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Abstract

The different approaches found in literature to compute small angle X-ray scatter-

ing intensities of stochastic Boolean models from their analytical formulations or their

numerical realizations are reviewed. The advantages and drawbacks of the methods for

the interpretation of small angle X-ray scattering curves are investigated. Examples

of multiscale models built from union and intersection of Boolean models of spheres

and from Gamma or log-normal radius distribution are given. The scattered inten-

sity computed from projections of realizations of such models are compared with the

intensity computed from their analytical covariance. It appears that computation from

projection induces strong finite size effect with a relative variance constant and equal

to 0.5. Comparison of scattering intensities of an intersection of Boolean model and

the corresponding Cox model shows only subtle differences.
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1. Introduction

Heterogeneous catalysts are of primary importance in the production of chemicals

(Dingerdissen et al., 2008). These catalysts are often formed by a porous support cov-

ered by active phases constituted of particles of varying shapes and sizes ranging from

the nanometer scale to the micrometer scale (Weckhuysen, 2009). Many supports of

heterogeneous catalysts may be viewed as a collection of grains randomly stacked,

the volume between the grains giving rise to the porosity. For example, alumina sup-

ports may be modeled as nanometric platelets that are aggregated at a larger scale

(Wang et al., 2015). Likewise, the active phase could also be seen as an assembly of

particles. For example, Fischer-Tropsch catalysts are composed of cobalt nanomet-

ric particles that are themselves grouped into aggregates on a silica-alumina support

(Humbert et al., 2018). The two-scales organization of the active phase of catalysts can

be related to their performance (activity, selectivity) (Munnik et al., 2014). The par-

ticles of support or active phases are often polydisperse, with a normal or log-normal

distribution law depending if they are formed by coalescence or ripening (Granqvist &

Buhrman, 1976; Datye et al., 2006). Morphological details of catalysts may be observed

at the nanometer scale with Transmission Electron Microscopy (TEM) (Thomas &

Terasaki, 2002) or Electron Tomography (ET) (Friedrich et al., 2009) and at the

micrometer scale with Scanning Electron Microscopy (SEM) (Lomić et al., 2004) cou-

pled or not with Focused Ion Beam (FIB) (Witte et al., 2013). However, the extraction

of a particle size distribution is tedious and these techniques are often limited by their

lack of representativeness.

Small-Angle X-ray Scattering (SAXS) probes the fluctuation of electron density in a

material (Li et al., 2016) at a scale ranging between one and few hundreds of nanometer

and within a volume in the order of slightly less than the mm3. Therefore, it is an

interesting technique for the characterization of catalytic systems, if it can handle
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polydisperse spherical and/or platelet-like particles that are more or less aggregated

within aggregates more or less dense. This is a crucial point that differs from other

systems usually analyzed by SAXS.

Indeed, SAXS has been widely employed for the characterization of colloidal sus-

pension and materials like cement, metallic nanoparticles, oil, polymers, pharmaceu-

ticals, food or proteins. SAXS relates the intensity I scattered at a wave vector q

with the Debye correlation function or normalized covariance of the sample γ (r).

Conventional data processing involves a split of the scattered intensity into form and

structure factors, very suitable for dilute suspensions, form factor being restricted

to simple morphologies and structure factor generally to hard-core repulsion. How-

ever, for microstructures such as porous media or active phases encountered in het-

erogeneous catalysis, conventional data processing is not relevant. For example, the

multi-scale models proposed by Beaucage (1995) are not suited for non-fractal mor-

phologies encountered in heterogeneous catalysis. An approach implemented in the

program MIXTURE (Konarev et al., 2003) allows to fit the experimental scattering

curve by modeling the multicomponent system with different form factor and taking

into account interparticle interactions. These interactions are described by structure

factor calculated within Percus-Yevick approximation for hard-sphere or sticky hard-

sphere potential. However the modeling of aggregated particles is not obvious and the

consideration of platelet-like objects, or size distribution such as gamma or log-normal

distribution functions, are not available. Besides, an other approach is proposed by

Bressler et al. (2015) with the McSAS software and gives a distribution of an arbitrary

shape from a single form factor.

