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ABSTRACT: Sulfur content in gas oils is strictly regulated by legal specifications for environmental reasons. Gas oils are 
composed of various aromatic sulfur compounds and some of them are known to be very refractory for the sulfur removal reactions. 
Thus, an accurate analysis of the sulfur compounds is important to find the appropriate operating conditions of the gas oil 
hydrotreating processes. Aromatic sulfur compounds contained in 23 gas oils samples were analyzed using APPI(+)-FT-ICR MS 
considering six replicates. Significant differences were spotted within several processed gas oils. A comparison of one feed and its 
corresponding effluents also confirmed the well-known refractory character of sulfur compounds such as poly alkylated 
dibenzothiophenes. To go deeper in the molecular exploration, chemometric tools were applied on this spectral dataset including 
Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA). A unique data re-arrangement was performed 
directly inspired on DBE vs carbon number plots that are systematically used in petroleomics studies. Then, these chemometric 
tools provided a successful classification of each type of gas oils. The PCA model has been also validated on mixed blends 
allowing us to conclude that it could be applied to unknown samples in order to identify the process used to produce them. 
Moreover, the exploration of the generated loadings revealed key types of molecules driving the classification such as C3-DBT 
which is a dibenzothiophene core with three additional carbon atoms. Indeed, it is known to remain mainly in deeply hydrotreated 
samples, validating previous observations regarding its potential refractory character. The ability of chemometric tools to extract 
specific molecular information from ultra-high resolution MS spectra reveals its huge potential for an exhaustive study of highly 
complex mixtures such as crude oils. 

Petroleum market trends are focused on light products such 
as gasoline, kerosene and gas oil (GO), whereas their 
proportions obtained from atmospheric distillation of the crude 
oils (gas oils cuts called straight run and noted as SRGO) are 
smaller and smaller1. Increasingly heavy crude oils imposed 
refiners to improve conversion processes in order to produce 
lighter oils. Gas oils can be produced with several conversion 
processes such as fluid catalytic cracking (FCC, producing gas 
oils cuts called LCO), coking (producing gas oil cuts called 
GOCK) and catalytic hydroconversion (producing gas oil cuts 
called FBGO2 with fixed-bed technology or EBGO3 samples 
with ebullating-bed technology). However gas oils produced 
by these industrial processes are considered of poor quality4,5 
due to high sulfur content. Therefore, refiners undergo a 
hydrodesulfurization process (called HDS) to remove the 
sulfur compounds of the gas oils in order to meet the 
environmental legislations of the commercial on-road diesel6.  
Nevertheless, some of these sulfur-compounds are very 
refractive to hydrodesulfurization like dibenzothiophenes 
(DBT) which are not fully converted and remain in 
hydrotreated samples6–8. An exhaustive characterization of 
these refractory compounds could give more information 
about preferential reactivity pathways and potentially improve 
hydrotreatment catalysts efficiency as well as hydrotreatment 

process modeling9,10. To do this, we propose to use high-
resolution mass spectrometry (FT-ICR MS)11,12 which is a 
very helpful tool for petroleum characterization at the 
molecular level largely reported in the petroleomics 
literature13–16. In petroleomics studies, aromatic sulfur 
compounds are often characterized by combining atmospheric 
pressure photo-ionization (APPI) source in positive ion mode 
and FT-ICR MS17–19 generating thousands of unequivocally 
identified molecular species.  

Big data sets generated by FT-ICR MS analysis strongly 
limit the efficiency of classical univariate data processing tools 
when numerous samples need to be compared. As a 
consequence, we propose to use without a priori multivariate 
data analysis tools for understanding and highlighting 
differences or similarities between several processed gas oils. 
Among available chemometric methods, principal component 
analysis (PCA) is a very useful exploratory method20,21. PCA 
was previously used to identify the defective reservoir after an 
oil spill based on ESI(-)-FT-ICR MS data22 or to evaluate the 
proper additivity of several crude oils mixtures analyzed by 
APPI(+)-FT-ICR MS23. Hierarchical cluster analysis (HCA) is 
another multivariate method used to compare samples and 
give a complementary view of the data set24–26. It is clear that 
multivariate analysis of FT-ICR MS spectra are more and 



 

Table 1: Properties of gas oils samples used in this study. (-) indicates that analysis was not available. The ASTM standard 
used for analysis is mentioned for each property.  

