A. Abdulkarim, T. Al-dhubaib, E. Elrafie, and M. Alamoudi, Overview of saudi aramco's intelligent field program, SPE Intelligent Energy Conference and Exhibition, 2010.

C. Audet and J. J. Dennis, Pattern search algorithms for mixed variable programming, Siam J. Optim, vol.11, issue.3, pp.573-594, 2001.

P. Bonami, L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Grossmann et al., An algorithmic framework for convex mixed integer nonlinear programs, Discrete Optimization, vol.5, issue.2, pp.186-204, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00421753

Z. Bouzarkouna, D. Y. Ding, and A. Auger, Using evolution strategy with meta-models for well placement optimization, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00538745

J. P. Chiles, Simulation of a nickel deposit: problems encountered and practical solutions, 1984.

R. J. Dakin, A tree search algorithm for mixed-integer programming problems, Computer Journal, issue.8, 1965.

D. Echeverría-ciaurri, O. Isebor, and L. Durlofsky, Application of derivative-free methodologies to generally constrained oil production optimisation problems, International Journal of Mathematical Modelling and Numerical Optimisation, vol.2, issue.2, pp.134-161, 2011.

R. Fourer, D. M. Gay, B. W. Kernighan, M. David, B. W. Gay et al., AMPL : a modeling language for mathematical programming / Robert Fourer, 2003.

R. Gramacy and S. Le-digabel, The mesh adaptive direct search algorithm with treed gaussian process surrogates, 2011.

O. K. Gupta and V. Ravindran, Branch and bound experiments in convex nonlinear programming, Management Science, vol.31, issue.12, pp.1533-1546, 1985.

O. J. Isebor, D. Echeverría-ciaurri, and L. J. Durlofsky, Generalized field development optimization using derivative-free procedures, Society of Petroleum Engineers Journal, 2013.

L. Digabel and S. , Algorithm 909: Nomad: Nonlinear optimization with the mads algorithm, ACM Trans. Math. Softw, vol.37, issue.4, 2011.

M. Le-ravalec, E. Tillier, S. Da-veiga, G. Enchery, and V. Gervais, Advanced integrated workflows for incorporating both production and 4d seismic-related data into reservoir models, Oil Gas Sci. Technol. -Rev. IFP Energies nouvelles, vol.67, issue.2, pp.207-220, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00735039

M. Le-ravalec, B. Noetinger, and L. Y. Hu, The fft moving average (fft-ma) generator: An efficient numerical method for generating and conditioning gaussian simulations, Mathematical Geology, vol.32, issue.6, pp.701-723, 2000.

L. Liberti, N. Mladenovi?, and G. Nannicini, A recipe for finding good solutions to minlps, Mathematical Programming Computation, vol.3, issue.4, pp.349-390, 2011.

G. Matheron, H. Beucher, C. De-fouquet, and A. Galli, Conditional simulation of the geometry of fluviodeltaic reservoirs, Ann. Techn. Conf. and Exhib, 1987.
URL : https://hal.archives-ouvertes.fr/hal-01143822

D. Oliver, A. Reynolds, and N. Liu, Inverse theory for petroleum reservoir characterization and historymatching, 2008.

J. E. Onwunalu and L. J. Durlofsky, Application of a particle swarm optimization algorithm for determining optimum well location and type, Computational Geosciences, vol.14, pp.183-198, 2010.

L. Peters, R. Arts, G. Brouwer, C. Geel, S. Cullick et al., Results of the brugge benchmark study for flooding optimization and history matching, SPE Reservoir Evaluation & Engineering, vol.13, pp.391-405, 2010.

. Pumaflow, PumaFlow Reservoir Simulator Reference Manual. BeicipFranlab, 2012.

R. Schulze-riegert, S. Ghedan, . Van-den, F. Berg, R. Perrons et al., Modern techniques for history-matching. 9th International Forum on Reservoir Simulation, Business value from intelligent fields. SPE Intelligent Energy Conference and Exhibition, 2007.