Exploitation of the SAXS intensity can also be performed thanks to Boolean mod-

els, either by direct calculation of I (q) from a known covariance or by inverting the

relation to extract γ (r). The first approach has been applied on one-scale Boolean
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model of spheres (Gille, 2011), union and intersection of Boolean models, dead leaves

model, clipped Gaussian field and Gaussian field intersection model (Gommes, 2018).

The second approach has been applied for one-scale Boolean model of sphere with

monodisperse or exponential size distribution, Poisson polyhedra, intersection of two

Poisson polyhedra models and the intersection of a Poisson polyhedron and the com-

plementary of Poisson polyhedron (Sonntag et al., 1981). Both approaches are com-

putationally efficient as they only require a single one-dimensional Fourier transform

and a numerical differentiation to obtain the SAXS intensity. They are however lim-

ited to models with an analytical covariance. These works are restricted to models

with known analytical covariance and very simple particle size distribution (Sonntag

et al., 1981; Gille, 2011) or arbitrary but discrete distribution (Gommes, 2018).

Whatever the approach, it is worth noticing that a matching correlation function

does not completely defines a microstructure (Gommes et al., 2012; Gommes, 2018).

One of the advantages of using morphological models such as Boolean models for

materials modeling is that some of their parameters can be constrained either by

knowledge of the synthesis process or from complementary characterization tech-

niques (microscopy, nitrogen adsorption or mercury porosimetry). This can dramat-

ically reduce the microstructures matching with a specified covariance. This is the

strength of this kind of approach compared to the conventional data processing. More-

over Boolean models can handle any particle shape and may be combined to model

multi-scale microstructures in an easy way.

The aim of this paper is thus to propose to interpret SAXS intensity with more elab-

orate intersection and/or union of Boolean models and through multi-scale Boolean

models with Cox point processes of arbitrary complexity. The first section recalls

the basic equations for Boolean models. Next section reviews the different approach

to compute SAXS intensity from a known microstructure. We show in third section
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results for one-scale Boolean models of spheres, Boolean models of spheres with a dis-

tribution in radius, model of aggregated and isolated particles and differences between

intersection of Boolean models and their corresponding Cox model. The fourth sec-

tion is devoted to the discussion of Representative Volume Element (RVE) and the

numerical cost of the proposed approaches.

2. Boolean models

2.1. One-scale Boolean models

The principle of a Boolean scheme is to generate random Poisson points with

a θ density and implanting on each point a primary grain that can be stochastic

(Matheron, 1967; Matheron, 1975). Notice that the grains can overlap each other. In

this manuscript we will restrict to the case of a biphasic material where solid fraction

has a finite ρ > 0 electronic density and a void fraction with a ρ = 0 electronic density,

otherwise said, a porous material. The approach can however be easily extrapolated

to materials with more than two phases.

The volume fraction p of a Boolean set is related with the intensity of the process

θ by:

p = 1− e−θE[VG] (1)

where E [VG] is the expectation of the volume of the primary grains. The porosity of

the model ε = 1− p is trivially related to the volume fraction p.

The two-points correlation function of the set (of the solid phase) C11 (h) is the

probability that two points that are separated by a distance h belong to the set. It

reads:

C11 (h) = ε2eθK(h) + 1− 2ε (2)

where K (h) is the geometrical covariogram of the primary grain defined as the expec-

tation of the volume of the intersection of the grain with its translated by vectors of
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module h. For spherical grains of constant radius R:

KS (R, h) =
4π

3

(
R3 − 3

4
hR2 +

h3

16

)
Θ (2R− h) (3)

with Θ the Heaviside’s step function.

The two-points correlation function of the complementary of the set (of the pores)

C00 (h) is the probability that two points that are separated by a distance h belong to

the complementary of the set. It is related to C11 (h) and to the normalized covariance

γ (h) by:

C00 (h)− ε2 = C11 (h)− p2 = pεγ (h) (4)

Thus, the normalized covariance of a Boolean model reads:

γ (h) =
1− p
p

(
eθK(h) − 1

)
(5)

2.2. Union and intersection of models

Union and intersection of Boolean models allow to produce more elaborate models

while keeping tractable analytical formula.