Sample Type (*) Reference in text 
Geographical origin, hydrotreatment 

feed or mix compositions 

Total 
sulfur 
(ppm) 

Ref. 
method: 
ASTM 
D2622 

Total 
nitrogen 
(ppm) 

Ref. 
method: 
ASTM 
D4629 

Basic 
nitrogen 
(ppm) 

Ref. 
method: 
ASTM 
D2896 

Boiling 
point range 

(°C) 
Ref. 

 method: 
ASTM 
D86 

GO 1 SRGO  Middle-East 13555 115 47 219-386 
GO 2 SRGO  North Europe 7044 254 100 258-396 
GO 3 SRGO  North Europe 10979 350 129 244-396 
GO 4 SRGO  Middle East 8892 114 42 221-381 
GO 5 SRGO  - 4189 96 48 186-392 
GO 6 LCO  - 9496 928 91 199-386 
GO 7 LCO  Lybia 11074 1170 49 248-390 
GO 8 LCO  - 2231 496 141 166-304 
GO 9 GOCK  - 14796 893 404 148-358 
GO 10 GOCK  - 12723 838 390 163-371 
GO 11 GOCK  - 15314 1200 449 173-375 
GO 12 GOCK  - 24270 1260 569 188-401 
GO 13 EBGO  - 1248 1719 855 199-429 
GO 14 FBGO  - 344 195 121 180-359 
GO 15 MIX  65% SRGO (GO 5)+35% LCO (GO 6) 6400 380 63 189-391 
GO 16 MIX  67% GOCK+33% LCO 14004 988 436 151-351 
GO 17 HDT  GO 16 190 93 14 184-383 
GO 18 HDT  GO 16 261 140 23 187-386 
GO 19 MIX Feed 55% SRGO (GO5) +30% LCO (GO7) 

+15% GOCK (GO11) 
14162 586 122 218-390 

GO 20 HDT HDT 2 GO 19 2813 464 107 211-388 
GO 21 HDT HDT 3 GO 19 626 205 38 209-387 
GO 22 HDT HDT 1 GO 19 3656 723 330 210-389 
GO 23 MIX  50% LCO+50% LCO 9125 925 98 206-368 
(*): SRGO = Straight Run Gas oil; LCO = Light Cycle Oil; GOCK = Coker Gas Oil; EBGO = gas oil from ebullating bed reactor; FBGO = gas oil from 
fixed bed reactor; MIX = blended gas oil. 

more reported in literature but such studies are mostly focused 
on the prediction of macroscopic properties and even more 
they often consider rather small databases or few 
replicates23,27. The proposed work constitutes the exploration 
of the most exhaustive gas oils database from many different 
industrial processes. High resolution mass spectra will be used 
to highlight differences or similarities between gas oils 
focusing on the sulfur compound characterization. In this 
study, several gas oils produced from different processes 
(LCO, GOCK, FBGO and EBGO), obtained directly from 
atmospheric distillation (SRGO), mixed blends and even 
several hydrotreated effluents will be analyzed by APPI(+)-
FT-ICR MS. In view of further chemometric data processing, 
every sample will be analyzed considering six technical 
replicates to assess analysis repeatability. Samples will be 
compared with each other according to relative abundances of 
identified families and then by focusing on S1 family 
depending on types of aromatic sulfur compounds identified. 
The evolution of aromaticity and number of carbon atoms over 
increasing hydrodesulfurization severity will be followed. 
Finally, chemometric methods (PCA and HCA) will be 
applied to mass spectrometry data to evaluate their ability to 
classify samples according to their process origin and to 
identify specific families of molecules explaining this 
discrimination.   

 

MATERIAL AND METHODS 

Sample preparation and FT-ICR MS measurements 

23 gas oils obtained from 6 different industrial processes 
were used in this study, including 5 SRGO, 3 LCO, 4 GOCK, 
1 EBGO, 1 FBGO, 5 HDT and 4 blends (MIX). The properties 
of these samples are shown in Table 1. The ionization (level of 
dilution, mix of solvents used, vaporization temperature and 
infusion flow rate) and ions transfer (capillary voltage and 
tube lens) conditions were optimized with a Design of 
Experiments (DoE) approach. More details about this 
procedure can be found in previous work. Thus, it has been 
possible to find robust, optimal and common conditions for all 
gas oil samples, maximizing simultaneously the number of S1 
identified peaks, the sum of S1 peaks intensities and the m/z 
ranges. The ratio between S1 (radical ion) and S1[H] 
(protonated ion) families was also considered to evaluate the 
ionization percentage of sulfur molecular ions compared to 
protonated ones29,30. To sum up, all samples were diluted to 
1% v/v in a mixture of 75% Toluene - 25% Methanol.  

