mariana Trench: an island arc ophiolite. In The tectonic and geologic evolution of Southeast Asian seas and Islands, Geophysical Monograph Series, vol.27, issue.2, pp.294-317, 1983.

K. L. Saboda, P. Fryer, and H. Maekawa, Metamorphism of ultramafic clasts from Conical Seamount: Leg 125 Sites 778, 779, 780, Proceedings of the ocean drilling program Leg, vol.125, pp.431-443, 1992.

P. Fryer and M. Mottl, Lithology, mineralogy and origin of Serpentine muds drilled at Conical Seamount and Torishima Forearc Seamount, Proceedings of the ocean drilling program Leg 125, scientific results Leg, vol.125, pp.343-362, 1992.

P. Fryer, Proceedings of the ocean drilling program, initial reports Leg 125, 1990.

M. H. Salisbury, Proceedings of the ocean drilling program, initial reports, Leg 195, 2002.

I. P. Savov, S. Guggino, J. G. Ryan, P. Fryer, and M. J. Mottl, Geochemistry of serpentinite muds and metamorphic rocks from the Mariana Forearc, ODP Sites 1200 and 778-779, South Chamorro and Conical Seamounts, Proceedings of the ocean drilling program, scientific results (CD-ROM), vol.195, p.p, 2006.

I. P. Savov, J. G. Ryan, D. Antonio, M. Fryer, and P. , Shallow slab fluid release across and along the Mariana arc-basin system: insights from geochemistry of serpentinized peridotites from the Mariana forearc, J. Geophys. Res, vol.112, p.9205, 2007.

I. J. Parkinson, J. A. Pearce, M. F. Thirlwall, K. Johnson, G. Ingram et al., Trace Element Geochemistry of Peridotites from the Izu-Bonin-Mariana Forearc, Leg 125, Proceedings of the ocean drilling program, scientific results, vol.125, pp.487-506, 1992.

L. E. Johnson and P. Fryer, The first evidence for MORB-like lavas from the outer Mariana forearc; geochemistry, petrology, and tectonic implications, Earth Planet. Sci. Lett, vol.100, pp.304-316, 1990.

M. K. Reagan, Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana System, Geochem. Geophys. Geosyst, vol.11, 2010.

S. Pabst, T. Zack, I. P. Savov, T. Ludwig, D. Rost et al., The fate of oceanic slabs in the shallow mantle: insights from boron isotopes and light element composition of blueschists from S. Chamorro Seamount, Mariana forearc, Lithos, vol.133, pp.162-179, 2012.

H. Maekawa, M. Shozui, T. Ishii, P. Fryer, and J. A. Pearce, Blueschist metamorphism in an active subduction zone, Nature, vol.364, pp.520-523, 1993.

P. Fryer, J. Gharib, K. Ross, I. Savov, and M. J. Mottl, Variability in serpentinite mudflow mechanisms and sources: ODP drilling results on Mariana forearc seamounts, Geochem. Geophys. Geosyst. 7, Q08014, 2006.

J. J. Gharib, Dissertation Submitted to the Graduate Division of the University of Hawai'I in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Geology and Geophysics, royalsocietypublishing.org/journal/rsta Phil, Clastic Metabasites and Authigenic Minerals Within Serpentinite Protrusions from the Mariana Forearc: Implications for Sub-Forearc Subduction Processes, vol.378, 2006.

R. M. Johnston, J. G. Ryan, C. G. Fryer, . Wheat, and . Williams, pXRF and ICP-AES characterization of shipboard rocks and sediments: protocols and strategies, Proceedings of the international ocean discovery program, vol.366, 2018.

, TX: International Ocean Discovery Program

J. W. Shervais, Ti-V plots and the petrogenesis of modern and ophiolitic lavas, Earth Planet. Sci. Lett, vol.59, pp.101-118, 1982.

S. S. Sun and W. F. Mcdonough, Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes, Magmatism in the ocean basins, vol.42, pp.313-345, 1989.

I. P. Savov, J. G. Ryan, D. Antonio, M. Kelley, K. et al., Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: implications for the elemental recycling at subduction zones, Geochem. Geophys. Geosyst, vol.6, 2005.

