C. K. Gaddam, R. L. Vander-wal, X. Chen, A. Yezerets, and K. Kamasamudram, Reconciliation of carbon oxidation rates and activation energies based on changing nanostructure, Carbon, vol.98, pp.545-556, 2016.

A. Violi, Effects of Combustion-Generated Nanoparticles on Cellular Membranes, Combust. Sci. Technol, vol.188, pp.769-775, 2016.

J. S. Lighty, J. M. Veranth, and A. F. Sarofim, Combustion Aerosols: Factors Governing Their Size and Composition and Implications to Human Health, J. the Air Waste Manag. Assoc, vol.50, pp.1565-1618, 2000.

J. Appel, H. Bockhorn, and M. Frenklach, Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons, Combust. Flame, vol.121, pp.122-136, 2000.

M. Balthasar, F. Mauss, A. Knobel, and M. Kraft, Detailed modeling of soot formation in a partially stirred plug flow reactor, Combust. Flame, vol.128, pp.395-409, 2002.

S. Mosbach, M. S. Celnik, A. Raj, M. Kraft, H. R. Zhang et al., Towards a detailed soot model for internal combustion engines, Combust. Flame, vol.156, pp.1156-1165, 2009.

C. A. Schuetz and M. Frenklach, Nucleation of Soot: Molecular Dynamics Simulation of Pyrene Dimerizaton, Proc. Comb. Inst, vol.29, pp.2307-2314, 2002.

B. Zhao, Z. Yang, Z. Li, M. V. Johnston, and H. Wang, Particle size distribution function of incipient soot in laminar premixed ethylene flames: effect of flame temperature, Proc. Comb. Inst, vol.30, pp.1441-1448, 2005.

J. Singh, R. I. Patterson, M. Kraft, and H. Wang, Numerical simulation and sensitivity analysis of detailed soot particle size distribution in laminar premixed ethylene flames, Combust. Flame, vol.145, pp.117-127, 2006.

H. Wang, Formation of nascent soot and other condensedphase materials in flames, Proc. Comb. Inst, vol.33, pp.41-67, 2011.

J. H. Miller, Aromatic excimers: evidence for polynuclear aromatic hydrocarbon condensation in flames, Proc. Comb. Inst, vol.30, pp.1381-1388, 2005.

J. D. Herdman and J. H. Miller, Intermolecular potential calculations for polynuclear aromatic hydrocarbon clusters, J. Phys. Chem. A, vol.112, pp.6249-6256, 2008.

H. Sabbah, L. Biennier, S. J. Klippenstein, I. R. Sims, and B. R. Rowe, Exploring the Role of PAHs in the Formation of Soot: Pyrene Dimerization, J. Phys. Chem. Lett, vol.1, pp.2962-2967, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00733140

T. S. Totton, A. J. Misquitta, and M. Kraft, A quantitative study of the clustering of polycyclic aromatic hydrocarbons at high temperatures, Phys. Chem. Chem. Phys, vol.14, pp.4081-4094, 2012.

P. Elvati and A. Violi, Thermodynamics of poly-aromatic hydrocarbon clustering and the effects of substituted aliphatic chains, Proc. Comb. Inst, vol.34, pp.1837-1843, 2013.

T. S. Totton, A. J. Misquitta, and M. Kraft, A First Principles Development of a General Anisotropic Potential for Polycyclic Aromatic Hydrocarbons, J. Chem. Theory Comp, vol.6, pp.683-695, 2010.

T. S. Totton, A. J. Misquitta, and M. Kraft, A transferable electrostatic model for intermolecular interactions between polycyclic aromatic hydrocarbons, Chem. Phys. Lett, vol.510, pp.154-160, 2011.

T. Mouton, X. Mercier, and P. Desgroux, Evidence of Nucleation Flames: A Valuable Tool for the Study of Soot Particles Inception, 7th European Combustion Meeting, 2015.

