M. Sahimi, Fractal and superdiffusive transport and hydrodynamic dispersion in heterogeneous porous media, Transp. Porous Media, vol.13, issue.1, pp.3-40, 1993.

M. Spiller, R. Ababou, and J. Koengeter, Alternative approach to simulate transport based on the master equation, Tracers and Modelling in Hydrogeology, Proceedings of the TraM'2000 Conference, vol.262, 2000.

P. K. Kang, T. L. Borgne, M. Dentz, O. Bour, and R. Juanes, Impact of velocity correlation and distribution on transport in fractured media: field evidence and theoretical model, Water Resour. Res, vol.51, pp.940-959, 2015.
URL : https://hal.archives-ouvertes.fr/insu-01119364

F. Delay and J. Bodin, Time domain random walk method to simulate transport by advection-dispersion and matrix diffusion in fracture networks, Geophys. Res. Lett, vol.28, issue.21, pp.4051-4054, 2001.

J. Bodin, From analytical solutions of solute transport equations to multidimensional time-domain random walk (TDRW) algorithms, Water Resour. Res, vol.51, pp.1860-1871, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01329785

B. Noetinger, D. Roubinet, J. De-dreuzy, A. Russian, P. Gouze et al., Random walk methods for modeling hydrodynamic transport in porous and fractured media from pore to reservoir scale, Transp. Porous Media, vol.115, issue.2, pp.345-385, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01449131

E. M. Labolle, G. E. Fogg, and A. F. Tompson, Random-walk simulation of transport in heterogeneous porous media: local mass-conservation problem and implementation methods, Water Resour. Res, vol.32, issue.3, pp.583-593, 1996.

M. Spiller, R. Ababou, T. Becker, A. Fadili, and J. Köngeter, Mass Transport with Heterogeneous Diffusion: Interpolation Schemes for Random Walks, 8th Annual Conference of the International Association for Mathematical Geology, vol.4, pp.305-310, 2002.

G. J. Uffink, A random-walk method for the simulation of macrodispersion in a stratified aquifer, Relation of Groundwater Quality and Quantity, vol.146, pp.103-114, 1985.

A. C. Bagtzoglou, A. F. Tompson, and D. E. Dougherty, Projection functions for particle grid methods, Numer. Methods Partial Differ. Equ, vol.8, pp.325-340, 1992.

E. M. Labolle, J. Quastel, and G. E. Fogg, Diffusion theory for transport in porous media: transition-probability densities of diffusion processes corresponding to advection-dispersion equations, Water Resour. Res, vol.34, issue.7, pp.1685-1693, 1998.

P. Ackerer, Prise en compte et localisation des hétérogénéités par outils théoriques et expérimentaux, 1985.

C. Cordes, H. Daniels, and G. Rouvé, A new very efficient algorithm for particle tracking in layered aquifers, Computer Methods in Water Resources II, Groundwater Modelling and Pressure Flow, vol.1, pp.41-55, 1991.

K. Semra, P. Ackerer, and R. Mose, Three dimensional groundwater quality modeling in heterogeneous media, Water Pollution II: Modelling, Measuring and Prediction, pp.3-11, 1993.

H. Hoteit, R. Mose, A. Younes, F. Lehmann, and P. Ackerer, Three-dimensional modeling of mass transfer in porous media using the mixed hybrid finite elements and the random-walk methods, Math. Geol, vol.34, issue.4, pp.435-456, 2002.

D. H. Lim, Numerical study of nuclide migration in a nonuniform horizontal flow field of a high-level radioactive waste repository with multiple canisters, Nucl. Technol, vol.156, issue.2, pp.222-245, 2006.

M. Bechtold, J. Vanderborght, O. Ippisch, and H. Vereecken, Efficient random walk particle tracking algorithm for advective-dispersive transport in media with discontinuous dispersion coefficients and water contents, Water Resour. Res, vol.47, 2011.

A. Lejay and G. Pichot, Simulating diffusion processes in discontinuous media: a numerical scheme with constant time steps, J. Comput. Phys, vol.231, pp.7299-7314, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00649170

A. Lejay and G. Pichot, Simulating diffusion processes in discontinuous media: benchmark tests, J. Comput. Phys, vol.2016, issue.314, pp.384-413, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01003853

P. Ackerer, R. Mose, M. Comment-on-;-eric, and . Labolle, Diffusion theory for transport in porous media: Transition-probability densities of diffusion processes corresponding to advection-dispersion equations, Water Resour. Res, vol.36, issue.3, pp.819-821, 2000.

L. Schwartz, Théorie des distributions, vol.2, 1950.

H. Risken, The Fokker-Planck Equation, 1996.

M. Dentz, P. Gouze, A. Russian, J. Dweik, and F. Delay, Diffusion and trapping in heterogeneous media: an inhomogeneous continuous time random walk approach, Adv. Water Resour, vol.49, pp.13-22, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00767566

D. T. Gillespie and E. Seitaridou, Simple Brownian Diffusion, 2013.

A. F. Tompson and L. W. Gelhar, Numerical-simulation of solute transport in 3-dimensional, randomly heterogeneous porous-media, Water Resour. Res, vol.26, issue.10, pp.2541-2562, 1990.

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, pp.363-365, 1959.

F. Delay, P. Ackerer, and C. Danquigny, Simulating solute transport in porous or fractured formations using random walk particle tracking a review, Vadose Zone J, vol.4, 2005.

P. A. Raviart, Particle approximation of linear hyperbolic equation of the first order, Numerical Methods in Fluids Dynamics, 1983.

W. Rudin, Principles of Mathematical Analysis, 1976.