M. K. Reagan, Subduction initiation and ophiolite crust: new insights from IODP drilling, Int. Geol. Rev, vol.59, pp.1439-1450, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01685628

J. W. Shervais, Magmatic response to subduction initiation, part I: fore-arc basalts of the Izu-Bonin Arc from IODP Expedition 352, Geochem. Geophys. Geosyst, vol.20, pp.314-338, 2019.

R. Tamblyn, T. Zack, A. Schmitt, M. Hand, D. Kelsey et al., Blueschist from the Mariana forearc records long-lived residence of material in the subduction channel, Earth Planet. Sci. Lett, vol.519, pp.171-181, 2019.

E. Albers, W. Bach, F. Klein, C. D. Menzies, F. Lucassen et al., Fluid-rock interactions in the shallow Mariana forearc: carbon cycling and redox conditions, Solid Earth, vol.10, pp.907-930, 2019.

N. Hirano, Y. Ogawa, and K. Saito, Long-lived early Cretaceous seamount volcanism in the Mariana Trench, Western Pacifc Ocean, Mar. Geol, vol.189, pp.371-379, 2002.

D. E. Moore, D. A. Lockner, M. Shengli, R. Summers, and J. D. Byerlee, Strengths of serpentinite gouges at elevated temperatures, J. Geophys. Res, vol.102, pp.787-801, 1997.

K. Hirauchi, I. Katayama, I. Uehara, M. Miyahara, and Y. Takai, Inhibition of subduction thrust earthquakes by low-temperature plastic flow in serpentine, Earth Planet. Sci. Lett, vol.295, pp.349-357, 2010.

A. Oakley, B. Taylor, and G. Moore, Pacific plate subduction beneath the central Mariana and Izu-Bonin fore arcs: new insights from an old margin, Geochem. Geophys. Geosyst, vol.9, 2008.

C. Demets, R. G. Gordon, and D. F. Argus, Geologically current plate motions, Geophys. J. Int, vol.181, pp.1-80, 2010.

A. F. Holt, L. H. Royden, T. W. Becker, and C. Faccenna, Slab interactions in 3-D subduction settings: the Philippine Sea Plate region, Earth Planet. Sci. Lett, vol.489, pp.72-83, 2018.

S. M. Campbell, R. Moucha, L. A. Derry, and M. E. Raymo, Effects of dynamic topography on the Cenozoic carbonate compensation depth, Geochem. Geophys. Geosyst, vol.19, pp.1025-1034, 2018.

R. Bell, R. Sutherland, D. Barker, S. Henrys, S. Bannister et al., Seismic reflection character of the Hikurangi subduction interface, New Zealand, in the region of repeated Gisborne slow slip events, Geophys. J. Int, vol.180, pp.34-48, 2010.

C. H. Scholz and C. Small, The effect of seamount subduction on seismic coupling, Geology, vol.25, pp.487-490, 1997.

S. C. Singh, Aseismic zone and earthquake segmentation associated with a deep subducted seamount in Sumatra, Nat. Geosci, vol.4, pp.308-311, 2011.

S. Dominguez, S. E. Lallemand, J. Malavieille, V. Huene, and R. , Upper plate deformation associated with seamount subduction, Tectonophysics, vol.293, issue.98, pp.86-95, 1998.

, /journal/rsta Phil, vol.378, 20180425.

M. Ding and J. Lin, Deformation and faulting of subduction overriding plate caused by a subducted seamount, Geophys. Res. Lett, vol.43, pp.8936-8944, 2016.

T. Baba, T. Hori, S. Hirano, P. R. Cummins, J. Park et al., Deformation of a seamount subducting beneath an accretionary prism: constraints from numerical simulation, Geophys. Res. Lett, vol.28, pp.1827-1830, 2001.

C. R. Ranero, V. Huene, and R. , Subduction erosion along the Middle America convergent margin, Nature, vol.404, pp.748-752, 2000.

A. J. Oakley, B. Taylor, P. Fryer, G. F. Moore, A. M. Goodliffe et al., Emplacement and growth of serpentinite seamounts on the Mariana Forearc: gravitational deformation of serpentinite seamounts, Geophys. J. Int, vol.170, pp.615-634, 2007.

C. L. Mrozowski, D. E. Hayes, and B. Taylor, Multichannel Seismic Reflection Surveys of Leg 60 Sites, Deep Sea Drilling Project, pp.57-69, 1982.