Union allows to produce models with a distribution in size or in shape of the primary

grains. As a point belongs to the complementary of the union of n models, if and only

if it belongs to the complementary of each model, we have:

ε =
n∏
i=1

ε(i) (6)

C00 (h) =
n∏
i=1

C
(i)
00 (h) (7)

One consequence of these relations is that a model with a continuous grain size

distribution behaves like a one-scale model with a modified geometrical covariogram.

For a Boolean model of spheres which radius follow a distribution law P (R), the

geometrical covariogram reads:

K (h) =

∫ ∞
0

P (R)KS (R, h) dR (8)
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Let SnP (x) defined by:

SnP (x) =

∫ ∞
x

RnP (R) dR (9)

With this definition, SnP (0) is the nth uncentered moment of P . We have:

E (VG) =
4π

3
S3
P (0) (10)

The volume-averaged radius RV writes:

RV =
S4
P (0)

S3
P (0)

(11)

And the covariogram reads:

K (h) =
4π

3

[
S3
P

(
h

2

)
− 3

4
hS2

P

(
h

2

)
+

1

16
h3S0

P

(
h

2

)]
(12)

If the analytical formulations of SnP (x) are known, the covariance may be easily cal-

culated from equations 12 and 5. The expressions of the covariogram for Boolean

model of spheres are given explicitly in supplementary materials for the log-normal,

the Gamma and the exponential distributions of radius.

Intersection allows the building of models of aggregated primary grains. As a point

belongs to an intersection of n models, if and only if it belongs to each model, we

have:

p =
n∏
i=1

p(i) (13)

C11 (h) =
n∏
i=1

C
(i)
11 (h) (14)

Union and intersection of models may be combined to obtain even more complex

microstructures. For example, the intersection of a large scale model with a smaller

scale model generates aggregated particles. The union of this model with the inter-

section of the large scale model with another small scale model gives a model with

isolated and aggregated particles. This kind of models have been used to model ASAXS

intensity of cobalt based catalyst trough analytical models neglecting structure factors

(Humbert et al., 2018).
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2.3. Cox models

Multi-scales Boolean models may be obtained by intersection of Boolean models.

Unfortunately, this strategy leads to unrealistic morphologies where some primary

grains are cut. Another slightly different way of approaching the problem allows to

obtain more realistic microstructures. The shape the primary grains can be kept if the

Poisson seeds associated to the grain are implanted in the large-scale Boolean model

first and the primary grains implanted on the seeds afterwards. This type of model

uses Cox point processes (Jeulin, 1996; Jeulin, 2012). To make an intersection of two

models, only the grains of the first model whose seeds fall inside the second model are

totally preserved. More details can be found in (Moreaud, 2006). Although analytical

covariance of such composition of models are not known, we will see later that this

approach is of interest if we take the problem from a numerical point of view.

3. Methods to compute SAXS intensity

Methods to compute SAXS intensity from a microstructure depends on the complexity

of the microstructure and relies on Fourier transforms:

• One dimensional Fourier transform if the covariance is known (analytical covari-

ance);

• One or two-dimensional Fourier transform after linear projection of an arbitrary

microstructure;

• Three-dimensional Fourier transform for arbitrary microstructure by numerical

evaluation of the covariance;

For the remainder of the document, microstructures are considered as defined by

a binary function χb : R3 → {0; 1} with points representing matter defined by the

set X =
{
x ∈ R3 | χb (x) = 1

}
; X is a bounded set. Let ∂γ the convex hull of X with

γ a bounded set of R3, defined as the smallest convex set such as X ⊂ γ. Finally

IUCr macros version 2.1.11: 2019/01/14



9

let χ be a 3D binary image representing the microstructure, defined by χb and γ by

χ : γ → {0; 1} ;x 7→ χb (x), otherwise said χ is a restriction of χb to γ.

3.1. Analytical covariance

Defining the Fourier transform F (g) of g by:

F (g) (q) =

∫ +∞

−∞
g (r) e−iqr dr (15)

the SAXS intensity reduces to (Levitz & Tchoubar, 1992):

I (q) = Ie (q)V p (1− p) ρ2−2π

q

∂

∂q
[< [F (γ) (q)]] (16)

where q is the wave vector of diffusion, Ie (q) the intensity scattered by one electron,

V the volume irradiated by the incident X-ray beam and < (z) the real part of z.

