Numerical study of auto-ignition propagation modes in toluene reference fuel–air mixtures: Toward a better understanding of abnormal combustion in spark-ignition engines - IFPEN - IFP Energies nouvelles Accéder directement au contenu
Article Dans Une Revue International Journal of Engine Research Année : 2019

Numerical study of auto-ignition propagation modes in toluene reference fuel–air mixtures: Toward a better understanding of abnormal combustion in spark-ignition engines

Résumé

Two main abnormal combustions are observed in spark-ignition engines: knock and low-speed pre-ignition. Controlling these abnormal processes requires understanding how auto-ignition is triggered at the "hot spot" but also how it propagates inside the combustion chamber. The original theory regarding the auto-ignition propagation modes was defined by Zeldovich and developed by Bradley who highlighted different modes by considering various hot spot characteristics and thermodynamic conditions around the hot spot. Two dimensionless parameters (ε, ξ) were then defined to classify these modes and a so-called detonation peninsula was obtained for H 2-CO-air mixtures. Similar simulations as those performed by Bradley et al. are undertaken to check the relevancy of the original detonation peninsula when considering realistic fuels used in modern gasoline engines. First, chemical kinetics calculations in homogeneous reactor are performed to determine the auto-ignition delay time τ i , and the excitation time τ e of E10-air mixtures in various conditions (calculations for a RON 95 TRF surrogate with 42.8% isooctane, 13.7% n-heptane, 43.5% toluene, and using the LLNL kinetic mechanism considering 1388 species and 5935 reactions). Results point out that H 2-CO-air mixtures are much more reactive than E10-air mixtures featuring much lower excitation times τ e. The resulting maximal hot spot reactivity ε is thus limited which also restrains the use of the detonation peninsula for the analysis of practical occurrences of auto-ignition in gasoline engines. The tabulated (τ i , τ e) values are then used to perform 1D LES of auto-ignition propagation considering different hot spots and thermodynamic conditions around them. The detailed analysis of the coupling conditions between the reaction and pressure waves shows thus that the different propagation modes can appear with gasoline and that the original detonation peninsula can be reproduced, confirming for the first time that the propagation mode can be well defined by the two non-dimensional parameters for more realistic fuels.
Fichier principal
Vignette du fichier
Numerical Study of Auto-Ignition.pdf (3.12 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02331935 , version 1 (24-10-2019)

Identifiants

Citer

Anthony Robert, Jean-Marc Zaccardi, Cécilia Dul, Ahmed Guerouani, Jordan Rudloff. Numerical study of auto-ignition propagation modes in toluene reference fuel–air mixtures: Toward a better understanding of abnormal combustion in spark-ignition engines. International Journal of Engine Research, 2019, 20 (7), pp.734-745. ⟨10.1177/1468087418777664⟩. ⟨hal-02331935⟩

Collections

IFP
60 Consultations
112 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More