S. Chung and A. Violi, Peri-condensed aromatics with aliphatic chains as key intermediates for the nucleation of aromatic hydrocarbons, Proc. Comb. Inst, vol.33, pp.693-700, 2011.

N. A. Eaves, S. B. Dworkin, and M. J. Thomson, The importance of reversibility in modeling soot nucleation and condensation processes, Proc. Comb. Inst, vol.35, pp.1787-1794, 2015.

N. A. Eaves, S. B. Dworkin, and M. J. Thomson, Assessing relative contributions of PAHs to soot mass by reversible heterogeneous nucleation and condensation, Proc. Comb. Inst, vol.36, pp.935-945, 2017.

M. R. Kholghy, G. A. Kelesidis, and S. E. Pratsinis, Reactive polycyclic aromatic hydrocarbon dimerization drives soot nucleation, Phys. Chem. Chem. Phys, vol.20, pp.10926-10938, 2018.

M. R. Kholghy, N. A. Eaves, A. Veshkini, and M. J. Thomson, The role of reactive PAH dimerization in reducing soot nucleation reversibility, Proc. Comb. Inst, vol.37, pp.1003-1011, 2018.

P. Elvati, V. T. Dillstrom, and A. Violi, Oxygen driven soot formation, Proc. Comb. Inst, vol.36, pp.825-832, 2017.

K. O. Johansson, T. Dillstrom, P. Elvati, M. F. Campbell, P. E. Schrader et al., Radical-radical reactions, pyrene nucleation, and incipient soot formation in combustion, Proc. Comb. Inst, vol.36, pp.799-806, 2017.

J. S. Lowe, J. Y. Lai, P. Elvati, and A. Violi, Towards a predictive model for polycyclic aromatic hydrocarbon dimerization propensity, Proc. Comb. Inst, vol.35, pp.1827-1832, 2015.

K. O. Johansson, M. P. Head-gordon, P. E. Schrader, K. R. Wilson, and H. A. Michelsen, Resonance-stabilized hydrocarbonradical chain reactions may explain soot inception and growth, Science, p.997, 2018.

F. Schulz, M. Commodo, K. Kaiser, G. Falco, P. De;-minutolo et al., Insights into incipient soot formation by atomic force microscopy, Proc. Comb. Inst, vol.37, pp.885-892, 2018.

B. D. Adamson, S. A. Skeen, M. Ahmed, and N. Hansen, Detection of Aliphatically Bridged Multi-Core Polycyclic Aromatic Hydrocarbons in Sooting Flames with Atmospheric-Sampling High-Resolution Tandem Mass Spectrometry, J. Phys. Chem. A, vol.122, pp.9338-9349, 2018.

J. Cain, A. Laskin, M. R. Kholghy, M. J. Thomson, and H. Wang, Molecular characterization of organic content of soot along the centerline of a coflow diffusion flame, Phys. Chem. Chem. Phys, vol.16, pp.25862-25875, 2014.

A. D'anna and A. Violi, A kinetic model for the formation of aromatic hydrocarbons in premixed laminar flames, Proc. Comb. Inst, vol.27, pp.425-433, 1998.

A. Violi, A. D'anna, and A. D'alessio, Modeling of particulate formation in combustion and pyrolysis, Chem. Eng. Sci, vol.54, pp.3433-3442, 1999.

A. D'anna and A. Violi, Detailed Modeling of the Molecular Growth Process in Aromatic and Aliphatic Premixed Flames, Energy Fuels, vol.19, pp.79-86, 2005.

J. Y. Lai, Stochastic Simulation of Carbonaceous Nanoparticle Precursor Formation in Combustion. Dissertation, 2014.

. Van-duin, C. T. Adri, S. Dasgupta, F. Lorant, W. A. Goddard et al., A Reactive Force Field for Hydrocarbons, J. Phys. Chem. A, vol.105, pp.9396-9409, 2001.