Equation 16 may be helpful to compute SAXS intensity from a known covariance. It

implies a one-dimensional Fourier transform and a numerical differentiation. It can be

evaluated numerically by an efficient Fast Fourier Transform algorithm (FFT).

3.2. Computation of the SAXS intensity from projection

Brisard et al. (2012) invoking the Fourier slice theorem (Kak & Slaney, 1988) indi-

cate that the SAXS intensity is proportional to the square of the modulus of the

Fourier transform of the linear projection of the microstructure. In the tomography

literature, the linear projection of a function f (r) is defined as the integral path of

the function along a direction. For example the linear projection Pz [f ] of f (r) along

the z axis in Cartesian coordinates is defined by:

Pz [f ] (x, y) =

∫ ∞
−∞

f (x, y, z) dz (17)

Assuming a biphasic porous medium with indicator function χ (r) the SAXS inten-

sity in the qz = 0 plane reads (see supplementary materials):

I (qx, qy)

Ie (qx, qy)
= ρ2 |F (Pz [χ] (x, y))|2 (18)
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For a statistically isotropic medium, the SAXS intensity may be evaluated in any plane

as it depends only on the modulus q of the scattering vector. Thus, the SAXS intensity

of an isotropic medium is easily calculable from the projection of the microstructure

along an arbitrary direction. The general methods to compute the SAXS intensity

from projection are the following, depending on the anisotropy of the microstructure.

For statistically isotropic systems:

• Generate a periodic, digital realization of the microstructure on a finite 3D

volume: χ (x, y, z);

• Compute the linear projection of the realization along an arbitrary axis, for

example the z axis using Equation 17, obtaining the 2D image Pz [χ] (x, y);

• Compute the square modulus of the Fourier transform of this projection using

a 2D FFT algorithm in order to obtain I (qx, qy) (Equation 18);

• Compute I (q) = 1
2 [I (q, 0) + I (0, q)]

For anisotropic systems having the y and z equivalent directions:

• Generate a periodic, digital realization of the microstructure on a finite 3D

volume: χ (x, y, z);

• Compute the linear projection of the realization along either y or z axis, for

example the z axis using Equation 17, obtaining the 2D image Pz [χ] (x, y);

• Compute the square modulus of the Fourier transform of the projection using a

2D FFT algorithm to obtain I (qx, qy) (Equation 18);

An only two dimensional Fourier transform is needed. Besides, any type of complex

multi-scale microstructures can be used with this approach, such as previously pre-

sented combination of Boolean models and Cox point processes. At last, for isotropic

systems, an improvement of the method could be not to reconstruct the complete

microstructure but only a linear projection of it along an arbitrary direction.
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3.3. Numerical evaluation of the covariance

For periodic microstructures, the covariance may be evaluated by Fast Fourier

Transform (FFT) (Koch et al., 2003; Schmidt-Rohr, 2007):

C11 (h) = F−1
(
|F (χ (h))|2

)
(19)

Combining equations 16 and 19, the scattered intensity reads:

I (q) = Ie (q)V ρ2
−2π

q

∂

∂q

[
|F (χ (h))|2

]
(20)

The SAXS intensity may be computed from a three-dimensional Fourier transform

and a numerical differentiation. As this method implies a three-dimensional FFT, it

requires long computation time and large memory requirement and was not explored

in this work.

3.4. Variance of computed SAXS intensity

The software platform plug im! (Moreaud, 2018) has been used to produce binarized

realizations of Boolean models of spheres with radius constant or distributed according

to a Gamma law and union and/or intersection of them. The realizations are periodic

within the cell defined as a cubic volume of side N . The computation of the projection

and calculation of the SAXS intensity from it has been implemented as a module

in this platform using Fast Fourier Transform. Typical running times (not specially

optimized) for generating one realization on a 2.3 GHz Intel Xeon ES-2650 workstation

with 32 Go memory are given in Table 1. Projection of a realization last about 3

s and the computation of the SAXS intensity less than one second. Computation

of SAXS intensity from covariance for Boolean model of spheres and their union

and/or intersection has been implemented on another module for the platform using

Fast Fourier Transform. Typical running time is less than one second for a 218 wide

simulation domain.
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Methods to compute SAXS intensity that relies on the generation of realizations

of models (such as computation of SAXS diagram from projection) will introduce

variability in their results. To quantify the uncertainty of the SAXS intensity computed

from projection Iproj (q), we define the relative variance V (q) by:

V (q) =
Var [Iproj (q)]

E [Iproj (q)]2
(21)

The variance V (q), will allow us to study the relative precision of an averaged

intensity obtained from these n realizations. Indeed, the relative uncertainty of the

averaged intensity is expected to scale as
√
V (q) /n.