D. M. Hussong, Site Reports, Chapters 14 and 15, Init. Repts. DSDP, vol.60, pp.263-370, 1981.

K. A. Vinas, Mariana Forearc Crust CORK Pressure Data: Observations and Implications, p.36, 2013.

C. G. Wheat, CORK-lite: bringing legacy boreholes back to life, Sci. Drilling, vol.14, pp.39-43, 2012.

K. Michibayashi, Natural olivine crystal-fabrics in the western Pacific convergence region: a new method to identify fabric type, Earth Planet. Sci. Lett, vol.443, pp.70-80, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01825255

L. E. Johnson, P. Fryer, B. Taylor, M. Silk, D. L. Jones et al., New evidence for crustal accretion in the outer Mariana forearc: Cretaceous Radiolarian Cherts and MORBlike lavas, Geology, vol.19, pp.811-814, 1991.

A. Templeton and E. T. Ellison, Formation and loss of metastable brucite: does Fe(II)-bearing brucite support microbial activity in serpentinizing ecosystems?, Phil. Trans. R. Soc. A, vol.378, 2019.

B. Ménez, C. Pisapia, M. Andreani, F. Jamme, Q. P. Vanbellingen et al., Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere, Nature, vol.564, pp.59-63, 2018.

S. Vance and M. M. Daswani, Serpentine and the search for life beyond Earth, Phil. Trans. R. Soc. A, vol.378, 2019.

C. Manning, Session 4, 13:30-14:00, Serpentinite in subduction zones and deformation, Serpentine in the Earth System Discussion Meeting Royal Society of London (Abstract), 2018.

J. P. Lockwood, Sedimentary and gravity slide emplacement of serpentinite, Geol. Soc. Am. Bull, vol.82, pp.919-936, 1971.

J. P. Lockwood, Possible mechanisms for the emplacement of alpine-type serpentinite, Geol. Am. Memoir, vol.132, pp.273-287, 1972.

M. Pons, G. Quitté, T. Fujii, M. T. Rosing, R. B. Moynier et al., , 2011.

, Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life, Proc. Natl Acad. Sci. USA, vol.108, pp.639-656

D. S. Kelley, An off-axis hydrothermal vent field near the mid-Atlantic Ridge at 30°N, Nature, vol.412, pp.145-149, 2001.

D. S. Kelley, A serpentinite-hosted ecosystem: the lost city hydrothermal field, Science, vol.307, pp.1428-1434, 2005.

N. G. Holm and J. Charlou, Initial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system, Mid-Atlantic Ridge, Earth Planet. Sci. Lett, vol.191, pp.1-8, 2001.

N. H. Sleep, A. Meibom, T. Fridriksson, R. G. Coleman, and D. K. Bird, H 2 fluids from serpentinization: geochemical and biotic implications, Proc. Natl Acad. Sci. USA, vol.101, pp.818-830, 2004.

, /journal/rsta Phil, vol.378, 20180425.

O. Muntener, Serpentine and serpentinization: a link between planet formation and life, Geology, vol.38, pp.959-960, 2010.

M. Schulte, D. Blake, T. Hoehler, and T. M. Mccollom, Serpentinization and its implication for life on the early Earth and Mars, Astrobiology, vol.6, pp.364-376, 2006.

A. G. Delacour, G. L. Fruh-green, S. M. Bernasconi, and D. S. Kelley, Sulfur in peridotites and gabbros at Lost City (30°N, MAR): implications for hydrothermal alteration and microbial activity during serpentinization, Geochim. Cosmochim. Acta, vol.72, pp.5090-5110, 2008.

W. Martin, J. Baross, D. Kelley, and M. J. Russell, Hydrothermal vents and the origin of life, Nat. Rev. Microbiol, vol.6, pp.805-814, 2008.

C. Konn, L. Charlou, J. P. Donval, N. G. Holm, F. Dehairs et al., Hydrocarbons and oxidized organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafichosted vents, Chem. Geol, vol.258, pp.299-314, 2009.

S. Q. Lang, D. A. Butterfield, M. Schulte, D. S. Kelley, and M. D. Lilley, Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field, Geochim. Cosmochim. Acta, vol.74, pp.941-952, 2010.

