D. Acharjya and A. Anitha, A comparative study of statistical and rough computing models in predictive data analysis, International Journal of Ambient Computing and Intelligence, vol.8, issue.2, pp.32-51, 2017.

K. G. Alberti and P. F. Zimmet, Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation, Diabetic Medicine, vol.15, issue.7, pp.539-553, 1998.

A. S. Al-goblan, M. A. Al-alfi, and M. Z. Khan, Mechanism linking diabetes mellitus and obesity, Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, vol.7, pp.587-591, 2014.

M. M. Baig, M. M. Awais, and E. S. El-alfy, AdaBoost-based artificial neural network learning, Neurocomputing, vol.248, pp.120-126, 2017.

H. C. Cooper, K. Booth, and G. Gill, Patients' perspectives on diabetes health care education, Health Education Research, vol.18, issue.2, pp.191-206, 2003.

M. ;. Cusumano-towner, A. C. Pereira, and G. L. Pappa, A customized classification algorithm for credit card fraud detection, Engineering Applications of Artificial Intelligence, vol.72, pp.21-29, 2012.

A. K. Dwivedi, Analysis of computational intelligence techniques for diabetes mellitus prediction, Neural Computing and Applications, vol.30, issue.12, pp.3837-3845, 2018.

A. K. Dwivedi and U. Chouhan, Comparative study of artificial neural network for classification of hot and cold recombination regions in Saccharomyces cerevisiae, Neural Computing and Applications, vol.29, issue.2, pp.529-535, 2018.

D. M. Farid, L. Zhang, C. M. Rahman, M. A. Hossain, and R. Strachan, Hybrid decision tree and naïve Bayes classifiers for multi-class classification tasks, Expert Systems with Applications, vol.41, issue.4, pp.1937-1946, 2014.

H. Farvaresh and M. M. Sepehri, A data mining framework for detecting subscription fraud in telecommunication, Engineering Applications of Artificial Intelligence, vol.24, issue.1, pp.182-194, 2011.

Y. Freund and R. E. Schapire, Experiments with a new boosting algorithm, Machine Learning: Proceedings of the Thirteenth International Conference, vol.96, pp.148-156, 1996.

Y. Freund, R. Schapire, and N. Abe, A short introduction to boosting, Journal-Japanese Society for Artificial Intelligence, vol.14, issue.5, p.1612, 1999.

J. Gong and H. Kim, RHSBoost: Improving classification performance in imbalance data, Computational Statistics & Data Analysis, vol.111, pp.1-13, 2017.

Y. Guo, G. Bai, and Y. Hu, Using Bayes network for prediction of type-2 diabetes, 2012 International Conference for Internet Technology and Secured Transactions, pp.471-472, 2012.

K. Hoshi, J. Kawakami, M. Kumagai, S. Kasahara, N. Nishimura et al., An analysis of thyroid function diagnosis using Bayesian-type and SOM-type neural networks, Chemical and Pharmaceutical Bulletin, vol.53, issue.12, pp.1570-1574, 2005.

S. C. Hui, Y. He, and D. T. Thach, Machine learning for tongue diagnosis, 6th International Conference on Information, Communications & Signal Processing, pp.1-5, 2007.

L. Jiang, C. Li, S. Wang, and L. Zhang, Deep feature weighting for naive Bayes and its application to text classification, Engineering Applications of Artificial Intelligence, vol.52, pp.26-39, 2016.

, International Journal of Mathematical, Engineering and Management Sciences, vol.4, issue.3, pp.729-744, 2019.


C. Kalaiselvi and G. M. Nasira, A new approach for diagnosis of diabetes and prediction of cancer using ANFIS, 2014 World Congress on Computing and Communication Technologies, pp.188-190, 2014.

C. Kalaiselvi and G. M. Nasira, Prediction of heart diseases and cancer in diabetic patients using data mining techniques, Indian Journal of Science and Technology, vol.8, issue.14, pp.1-7, 2015.

A. G. Karegowda, A. S. Manjunath, and M. A. Jayaram, Application of genetic algorithm optimized neural network connection weights for medical diagnosis of pima Indians diabetes, International Journal on Soft Computing, vol.2, issue.2, pp.15-23, 2011.

K. Kayaer and T. Yildirim, Medical diagnosis on Pima Indian diabetes using general regression neural networks, Proceedings of the International Conference on Artificial Neural Networks and Neural Information Processing (ICANN/ICONIP), pp.181-184, 2003.

H. King, R. E. Aubert, and W. H. Herman, Global burden of diabetes, 1995-2025: prevalence, numerical estimates, and projections, Diabetes Care, vol.21, issue.9, pp.1414-1431, 1998.

M. Kukar, C. Groselj, I. Kononenko, and J. J. Fettich, An application of machine learning in the diagnosis of ischaemic heart disease, Proceedings of Computer Based Medical Systems, pp.70-75, 1997.