Mass spectrometry (MS) analyses were carried out using a 
LTQ FT Ultra™ system (ThermoFisher Scientific, Bremen 
Germany) equipped with a 7T magnet (Oxford Instruments) 
and APPI source (Syagen Technology, Tustin CA, USA) used 
in positive mode. Mass range was set to m/z 98-1000. Spectra 
were acquired considering 4 µscans, 70 scans, an initial 
resolution set to 200,000 (transient length of 1.6s) at m/z=300 



 

(center of average gas oil mass distribution) and transient 
signal was recorded. AGC (Automatic Gain Control) target 
value was set to 500,000 ions and injection time varied 
between few ms to 100 ms depending on the considered 
sample. Ionization and ions transfer conditions were optimized 
considering different gas oils samples in the DoE. Therefore, 
tube lens, capillary voltage and vaporization temperature were 
finally fixed to 70 V, 30 V and 250°C respectively. Sheath gas 
was 20 a.u. and auxiliary gas was 5 a.u. Nitrogen was used in 
both cases. Mass tuning was first performed using Calmix® 
(ThermoFisher Scientific, Bremen Germany). External mass 
calibration was then performed with a home-made sodium 
formiate clusters solution (sodium formiate from VWR, 
Fontenay-sous-Bois, France) covering the entire selected mass 
range (90-1000 Da). 

 

Spectral data processing 

Spectral data were processed using several softwares. 
Firstly, the PeakbyPeak® software (SpectroSwiss SARL, 
Lausanne, Switzerland) has been used to add the obtained 
transients. Then, phase correction has been managed using 
Autophaser® (DPAK apodization algorithm, zero pads set to 2, 
order of fit set to 3)31,32. Absorption-mode spectra were then 
loaded into PeakbyPeak® for signal-dependent noise 
thresholding and peak picking generating two output files (.txt 
and .h5)33. For each spectrum, the text file was then submitted 
to home-made software written in the Matlab environment 
(called Kendrick Inside) to get access to the identification of 
the different compounds, their molecular formula assignments 
and generate the corresponding Kendrick mass defect plot of 
the considered sample34. Molecular formula assignment 
conditions were the following ones: C0-50H0-100O0-2N0-2S0-2 with 
maximum content of heteroatoms in one molecular formula set 
to 3 and maximum error between theoretical and experimental 
masses set to 5 ppm in the first round of attribution. Iterative 
mass recalibration was then processed on the samples with 
PeakbyPeak® considering S1 family with a maximum mass 
error set to 1 ppm using the .h5 file previously generated35. 
The workflow used is schematically described in Figure S1 in 
Supporting Information.  

It was assumed that S1 family (family within compounds 
identified were composed of only one atom of sulfur ionized 
in radical ion M+ꞏ form) was supposed to contain all 
elementary sulfur. Relative intensities were calculated by 
multiplying the compound absolute intensity by 100 and 
divided by the sum of all S1 absolute intensities. Pseudo-
concentrations in sulfur were obtained by multiplying relative 
intensities by the amount of sulfur in the sample. Families 
were attributed regarding values of double bond equivalent 
(DBE). The mean of all relative standard deviation (RSD) 
obtained for the several sulfur families pseudo-concentrations 
was between 0.3% and 11% for the different gas oils enabling 
further chemometric data processing.  

 

Chemometric approaches 

Two different methods were assessed in this study: PCA as 
a descriptive method and HCA for clustering purposes.  

The key principle of Principal Component Analysis (PCA) 
is that all information is contained in the study of similarity 
between samples. Variance is often used to measure this 
similarity and to characterize variables dispersion between 

several samples. Thus, variance is described by principal 
components (PCs) which are linear combinations of initial 
variables, reflecting samples variance projection. The 
efficiency of PCA relies on variance maximization between 
samples and is evaluated by explained variance percentages. 
Each linear combination contains original variables weighted 
by coefficients called loadings. Thus, every sample can be 
described by a linear combination of PCs with new 
coefficients called scores. At the end of a principal component 
analysis, each sample is defined by a small number of scores 
for a given number of significant principal components. A 
possible comparison of samples is obtained in a second step by 
plotting scores of samples along given principal components. 
Moreover, Q residual plots can be used to show how much 
each variable contributes to the overall Q statistic for each 
sample. Such contributions can be useful in identifying the 
variables which contribute most to a given sample's sum-
squared residual error (i.e. variables not correctly explained by 
the considered model). HCA is an unsupervised classification 
method aimed at creating a natural grouping of samples 
without prior knowledge about their class membership. A 
dendrogram is generated to visualize the resulting grouping. 
Positions of samples in this dendrogram are directly related to 
the level of similarity or difference at which clusters they 
belonged to. 