4. Results

Calculated SAXS intensities will be reported plotting the intensities normalized by

the intensity at q = 0 versus the wave vector q normalized by the inverse of the

characteristic length scale 1/RV with RV the volume-averaged radius of the primary

spheres. All length scales are in voxel units and q scales in voxel−1 units.

4.1. Boolean model of spheres with constant radius

Figure 1 shows two surface renderings of one realization of a Boolean model of

spheres with constant radius R = 20 for 0.2 and 0.8 volume fractions. Figure 2 shows

the comparison of the SAXS intensity of a one-scale Boolean model of spheres of

constant radius R for volume fraction p = 0.8 calculated from equations 16 and 18. A

single realization leads to oscillations of the intensity around the expected value. When

q & 1, intensity computed from projection starts to differ significantly from intensity

computed from analytical covariance. Figure 3 shows the same comparison but from

the mean SAXS intensity of 1000 independent realizations. A much better agreement

is found between both methods, the oscillations for the method by projection are
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much less pronounced than for a single realization. The q−4 dependence at high q,

characteristic of smooth isotropic surfaces is observed as expected. A departure from

the expected intensity at high q is observed. Figure 4 shows the variance of the bias.

Variance is found to be constant for the whole q range and close to 0.5 for any volume

fraction p and any size of simulation domain.

4.2. Boolean model of spheres with radius following a Gamma distribution

Figure 5 shows two surface renderings of one realization of a Boolean model of

spheres with radius following a Gamma distribution with scale parameter b = 4 and

shape parameter c = 2 for 0.2 and 0.8 volume fractions. b is the mean radius (in

number) and c is an adimensional parameter controlling the distribution width. These

parameters were chosen to obtain the same mean volume radius RV = 20 than for

the previous model with constant diameter. Figure 6 shows the comparison between

the SAXS intensity calculated from analytical covariance (equation 16) and from pro-

jection (equation 18) of a single realization of a one-scale Boolean model of spheres

following this Gamma distribution. The volume mean radius of the spheres is 20 pix-

els in a 10243 voxels volume. Marked oscillations are noticeable. Figure 7 shows the

same comparison but with the mean SAXS intensity of 1000 independent realizations

of the model. The q−4 dependence at high q, characteristic of smooth isotropic sur-

faces is well recovered and the spurious oscillations are less visible. As for the previous

cases, intensity computed from projection differs significantly from intensity computed

from analytical covariance when q & 1. At small q, the calculated intensity is slightly

underestimated
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4.3. Boolean model of spheres with large distribution in radius

Log-normal distribution allows to generate Boolean model of spheres with a very

wide radius distribution. The relative standard deviation (RSD) of the volume-averaged

radius of spheres for a log-normal distribution of parameters µ and σ is given by:

RSD =

√
eσ2 − 1 (22)

Figure 8 shows the SAXS intensity of Boolean models of spheres with a fixed volume-

averaged radius RV and variable RSD. Large RSD results in an intensity with a

pseudo-fractal behavior on a large range of q. For such models, the scattered intensity

scales as a power law q−α in the range qRV ∈ [1; 100].

4.4. Model of aggregated and isolated particles

In order to model metal particles as observed in Fischer-Tropsch cobalt-based cata-

lyst (Humbert et al., 2018), a combination of union and intersection of Boolean model

of sphere can be build. Let A, B and C be three Boolean models of spheres with radius

following three different log-normal distributions. Let D be the model defined by:

D = (A ∩B) ∪ (Ac ∩ C) (23)

Model A represents aggregates, B the particles in the aggregates and C the particles

outside the aggregates. Such model still have an analytical covariance (see supplemen-

tary materials). Figure 9 shows scattered intensities for four examples of such models

with various volume fraction of the A, B and C models.