C. Zhang, C. Zhang, Y. Ma, and X. Xue, Imaging the C black formation by acetylene pyrolysis with molecular reactive force field simulations, Phys. Chem. Chem. Phys, vol.17, pp.11469-11480, 2015.

X. Xue, L. Meng, Y. Ma, and C. Zhang, Molecular Reactive Force-Field Simulations on the Carbon Nanocavities from Methane Pyrolisis, J. Phys. Chem. C, vol.121, pp.7502-7513, 2017.

S. Han, X. Li, F. Nie, M. Zheng, X. Liu et al., Revealing the Initial Chemistry of Soot Nanoparticle Formation by ReaxFF Molecular Dynamics Simulations, Energy Fuels, vol.31, pp.8434-8444, 2017.

Q. Mao, A. C. Van-duin, and K. H. Luo, Formation of incipient soot particles from polycyclic aromatic hydrocarbons: A ReaxFF molecular dynamics study, vol.121, pp.380-388, 2017.

Q. Mao, Y. Ren, K. H. Luo, . Van-duin, and C. T. Adri, Dynamics and kinetics of reversible homo-molecular dimerization of polycyclic aromatic hydrocarbons, J. Chem. Phys, p.244305, 2017.

Q. Mao, D. Hou, K. H. Luo, and X. You, Dimerization of Polycyclic Aromatic Hydrocarbon Molecules and Radicals under Flame Conditions, J. Phys. Chem. A, vol.122, pp.8701-8708, 2018.

Q. Mao and K. H. Luo, Trace metal assisted polycyclic aromatic hydrocarbons fragmentation, growth and soot nucleation, Proc. Comb. Inst, vol.37, pp.1023-1030, 2019.

H. Yuan, W. Kong, F. Liu, and D. Chen, Study on soot nucleation and growth from PAHs and some reactive species at flame temperatures by ReaxFF molecular dynamics, Chem. Eng. Sci, vol.195, pp.748-757, 2018.

H. Wang, Formation of nascent soot and other condensedphase materials in flames, Proc. Comb. Inst, vol.33, issue.57, pp.41-67, 2011.

A. Raj, I. D. Prada, A. A. Amer, and S. H. Chung, A reaction mechanism for gasoline surrogate fuels for large polycyclic aromatic hydrocarbons, Combust. Flame, vol.159, pp.500-515, 2012.

S. Park, Y. Wang, S. H. Chung, and S. M. Sarathy, Compositional effects on PAH and soot formation in counterflow diffusion flames of gasoline surrogate fuels, Combust. Flame, vol.178, pp.46-60, 2017.

S. B. Dworkin, Q. Zhang, M. J. Thomson, N. A. Slavinskaya, and U. Riedel, Application of an enhanced PAH growth model to soot formation in a laminar coflow ethylene/air diffusion flame, Combust. Flame, vol.158, pp.1682-1695, 2011.

M. Keita, A. Nicolle, and A. E. Bakali, A wide range kinetic modeling study of PAH formation from liquid transportation fuels combustion, Combust. Flame, vol.174, pp.50-67, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01487784

Y. An, S. Teng, Y. Pei, J. -q.;-qin, X. Li et al., An experimental study of polycyclic aromatic hydrocarbons and soot emissions from a GDI engine fueled with commercial gasoline, Coal Structure, vol.92, pp.160-171, 2016.

C. Shao, H. Wang, N. Atef, Z. Wang, B. Chen et al., Polycyclic aromatic hydrocarbons in pyrolysis of gasoline surrogates (n-heptane/isooctane/toluene), Proc. Comb. Inst, vol.37, pp.993-1001, 2019.

A. Raj, M. J. Rashidi, S. H. Chung, and S. M. Sarathy, PAH Growth Initiated by Propargyl Addition: Mechanism Development and Computational Kinetics, J. Phys. Chem. A, vol.118, pp.2865-2885, 2014.