Only molecular formulas containing a single atom of sulfur 
(S1 family) were considered to focus the study on identified 
sulfur compounds. Replicates were considered as single 
samples instead of considering the mean of 6 relative 
intensities for each sample. The aim was to evaluate the 
replicates repeatability over PCA grouping for a single sample 
as a complement to calculated RSD values. Figure 1 shows the 
MS data transformation pipeline. In a first step, a DBE vs 
carbon number plot (i.e. a 2D representation) is generated for 
each MS spectrum. The next step consists in the unfolding of 
each previous plot in order to give a 1D representation, 
variables being given DBE/carbon number pairs. If no peak is 
observed for a given DBE/carbon number pair, a zero value is 
considered in the generated unfolded matrix. As a 
consequence, prior to chemometric explorations, APPI-FT-
ICR MS data was re-arranged into a 138x1250 matrix where 
138 correspond to the 23 gas oils samples times 6 replicates 
and 1250 to the possible combinations of DBE (from 1 to 25) 
and carbon number (from 1 to 50). Moreover, the matrix has 
been mean-centered prior statistical analysis.  

All models were developed with the PLS_Toolbox version 
8.6 for Matlab version R2018b (Eigenvector Research Inc, 
Wenatchee, WA, USA). Mixed blends samples (GO 15, 16, 19 
and 23, see Table 1) were used for validation and all other 
samples were used for performing PCA. For HCA method, 
EBGO and FBGO samples were not considered as only one 
sample was available for each process and no classification 
was needed. The optimization of the models was performed 
with venitian-blinds cross-validation (10 data splits, 20 
samples per blind, 20 maximum principal components). 
Optimal number of components for PCA was chosen based on 
% explained cumulative variance and log(eigenvalues) values. 
Ward’s group method was used for HCA classification36,37.  

For each of these methods, several intensity corrections 
have been tested such as using peaks absolute intensities, 
peaks relative intensities or peaks sulfur pseudo-



 

 Figure 1: Mass spectrometry data transformation pipeline for chemometric approaches. Spectrum 1 corresponds to mass spectrum 
obtained from GO 4 (SRGO), spectrum 2 to mass spectrum from GO 22 (HDT) and spectrum 138 to mass spectrum from GO 8 (LCO). 

concentrations. However, only relative intensities were finally 
used for all methods because better groupings between 
replicates from a given sample were observed reflecting best 
analysis repeatability.  

RESULTS AND DISCUSSION 

Part 1: classical mass spectrometry data analysis 

Complex spectra were obtained via APPI(+)-FT-ICR MS. 
About 40k to 50k peaks were identified for each sample and 
resolution of peaks after phase correction was about 800k to 
900k at m/z 300. Differences between theoretical masses and 
experimental masses (mass error) were lower than 50 ppb. An 
example of mass spectra from three different gas oils is shown 
in Figure 1 with their corresponding DBE vs carbon number 
plots. 

The considered ionization source produces both molecular 
ion M+˙ or protonated ion [M+H]+ making identification tricky 
as molecular ion are identified in X families while protonated 
ions are identified as X[H] families. Besides, since ionization 
does not depend anymore on polarity of the compounds but 
rather on proton affinity and ionization energy of the 
molecules, greater number of families are more likely to be 
identified30. In this study, the most abundant heteroatomic 
classes identified have been selected for comparisons.  