4.5. Cox model

Figure 10 shows two-dimensional cross sections of two realizations of an intersection

of two Boolean models of spheres and the corresponding Cox model. Parameters of the

models are reported in Table 2. Cox model is generated such as the whole sphere of a
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particle is included in the sphere of an aggregate. The parameters of the Cox model

have been adjusted to have an equivalence between the models (same particle radius

R(2), same aggregate radius R(1), same volume fraction of particles in aggregates p(2)).

The volume fraction of aggregates of the Cox model p(1) has been adjusted to obtain

the same mean total volume fraction as for the intersection of Boolean models, namely

p = 0.21. As the volume fraction of the Cox model is not analytical, p(1) was adjusted

by a dichotomy procedure using several tries comporting 1000 realizations each. The

value p(1) = 0.397878 leads to a mean volume fraction p = 0.2106 ± 0.00148 (95%

confidence interval), compatible with the p = 0.21 targeted value. For the intersection

model, primary spheres are cut at the border of the aggregates whereas they are

conserved in the corresponding Cox model. Figure 11 shows the scattered intensities

of both models. A subtle difference is observed between the two models in the space

scale close to the small spheres radius (qR(1) ≈ 6). We recall that the intensities of the

Cox model cannot be computed from analytical covariance as its covariance cannot be

determined analytically. Therefore, it is only possible to compute it from projection

of realizations.

5. Discussion

In the Figure 3, the increased overlapping of spheres for the p=0.8 model compared

to the p=0.2 model results in more smoothed oscillations of the intensities. At high

q, the departure from expected values of the intensities computed from projections is

explained by discretization errors. The condition q & 1 corresponds to distance in the

r space lower than 2π voxels for which binarization effects become significant in the

realizations of the models. It limits the range of q that can be probed to [2π/N ; 1] in

voxel−1, where N is the number of voxels for the side of the simulation cube. The same

effect is present for the calculation from analytical covariance but is much less present
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as the number of points can be made much larger because only a one-dimensional

information is needed.

Underestimation of the intensity at low q (Figure 7) for low volume fraction and

overestimation for high volume fraction can be explained by the truncation of the

Gamma distribution for large radius during the generation of the realization of the

model. Indeed, the realization of the Boolean model in a finite size volume cannot

accommodate grains with diameter larger that the cube side. It may be a problem

for distributions in size that are not bounded. Therefore, the Gamma distribution

has been truncated to ten times the mean radius in number (10bc = 80 voxels) and

this caused the underestimation of intensity at small q. Such effect limits clearly the

computation of the SAXS intensity to models which grains have a distribution in size

that is rapidly decreasing and not too wide.

The oscillations of the intensity computed from projection around the expected

value are attributed to finite-size effect of the simulation. These effects are well known

for the computation of structure factor and compressibility of gas from molecular

dynamics simulation of periodic systems. Salacuse et al. (1996) have discussed the ori-

gin of these effects which are explicit (the number of particle can vary in the simulation

volume) or implicit (due to the periodic boundary conditions) and they proposed a

way to correct them. Brisard & Levitz (2013) have proposed another methodology

to correct these finite size effects that is more universal and accurate. Their method

considers granular media formed by individual particles, and the SAXS intensities

are obtained semi-analytically whereas calculation from projection is digital for any

arbitrary periodic microstructure. Concerning these finite-size effects, Boolean models

should behave as the systems of individual particles described by these authors. For a

realization of a model, the number of grains in the simulation volume follows a Poisson

law which gives inevitably rise to explicit size effect. The periodic boundary conditions

IUCr macros version 2.1.11: 2019/01/14



17

of the realizations are similar to set of individual particles and provokes implicit effects.