Y. Wang, A. Raj, and S. H. Chung, A PAH growth mechanism and synergistic effect on PAH formation in counterflow diffusion flames, Combust. Flame, vol.160, pp.1667-1676, 2013.

Z. He, K. Zhou, M. Xiao, and F. Wei, Simulation of Soot Size Distribution in a Counterflow Flame, vol.851, p.13, 2019.

T. Kamimoto and M. Bae, High Combustion Temperature for the Reduction of Particulate in Diesel Engines, 1988.

F. Pischinger, H. Schulte, P. Hansen-j-;-desgroux, A. Faccinetto, X. Mercier et al., El Bakali, A. Comparative study of the soot formation process in a "nucleation" and a "sooting" low pressure premixed methane flame, Die Zukunft des Dieselmotors: Grundlagen und Entwicklungslinien des dieselmotorischen Brennverfahren, vol.184, pp.153-166, 1988.

K. Ono, Y. Matsukawa, K. Dewa, A. Watanabe, K. Takahashi et al., Formation mechanisms of soot from high-molecular-weight polycyclic aromatic hydrocarbons, Combust. Flame, vol.162, pp.2670-2678, 2015.

B. Shukla, A. Susa, A. Miyoshi, and M. Koshi, Situ Direct Sampling Mass Spectrometric Study on Formation of Polycyclic Aromatic Hydrocarbons in Toluene Pyrolysis, J. Phys. Chem. A, vol.111, pp.8308-8324, 2007.

S. P. Bagley and M. J. Wornat, Identification of Five-to Seven-Ring Polycyclic Aromatic Hydrocarbons from the Supercritical Pyrolysis of n-Decane, Energy Fuels, vol.25, pp.4517-4527, 2011.

Z. Jia, H. Huang, W. Zhou, F. Qi, and M. Zeng, Experimental and Modeling Investigation of n-Decane Pyrolysis at Supercritical Pressures, Energy Fuels, vol.28, pp.6019-6028, 2014.

K. Norinaga, O. Deutschmann, N. Saegusa, and J. Hayashi,

G. Te-velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca-guerra, S. J. Van-gisbergen et al., Analysis of pyrolysis products from light hydrocarbons and kinetic modeling for growth of polycyclic aromatic hydrocarbons with detailed chemistry, Chemistry with ADF. J. Comput. Chem, vol.86, issue.75, pp.931-967, 2001.

K. Chenoweth, . Van-duin, C. Adri, and W. A. Goddard, Re-axFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation, J. Phys. Chem. A, vol.3, pp.1040-1053, 2008.

H. Jin, B. Xu, H. Li, X. Ku, and J. Fan, Numerical investigation of coal gasification in supercritical water with the ReaxFF molecular dynamics method, Int. J. Hydrog, vol.43, pp.20513-20524, 2018.

Z. Chen, W. Sun, and L. Zhao, Combustion Mechanisms and Kinetics of Fuel Additives: A ReaxFF Molecular Simulation, Energy Fuels, vol.32, pp.11852-11863, 2018.

H. Jin, Y. Wu, L. Guo, and X. Su, Molecular dynamic investigation on hydrogen production by polycyclic aromatic hydrocarbon gasification in supercritical water, Int. J. Hydrog. Energy, vol.41, pp.3837-3843, 2016.

F. Castro-marcano, A. M. Kamat, M. F. Russo, A. C. Van-duin, and J. P. Mathews, Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field, Combust. Flame, vol.159, pp.1272-1285, 2012.

M. Zheng, X. Li, J. Liu, and L. Guo, Initial Chemical Reaction Simulation of Coal Pyrolysis via ReaxFF Molecular Dynamics, Energy Fuels, vol.27, pp.2942-2951, 2013.

M. Zheng, X. Li, J. Liu, Z. Wang, X. Gong et al., Pyrolysis of Liulin Coal Simulated by GPU-Based ReaxFF MD with Cheminformatics Analysis, Energy Fuels, vol.28, pp.522-534, 2014.