One sample from each gas oil class has been randomly 
selected: GO 4 [SRGO], 6 [LCO], 9 [GOCK], 13 [EBGO], 19 
[MIX] and 21 [HDT] (see Table 1) to extract similarities or 
differences between gas oils production processes. As 

Figure 2: (A) Relative abundance of heteroatomic classes 
identified in APPI(+) depending on the type of gas oil. Radical 
ions are identified in X families (full color) and protonated ions 
are identified in X[H] families (dashes). (B) Relative abundance 
distribution of sulfur classes as a function of the type of gas oil. 
NBT = Naphtobenzothiophenes, DBT = Dibenzothiophenes, BT 
= Benzothiophenes. The standard deviation error bars colored in 
red have been added on both figures. 
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confirmed in Figure 2A, APPI(+) is known to be very efficient 
for hydrocarbons ionization that are of HC and HC[H] classes. 
The sum of both classes represents up to 50% for HDT, LCO, 
MIX and SRGO samples. EBGO sample, that has the highest 
content in basic nitrogen among all samples has the highest 
abundance in N1[H] class, and similar trends are observed for 
other gas oils except LCO, with Nbasic EBGO>Nbasic 
GOCK>Nbasic MIX>Nbasic LCO>Nbasic SRGO>Nbasic HDT. 
Same ranking is observed for neutral nitrogen classes (class 
N1) with Nneutral EBGO>Nneutral LCO>Nneutral GOCK> Nneutral 

MIX>Nneutral HDT>Nneutral SRGO.  
Focusing on sulfur-containing classes, it can be stated that 

S1 relative abundances are lower than expected. Furthermore, 
no ranking can be observed regarding the sample sulfur 
content, on the contrary of nitrogen classes. APPI(+) ionizes 
aromatic sulfur compounds rather than saturated compounds38 
and high proportion of saturated compounds among total 
sulfur content could explain these incoherencies. Very low 
relative abundance of S1 class for EBGO sample can be 
related to relatively low content in sulfur (1248 ppm) and high 
content in nitrogen (1719 ppm) compared to other samples, 
resulting in competitive ionization between nitrogen and sulfur 
compounds.  

Deeper insight into identified S1 families within samples 
gave supplementary information, as seen in Figure 2B. Very 
low DBE values (thiophenes family) with 13% and low DBE 
values (Benzothiophenes, BT family) with 67% were mainly 
observed for SRGO sample. Besides, SRGO sample also 
contains the lowest abundances in intermediate DBE values 
(Dibenzothiophenes, DBT family) and high DBE values 
(Naphtobenzothiophenes, NBT family). Very similar profiles 
are obtained for GOCK and MIX samples, with about 8% of 
thiophenes, 55% of BT, 35% of DBT and 1% of NBT. Few 
compounds with very high DBE (NBT or other classes 
families) are identified. LCO sample, according to its heavy 
aromatic character (see Table 1), contains more DBT and 
NBT compounds than GOCK and MIX samples. HDT sample 
mainly contains DBT and BT that are known to be refractory. 
Surprisingly, despite very low abundance of S1 class for 
EBGO sample, consistent relative abundance distribution of 
sulfur families is observed. This sample has the highest points 
range (199-429°C) which is specific to heavy gas oils that 
contain heavy compounds such as NBT or other compounds 
with DBE superior to 15.  

Catalytic tests were performed with the same catalyst, same 
pressure and same temperature but at different severity levels 
or different H2/HC ratios. GO 20 and GO 22 samples were 
collected at VVH-1=10 and  GO 21 at VVH-1=2. Drastic 
decrease in sulfur compounds is observed even at low severity 
level (HDT 1) as shown in Figure 3A. At highest severity 
(HDT 3) no more NBT or Thiophenes are identified, proving 
hydrotreatment efficiency. Refractory character of BT and 
DBT is highlighted and especially DBT one39 reportedly 
attributed to inhibitor effects from H2S, basic nitrogen 
compounds and aromatics6,40. Relatively high nitrogen 
contents in HDT 1 and HDT 2 could also explain 
hydrodesulfurization lack of efficiency40,41. Hence, about 500 
ppm of DBT is still quantified in HDT 3 while BT 
concentration reaches 150 ppm, whereas initial concentration 
of BT is almost twice higher than DBT one. In Figure 3B, the 
evolution of sulfur pseudo-concentration as a function of DBE  
shows that DBT with DBE equals to 9 were major non-
converted products within DBT family at highest severity. 

  
Figure 3: (A) Comparison of sulfur compounds pseudo-

concentration evolution within different families. (B) Evolution of 
sulfur pseudo-concentration as a function of DBE. (C) Evolution 
of sulfur pseudo-concentration for DBE 9-DBT as a function of 
number of carbon. The standard deviation error bars colored in 
red have been added for all figures. 