M. J. Russell, A. J. Hall, and W. Martin, Serpentinization as a source of energy at the origin of life, Geobiology, vol.8, pp.355-371, 2010.

M. Cannat, Tectonic and magmatic controls on serpentinization at mid-ocean ridges, In Serpentine in the Earth System Discussion Meeting Royal Society of London (Abstract), Session, vol.1, 2018.

F. Klein, Fischer-Tropsch-Type Synthesis in Olivine-Hosted Fluid Inclusions: The Origin of Methane in Serpentinisation Systems?, Serpentine in the Earth System Discussion Meeting Royal Society of London (Abstract), 2018.

L. Mayhew, Iron speciation in subsurface serpentinites from the Atlantis Massif (IODP Exp. 357), In Serpentine in the Earth System Discussion Meeting Royal Society of London (Abstract), 2018.

M. J. Russell, W. Nitschke, and E. Branscomb, The inevitable journey to being, Phil. Trans. R. Soc. B, vol.368, 2013.

J. L. Bada, How life began on Earth: a status report. Earth Planet. Sci. Lett, vol.226, pp.1-15, 2004.

V. V. Peresypkin, A. Y. Lein, Y. A. Bodganov, and N. S. Bortnikov, On the nature of lipids in hydrothermal formations at the Broken Spur and the vent field of the Mid-Atlantic Ridge, Explor. Min. Geol, vol.8, pp.365-377, 1999.

J. L. Bada and A. Lazcano, Some like it hot, but not the first biomolecules, Science, vol.296, 1982.

E. Baker, G. J. Massoth, and R. E. Feely, Cataclysmic hydrothermal venting on the Juan de Fuca Ridge, Nature, vol.329, pp.149-151, 1987.

P. A. Tyler and C. M. Young, Dispersal at hydrothermal vents: a summary of recent progress, Hydrobiologia, vol.503, pp.9-19, 2003.

D. Deamer and B. Damer, 2017 Can life begin on Enceladus? A perspective from hydrothermal chemistry, Astrobiology, vol.17, pp.834-839

D. Deamer, The role of lipid membranes in life's origin, Life, vol.7, 2017.

A. Y. Mulkidjanian, A. Y. Bychkov, D. V. Dibrova, M. Y. Galperin, and E. V. Koonin, Origin of first cells at terrestrial, anoxic geothermal fields, Proc. Natl Acad. Sci. USA, vol.109, 2012.

M. P. Joshi, A. Samanta, G. R. Tripathy, and S. Rajamani, Formation and stability of prebiotically relevant vesicular systems in terrestrial geothermal environments, Trans. R. Soc. A, vol.7, p.51, 2017.

J. Korenaga, Initiation and evolution of plate tectonics on earth: theories and observations, Annu. Rev. Earth Planet. Sci, vol.41, pp.117-151, 2013.

J. A. Pearce, Geochemical fingerprinting of the earth's oldest rocks, Geology, vol.42, pp.175-176, 2014.

S. A. Wilde, J. W. Valley, W. H. Peck, and C. M. Graham, Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago, Nature, vol.409, pp.175-178, 2001.

S. J. Mojzsis, T. M. Harrison, and R. T. Pidgeon, Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago, Nature, vol.409, pp.178-181, 2001.

J. W. Valley, W. H. Peck, E. M. King, and S. A. Wilde, A cool early Earth. Geology, vol.30, pp.351-354, 2002.

H. Schouten, K. D. Kiltgor, and J. A. Whitehear, Segmentation of mid-ocean Ridges, Nature, vol.317, pp.225-229, 1985.

K. C. Macdonald, S. Steele, . Thorpe, and . Turekian, Seafloor spreading: Mid-Ocean Ridge tectonics, Encyclopedia of ocean sciences, pp.1798-1813, 2001.

A. P. Nutman, V. C. Bennett, C. Friend, . Roberts, S. Van-kranendonk et al., The emergence of the Eoarchaean proto-arc: evolution of a c. 3700 Ma convergent plate boundary at Isua, southern West Greenland, Continent formation through time, vol.389, pp.113-133, 2019.

A. R. Hastie, J. G. Fitton, G. D. Bromile, I. B. Butle, and N. Odling, The origin of Earth's first continents and the onset of plate tectonics, Geology, vol.44, pp.855-858, 2016.