The computation of an averaged intensity from a large number of realizations strongly

diminishes these finite-size effect at the expense of numerous generation of realizations,

their projection and computation of intensity. An adaptation of the algorithm pro-

posed by Brisard & Levitz (2013) to two-dimensional Fourier transform (equation 18)

should correct the finite-size effect and allow an accurate computation of the SAXS

intensity from a single realization. It is worth mentioning that these finite size effects

are not compatible with the definition of a Representative Volume Element (RVE)

for the SAXS intensity. Even for high N , the fluctuation of intensity at a given q

does not converge proportionally with the inverse of N3, the volume of the simulation

cube (Lantuejoul, 1991). This is confirmed by the results shown in Figure 4 where

the variance of intensities are found independent of q and N . It does raise question if

the denomination of finite-size effect is correct. We have observed this same constant

variance for the intersection of two Boolean models of spheres and its corresponding

Cox model presented in section 4.5. The relative variance of intensity for a given q

is conjectured to be equal to one. The value 0.5 obtained in Figure 4 is explained by

the fact that the calculated intensities are an average of two directions (vertical and

horizontal).

Numerical costs of the calculation from projection are essentially limited by the

simulation of a realization (Table 1). The size of the volume N is limited by the

available memory. Size of N = 2048 mobilizes 8 Go of memory just to store the

realization and is the practical limit on a standard computer. Moreover, the number

of implanted grains is proportional to N3 so that simulation time grows quickly when

the size N grows. Finite size effects are not removed even for sizes as large as N = 2048

and have to be mitigated by averaging large number of realizations. The needed time

scales as the number of realizations n, such as the variance of the intensity. The

IUCr macros version 2.1.11: 2019/01/14



18

relative variance of the computed intensities (Figure 4) is constant for the whole q

range independently of the size of the simulation. It means that there is no interest

to perform realizations on large volumes, provided that the volume is big enough to

accommodate the largest sphere. The order of magnitude of this constant variance

close to 1/2 allows to predict the standard deviation of the computed intensity to

about
√
n/2, with n the number of realizations. This large variance necessitates a

high number n of realizations to obtain relative uncertainties close to experimental

ones that can be found lower than the percent.

Contrariwise, the calculation of the SAXS intensity from analytical covariance is

free from explicit size effects and implicit ones can be made very small using very

large range for sampling the covariance. The memory requirements are low: 8 Mo for

a 218 simulation domain size. Running times are also very small (less than a second)

since only a one-dimensional FFT and a numerical differentiation is needed. The last

method, calculation from the numerical evaluation of the covariance, has not been

explored. It has the drawbacks of important finite size effects and the need of large

memory for performing a three-dimensional FFT. Moreover the numerical differenti-

ation in equation 20 with relatively large ∆q leads to large numerical inaccuracies.

The computation of the SAXS intensity from analytical covariance seems to be the

method of choice. It allows the simulation of true multi-scales models, even up to some

showing a fractal behavior over several orders of magnitude of length scale as shown

in Figure 8. Such power law dependence has been predicted by Schmidt (1982) for

independently randomly oriented objects that have a size distribution with a power-

law tail. Here, we observe the same behavior for a consolidated media and a size

distribution with a tail decreasing faster than a power law. The model of aggregated

and isolated particles of section 4.4 is able to qualitatively reproduce the experimen-

tal ASAXS intensity of cobalt-baser Fischer-Tropsch Catalyst (Humbert et al., 2018).
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However, it has the strong drawback that only Boolean models with an analytical

covariance may be used to interpret SAXS intensity. This strongly limits the geom-

etry of the grains to spheres or cylinders (Willot, 2017) and to union and/or inter-

section of Boolean models. For example, microstructures as Cox model of aggregates

of platelets for modeling alumina supports or Cox model of spherical aggregates of

spherical particles for modeling Fischer-Tropsh catalysts are out of reach with this

approach. For one-scale Boolean models of grains for which analytical covariance is

not known, a mixed approach could be settled. The covariogram may be numerically

evaluated (Moreaud et al., 2012), the covariance obtained by equation 5 and the SAXS

intensity computed from the covariance. Nevertheless, the difference between an inter-

section of Boolean model of spheres and the corresponding Cox model is very subtle

as shown Figure 11. As morphological models have parameters with a geometrical

meaning, it can lead to a two steps process to interpret SAXS intensity by morpho-

logical models. First, the parameters of a Boolean model with known covariance could

be fit by least squares to experimental data. These parameters could then be refined

with the corresponding Cox model, limiting an expensive optimum search arising from

computation by projection. The calculation from projection, whereas requiring much

more memory and computation time, is more universal as any binarized microstruc-

ture may be processed. It will strongly benefit of the implementation of a correction

for finite size effects. Moreover, this approach has the advantage of needing only the

projection of the microstructure. Using the infinite divisibility of Boolean models and

extending the work of Jeulin & Moreaud (2011) to projection calculation, it may be

possible to overcome the memory limitations to be able to compute larger simulation

volumes to handle multi-scale microstructures.
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6. Conclusion