J. D. Naber and D. L. Siebers, Effects of Gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays; SAE International, 1996.

F. Inal and S. M. Senkan, Effects of equivalence ratio on species and soot concentrations in premixed n-heptane flames, Combust. Flame, vol.131, pp.16-28, 2002.

H. Richter, J. B. Howard, M. Frenklach, H. Wang, M. Frenklach et al., Formation of polycyclic aromatic hydrocarbons and their growth to soot-a review of chemical reaction pathways, Prog. Energy Combust. Sci, vol.26, issue.86, pp.887-901, 1985.

H. Wang and M. Frenklach, Calculations of Rate Coefficients for the Chemically Activated Reactions of Acetylene with Vinylic and Aromatic Radicals, J. Phys. Chem, vol.98, pp.11465-11489, 1994.

C. Irimiea, A. Faccinetto, X. Mercier, I. Ortega, N. Nuns et al., Unveiling trends in soot nucleation and growth: When secondary ion mass spectrometry meets statistical analysis, Carbon, vol.144, pp.815-830, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02298935

B. Apicella, A. Carpentieri, M. Alfè, R. Barbella, A. Tregrossi et al., Mass spectrometric analysis of large PAH in a fuel-rich ethylene flame, Proc. Comb. Inst, vol.31, pp.547-553, 2007.

M. Botero, Y. Sheng, J. Akroyd, J. Martin, J. Dreyer et al., Internal structure of soot particles in a diffusion flame, Carbon, vol.141, pp.635-642, 2019.

K. O. Johansson, T. Dillstrom, M. Monti, F. El-gabaly, M. F. Campbell et al., Formation and emission of large furans and oxygenated hydrocarbons from flames, Proc. Natl. Acad. Sci, vol.113, pp.8374-8379, 2016.

R. Whitesides, D. Domin, R. Salomon-ferrer, W. A. Lester, M. Jr;-frenklach et al., Graphene layer growth chemistry: five-and sixmember ring flip reaction, J. Phys. Chem. A, vol.112, issue.94, pp.689-703, 2008.

A. D'anna, Combustion-formed nanoparticles, Proc. Comb. Inst, vol.32, pp.593-613, 2009.

K. Akihama, Y. Takatori, K. Inagaki, S. Sasaki, and A. Dean,

M. , Mechanism of the Smokeless Rich Diesel Combustion by Reducing Temperature, SAE Transactions, vol.110, pp.648-662, 2001.

I. C. Jaramillo, C. K. Gaddam, R. L. Vander-wal, C. Huang, J. D. Levinthal et al., Soot oxidation kinetics under pressurized conditions, Combust. Flame, vol.161, pp.2951-2965, 2014.

Y. Liu, C. Song, G. Lv, X. Cao, L. Wang et al., Surface functional groups and sp3/sp2 hybridization ratios of incylinder soot from a diesel engine fueled with n-heptane and nheptane/toluene, Coal Structure, vol.92, pp.108-113, 2016.

L. Wang, C. Song, J. Song, G. Lv, H. Pang et al., Aliphatic C-H and oxygenated surface functional groups of diesel incylinder soot: Characterizations and impact on soot oxidation behavior, Proc. Comb. Inst, vol.34, pp.3099-3106, 2013.

K. C. Le, C. Lefumeux, P. Bengtsson, and T. Pino, Direct observation of aliphatic structures in soot particles produced in lowpressure premixed ethylene flames via online Raman spectroscopy, Proc. Comb. Inst, vol.37, pp.869-876, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02336544

A. Raj, P. L. Man, T. S. Totton, M. Sander, R. A. Shirley et al., New polycyclic aromatic hydrocarbon (PAH) surface processes to improve the model prediction of the composition of combustion-generated PAHs and soot, Proc. Comb. Inst, vol.48, issue.102, pp.1655-1661, 1998.