 

Considering DBT family with DBE equal to 9 and 
following the evolution of sulfur-compounds as a function of 
the number of carbon atoms in Figure 3C, it allows to 
conclude on compounds that are most likely to be refractory. 
Among them, C2-DBT (dibenzothiophene core with 2 
additional carbon atoms that is a number of carbons atoms 
equal to 14 and so on for the other designations), C3-DBT 
(C15), C4-DBT (C16) and poly-alkylated DBT (C5, C6, C7, 
C8-DBT that are C17, C18, C19 and C20) can be mentioned. 
Thus, poly-alkylated DBT are found to be more resistant to 
hydrotreatment, especially at medium degree of alkylation 
(C3-DBT). C2-DBT, that might correspond to a 4,6-dimethyl 
dibenzothiophene was expected to be very refractory8 but data 
shows that more alkylated compounds are also very refractory 
to hydrotreatment.   

 

Part 2: Chemometric exploitation of FT-ICR MS data 

PCA 

As discussed earlier, PCA has been used for exploratory 
purposes. In this case, pure samples (i.e SRGO, LCO, GOCK, 
FBGO, EBGO and HDT) are used to build the PCA model 
and mixed samples (i.e MIX) are projected along principal 
components in order to validate it. 6 PCs have been considered 
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 Figure 4: (A) Score plot of PC1 over PC2 obtained for APPI(+)-
FT-ICR MS data. (B) Loadings from PC1. (C) Loadings from 
PC2.  

as significant, explaining 96.7% of the total variance. The 
score plot obtained over PC1 and PC2 is shown in Figure 4A. 
PC1 explained 51.51% of the total variance when PC2 
explained 20.40%. The repeatability of measurements can be 
evaluated from such scores plots as described elsewhere23,27. 
Close proximity of points is achieved for the six different 
replicates for most of samples. Moderate proximity is 
observed for sample 17 (deep HDT) and sample 8 (LCO), 
indicated in dash black circle. Indeed, sample 17 has the 
lowest content of sulfur (190 ppm, see Table 1) and APPI(+) 
is not very sensitive to sulfur compounds. As a consequence, 
repeatability decreases with decreasing sulfur content of gas 
oils. Moreover, a supplementary PCA analysis has been 
performed specifically on LCO samples to investigate this 
lack of repeatability and potentially identify variation source 
(see Figure S2 in Supplementary Information). The loadings 
analysis shows that significant concentrations changes are 
mainly observed along PC2 containing information about 
several compounds such as C14, C15 and C16-DBT molecules 
(Figure S2B). These concentrations decrease gradually over 
replicates time analysis, indicating that a memory effect might 
be encountered from previous sample analyzed (Sample 7 
which contains very high amounts of C14, C15 and C16-
DBT). This might has distorted actual concentrations of these 
compounds and has induced more variability but it remains 
extremely small.  

From a general point of view, good results are obtained in 
terms of gas oils grouping with this basic method. As shown 
in PC1-PC2 score plot (Figure 4A), a clustered projection of 
samples is observed according to their process origins. Mixed 
blends used for validation are also well clustered and well 
projected with respect to mix proportions. Indeed, sample GO 
15 (65% SRGO + 35% LCO) is projected between SRGO and  

LCO clusters, slightly closer to SRGO one. Sample GO 16 
(67% GOCK + 33% LCO) is projected right in the middle of 
LCO and GOCK clusters. Finally, sample GO 23 which is a 
blend of two different LCO is logically located into the LCO 
area.  

Along PC1, separation seems to be correlated to the amount 
of sulfur in the samples as SRGO contain much more sulfur 
than deep HDT and FBGO samples and moderate HDT is 
located in the middle of these two clusters (see Table 1). 
Among each cluster, the separation depending PC1 is also 
driven by the amount of sulfur contained by individual 
sample. For example, when considering GOCK family, GO 10 
which has the lowest content in sulfur is located on the upper 
left, then comes GO 9, 11 and 12 whose contents in sulfur 
increase with respect to their projection over PC1. Regarding 
PC2, the samples projections could be correlated to the 
amount of elementary nitrogen (see Table 1). LCO and GOCK 
samples that contain the highest quantities of nitrogen are 
projected on the lower part while HDT and SRGO samples 
that contain few nitrogen compounds are projected on the 
upper part of the score plot. This could be due to the ionization 
of nitrogen compounds using APPI(+)-FT-ICR MS that could 
compete with sulfur compounds ionization. Enhanced nitrogen 
compounds ionization could decrease sulfur compounds 
ionization efficiency.  