X. Li, L. Wang, and E. Sung, AdaBoost with SVM-based component classifiers, Engineering Applications of Artificial Intelligence, vol.21, issue.5, pp.785-795, 2008.

F. Mercaldo, V. Nardone, and A. Santone, Diabetes mellitus affected patients classification and diagnosis through machine learning techniques, Procedia Computer Science, vol.112, pp.2519-2528, 2017.

H. Palivela, H. K. Yogish, S. Vijaykumar, and K. Patil, Survey on mining techniques for breast cancer related data, 2013 International Conference on Information Communication and Embedded Systems (ICICES), pp.540-546, 2013.

G. Parthiban and S. K. Srivatsa, Applying machine learning methods in diagnosing heart disease for diabetic patients, International Journal of Applied Information Systems, vol.3, issue.7, pp.2249-0868, 2012.

S. Perveen, M. Shahbaz, A. Guergachi, and K. Keshavjee, Performance analysis of data mining classification techniques to predict diabetes, Procedia Computer Science, vol.82, pp.115-121, 2016.

K. Polat and S. Güne?, An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease, Digital Signal Processing, vol.17, issue.4, pp.702-710, 2007.

K. Polat, S. Güne?, and A. Arslan, A cascade learning system for classification of diabetes disease: Generalized discriminant analysis and least square support vector machine, Expert Systems with Applications, vol.34, issue.1, pp.482-487, 2008.

O. R. Pouya, A new margin-based AdaBoost algorithm: Even more robust than RobustBoost to class-label noise, IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), pp.1-5, 2016.

S. W. Purnami, J. M. Zain, and A. Embong, A new expert system for diabetes disease diagnosis using modified spline smooth support vector machine, International Conference on Computational Science and Its Applications, pp.83-92, 2010.

R. S. Rasooly, B. Akolkar, L. M. Spain, M. H. Guill, C. T. Vecchio et al., The national institute of diabetes and digestive and kidney diseases central repositories: a valuable resource for nephrology research, Clinical Journal of the American Society of Nephrology, vol.10, issue.4, pp.710-715, 2015.

, International Journal of Mathematical, Engineering and Management Sciences, vol.4, issue.3, pp.729-744, 2019.


K. Sharma and J. Virmani, A decision support system for classification of normal and medical renal disease using ultrasound images: A decision support system for medical renal diseases, International Journal of Ambient Computing and Intelligence, vol.8, issue.2, pp.52-69, 2017.

H. Temurtas, N. Yumusak, and F. Temurtas, A comparative study on diabetes disease diagnosis using neural networks, Expert Systems with Applications, vol.36, issue.4, pp.8610-8615, 2009.

J. Thongkam, G. Xu, and Y. Zhang, AdaBoost algorithm with random forests for predicting breast cancer survivability, IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence, pp.3062-3069, 2008.

J. Thongkam, G. Xu, Y. Zhang, and F. Huang, Breast cancer survivability via AdaBoost algorithms, Proceedings of the second Australasian workshop on Health data and knowledge management, vol.80, pp.55-64, 2008.

F. Torrent-fontbona, Adaptive basal insulin recommender system based on Kalman filter for type 1 diabetes, Expert Systems with Applications, vol.101, pp.1-7, 2018.

M. C. Tu, D. Shin, and D. Shin, A comparative study of medical data classification methods based on decision tree and bagging algorithms, Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing, pp.183-187, 2009.

R. Varma, N. M. Bressler, Q. V. Doan, M. Gleeson, M. Danese et al., Prevalence of and risk factors for diabetic macular edema in the United States, JAMA Ophthalmology, vol.132, issue.11, pp.1334-1340, 2014.

C. M. Velu and K. R. Kashwan, Multi-Level counter propagation network for diabetes classification, 2013 International Conference on Signal Processing, Image Processing & Pattern Recognition, pp.190-194, 2013.

V. Venema, Non-Convex potential function boosting versus noise peeling:-a comparative study, p.302289, 2016.

Y. Wang, J. G. Klijn, Y. Zhang, A. M. Sieuwerts, M. P. Look et al., Geneexpression profiles to predict distant metastasis of lymph-node-negative primary breast cancer, The Lancet, vol.365, issue.9460, pp.671-679, 2005.

P. L. Whetzel, J. S. Grethe, D. E. Banks, and M. E. Martone, The NIDDK Information Network: a community portal for finding data, materials, and tools for researchers studying diabetes, digestive, and kidney diseases, PloS one, vol.10, issue.9, p.136206, 2015.

J. Xie, Y. Liu, X. Zeng, W. Zhang, and Z. Mei, A Bayesian network model for predicting type 2 diabetes risk based on electronic health records, Modern Physics Letters B, vol.31, p.1740055, 2017.

W. Zhang, F. Zeng, X. Wu, X. Zhang, and R. Jiang, A comparative study of ensemble learning approaches in the classification of breast cancer metastasis, 2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing, pp.242-245, 2009.