Skip to Main content Skip to Navigation
New interface
Journal articles

Density Functional Theory Study of Monoethanolamine Adsorption on Hydroxylated Cr2O3 Surfaces

Abstract : The adsorption of monoethanolamine (MEA), a well-known CO2 capture amine, on the hydroxylated (0001)-Cr2O3 surface was investigated by periodic density functional theory calculations and complementary ab initio molecular dynamics. Two different adsorption modes were investigated: adsorption of MEA above the hydroxylated surface and substitution of a surface water molecule by MEA. Several MEA coverages were studied from 0.25 to 1 monolayer. An atomistic thermodynamic approach was used to take into account the effects of temperature and solvation on the MEA adsorption process in aqueous solution. MEA can adsorb on the surface in a parallel orientation, and H-bonds are formed between amine and alcohol groups and different (H)OH groups at the surface. In the gas phase at 0 K, the formation of a monolayer (ML) of MEA above the surface is the most favorable adsorption mode. In aqueous solution at 298.15K, calculations have suggested that MEA adsorbs above the hydroxylated Cr2O3 surface with a density of 2.37 MEA/nm2 (0.5 ML). However, the substitution process was found to be endothermic at temperatures above 298.15 K.
Document type :
Journal articles
Complete list of metadata
Contributor : jean kittel Connect in order to contact the contributor
Submitted on : Friday, December 20, 2019 - 8:02:30 AM
Last modification on : Saturday, November 12, 2022 - 3:53:13 AM




Aurélie Gouron, Jean Kittel, Theodorus de Bruin, Boubakar Diawara. Density Functional Theory Study of Monoethanolamine Adsorption on Hydroxylated Cr2O3 Surfaces. Journal of Physical Chemistry C, 2015, 119 (40), pp.22889-22898. ⟨10.1021/acs.jpcc.5b05375⟩. ⟨hal-02420552⟩



Record views