Samples with similar characteristics (i.e leading to similar 
products) are grouped together, such as EBGO, GOCK and 
LCO that are known to contain heavy compounds such as 
DBT or BT. FBGO replicates are logically grouped close to 
HDT samples as FBGO is a very efficient process to produce 
good quality gas oils (with few sulfur content). 

Another interesting aspect observed in the score plot is a   
separation observed within HDT samples according to 
hydrotreatment severity level. The samples for which 
hydrotreatment severity is the highest are projected on the 
right side of the score plot, while moderate HDT samples are 
located right in the middle. Hence, PCA could be very useful 
to evaluate hydrotreatment severity for unknown samples. 

The loadings plot corresponds to the visualization of 
variables distribution over one principal component. It can 
give clues on the variables that are more likely to explain the 
score plot obtained. The loadings plot obtained for PC1 is 
shown in Figure 4B. One major identified variable is C3-DBT, 
a dibenzothiophene core molecule containing 3 supplementary 
carbon atoms (variable number 415) corresponding to DBE 9 
and Carbon 15). It could be stated that this compound has 
already been put forward by FT-ICR MS classical data 
analysis in Part 1 among other compounds due to its refractory 
character (Figure 3C) and the analysis of PCA model reveals 
that it could also explain classification between samples.    

A closer look at this particular variable shows that 
projection of the samples along PC1 is actually well correlated 
to the amount of C3-DBT in samples. Deep HDT and FBGO 
samples have highest relative intensities while SRGO and 
EBGO samples have lowest relative intensities in C3-DBT 
(Figure S3 in Supplementary Information). To go further, this 
highlights the very refractory character of this compound as it 
exhibits highest relative intensities for deep HDT samples 
confirming results obtained in Part 1. In literature, 4,6-DBT is 
known to be very refractory to hydrotreatment8,39. The results 
obtained here are consistent with these observations since 3 
supplementary carbon atoms could correspond to two 
additional substituents on DBT core structure on 4 and 6 
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positions8,42. However, information about substituents location 
on molecule cannot be obtained with FT-ICR MS as two equal 
molecular masses are not separated in the mass spectra. Ion 
mobility, that can separate isomers as a function of their drift 
time, could be very useful in this case to give clues on possible 
structure. It can also be stated that variable 270 that 
corresponds to a benzothiophene core with four supplementary 
carbon atoms (C4-BT) is anti-correlated with variable 415. 
Thus, it might be assumed that C4-BT conversion is easier to 
achieve than C3-DBT as there is less C4-BT in deep HDT 
samples than in native or moderate HDT samples.    

Explained variance for PC2 is more equally split between 
several variables as shown in Figure 4C. Especially, poly-
alkylated benzothiophenes (DBE 6, C12 and C18, variables 
number 262 and 268), poly-aromatic benzothiophenes (DBE 
8, C14, variable 364) and poly-aromatic dibenzothiophenes 
(DBE 11, C18, variable 518) are among interest. Again, 
loadings obtained are consistent, as quite light samples such as 
SRGO, FBGO and HDT are expected to contain less 
aromatics and high number of carbons-containing molecules 
than heavier products (BT DBE 6 with C18 and DBT DBE 11 
with C18) like LCO and GOCK. This is actually observed as 
light samples are negatively correlated with "heavy" 
aromatics.  

About 30% of variance is still retained in other PCs. An 
interesting point from their analysis is that PC3 (12.10%), PC4 
(7.24%) and PC5 (4.27%) variances are individually mainly 
explained by one or two special samples. The PC3-PC4 and 
PC5-PC6 score plots are available in Figure S4 along with 
their corresponding PC3, PC4, PC5 and PC6 loadings plots in 
Figure S5 Supplementary Information. For example, PC3 
variance is mostly explained by FBGO and short-cut LCO 
samples and the corresponding loadings are related to “light” 
variables such as C4-BT or C2-DBT. FBGO sample is quite 
light and is expected to contain less aromatics and smaller 
alkylation levels than other GO which is in accordance with 
most expressed variables. Short-cut LCO (sample 8) is much 
lighter than other GO so its correlation to light variables is 
also in line with what could be expected. Regarding PC4, 
short-cut LCO sample and FBGO again explain most variance, 
and C4-BT and C2-DBT are also identified as most expressed 
variables. Finally, considering PC5, EBGO sample is revealed 
to explain most of 4.27% remaining variance. The variables 
identified in the loadings plots are C4+-BT and C4+-DBT that 
are negatively correlated to EBGO sample. EBGO sample is 
the heaviest considering all gas oils in the database (Table 1) 
and contains very aromatic and very alkylated compounds 
such as NBT or with DBE > 15. Moreover, EBGO sample has 
the lowest proportion of light compounds such as BT, as seen 
in Part 1. Then, it is logically negatively correlated to these 
quite “light” variables regarding the very heavy composition 
of EBGO. This is also demonstrated over the analysis of the 
Q-Residual plot (Figure S6 in Supporting Information) 
showing that EBGO is the only sample with contributions for 
very heavy variables (V>600, that is DBEs superior to 13). In 
comparison, Q-Residual contributions of all other samples are 
related to variables with DBE lower than 13.  