The use of Boolean model is important for the interpretation of SAXS intensity of

system encountered in heterogeneous catalysis. The three common methods that are

found in literature to compute the SAXS intensity from a Boolean model have been

exposed. Calculation from known analytical covariance of union and intersection of

Boolean models allows to model complex microstructures including spherical particles

with exponential, Gamma or log-normal distribution in radius. Such approach can

model fractal-like behavior and systems of aggregating particles. Comparison of an

intersection of Boolean model of spheres and the corresponding Cox model is very

subtle. This open interesting perspectives to interpret SAXS intensities of system of

isotropic particles and aggregates with such union and intersection of Boolean models

with analytical covariance. Calculation of intensities from projection can be applied

on any periodic digital representation of a microstructure. However, it appears it

is prone to strong finite size effects. These effects may be mitigated by computing

the average of numerous realizations of the model at the expense of long computing

times. With a proper implementation of a correction for finite size effects, this method

is however more attractive as not restricted to grains of simple geometry and to union

or intersection of Boolean models.

Authors warmly thank the two anonymous reviewers and Editor of the journal for

their advice to improve the early version of the manuscript.
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Table 1. Typical number of implanted grains and running times for one realization of a 5123

volume of a Boolean model of spheres of 20 voxels radius.
p 0.2 0.8
Number of grains 900 6400
Running time (s) 15 45

Table 2. Parameters for two-scales models of spheres of Figure 11.
Intersection Cox model

p(1) 0.3 0.397878
R(1) 64 64
p(2) 0.7 0.7
R(2) 8 8

(a) (b)

Fig. 1. Surface rendering of a realization of a one-scale Boolean model of spheres with
constant radius R = 20 voxels with (a) p = 0.2 and (b) p = 0.8.
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Fig. 2. Comparison of calculated SAXS intensity from analytical covariance (lines)
and projection (symbols) for one realization (10243 voxels volume) of a one-scale
Boolean model of spheres with constant radius R = 20 and volume fraction p=0.8.
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Fig. 3. Comparison of calculated SAXS intensity from analytical covariance (lines)
and projection (symbols) for 1000 realizations (5123 voxels volume) of a one-scale
Boolean model of spheres with constant radius R = 20. (a) log-log plot (b) semi-log
plot.
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Fig. 4. Relative variance of Iproj (q), the scattered intensity computed from projection,
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Fig. 5. Surface rendering of a realization of a one-scale Boolean model of spheres
with radius following a Gamma distribution of scale parameter b = 4 and shape
parameter c = 2 with (a) p = 0.2 and (b) p = 0.8.
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Fig. 6. Comparison of calculated SAXS intensity from analytical covariance (lines)
and projection (symbols) for one realization (10243 voxels volume) of a one-scale
Boolean model of spheres with radius R following a Gamma distribution of scale
parameter b = 4 and shape parameter c = 2 and a volume fraction p = 0.8.
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Fig. 7. Comparison of calculated SAXS intensity from analytical covariance (lines)
and projection (symbols) for 1000 realizations (5123 voxels volume) of a one-scale
Boolean model of spheres with radius R following a Gamma distribution of scale
parameter b = 4 and shape parameter c = 2 .
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(a) (b)

Fig. 10. Two dimensional cross sections of realizations of (a) an intersection of two
Boolean models of spheres (b) the corresponding Cox model. Parameters of the
models are reported in Table 2.
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Fig. 11. SAXS intensity for an intersection of two Boolean models of spheres with
constant radius (red crosses from projection, line from covariance) and the corre-
sponding two-scales Cox model (blue crosses from projection). Average from 1000
realizations (5123 voxels volume). Parameters of the models are reported in Table
2.

Synopsis

Methods for computing SAXS intensity for Boolean models of spheres from known covariance
or from projection of realizations are reviewed and compared.
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