In this study, PCA was revealed to be a good and exhaustive 
exploratory method. Particularly, some gas oils groups have 
been clearly identified over PC1-PC2 score plot depending on 
process used for their production. These groupings have been 
validated by using external samples (mixed blends) that were 
well projected according to their composition. As a 
consequence, this method could be applied to unknown 

 Figure 5: Dendrogram obtained with HCA Ward's method. 
Heavy gas oils cluster refers to heavy character of gas oil such as 
GOCK and LCO samples, while light gas oils cluster refers to 
quite light samples such as moderate HDT and SRGO samples 

sample in order to identify the process used that cannot be 
directly identified considering only FT-ICR MS complex data.  

HCA 

APPI(+)-FT-ICR MS data from 17 of 23 samples (MIX, 
FBGO and EBGO samples not considered) was assessed using 
Hierarchical Cluster Analysis (HCA) with Ward’s method 
distance measurement. As usual, the MS data transformation 
pipeline (Figure 1) has been applied prior this new 
chemometric exploration. In other words, the 102 pseudo-
spectra have been directly used in HCA. Dendrogram shown 
in Figure 5 resumed the results of HCA clustering. Two major 
clusters observed with HCA are related to the sulfur content of 
samples. Deep HDT samples in cluster A (i.e samples GO 17, 
18 and 21) are separated from all other samples in cluster B 
because of their very low sulfur content (Table 1). 
Considering cluster B, several sub-clusters are obtained 
depending on the process origin of the sample (LCO, GOCK, 
SRGO...). Samples with similar characteristics are grouped 
into several sub-clusters as seen in the dendrogram (Heavy gas 
oils: LCO with GOCK and light gas oils: moderate HDT with 
SRGO). It is also interesting to focus on the localization of 
sample 8 in the dendrogram. This sample has been obtained by 
LCO process but exhibits low contents in sulfur and nitrogen. 
Its boiling temperature range is much lower than other LCO 
samples (166-304 °C) due to a short distillation cut. Actually, 
according to boiling temperature range values, this sample 
could be considered as a kerosene sample. This separation 
from other LCO samples has demonstrated the HCA ability to 
perform an exhaustive analysis of all FT-ICR MS data by 
separating samples according to hydrotreatment level, as well 
as highlighting unique sample among classes. To sum up, 
HCA has confirmed PCA classification and has highlighted 
short-cut LCO that was already put forward in PCA.   
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CONCLUSION 

Combining both high resolution mass spectrometry and 
chemometric methods could be one of the most interesting 
ways to extract unique variables among all data generated by 
FT-ICR MS. This methodology has been applied here to study 
differences or similarities among several processed gas oils 
samples focusing on aromatic sulfur compounds. First, the 
analysis of APPI(+)-FT-ICR MS data has put forward 
differences in composition, especially in terms of relative 
abundances of several heteroatomic sulfur families within gas 
oils obtained from different processes. These differences have 
been successfully correlated to the macroscopic properties of 
the samples such as sulfur and nitrogen contents or boiling 
temperature ranges. By applying chemometric methods such 
as PCA and HCA on a preprocessed MS data set, 
complementary levels of detail have been observed. 
Classification has been obtained within each origin process 
and validated by mixed blends samples. Distinction between 
moderate and deep hydrotreatment has been achieved even 
though they have very similar mass spectra. Closer look at 
loadings obtained from these methods has allowed us to 
identify key compounds such as C3-DBT that drove most of 
the separation within classes. The combination of design of 
experiment, advanced MS data processing and unique data 
rearrangement into a 1D matrix allowed a robust, repeatable 
and coherent gas oil dataset analysis. To go further, cutting-
edge techniques such as ion mobility could then be very useful 
to get information about isomers of this compound, as well as 
providing structural characterization of these refractory 
compounds.  
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