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Multi-objective constrained optimization of engine maps

Delphine Sinoquet, Hoël Langouët, Fabien Chaudoye and Michel Castagné

A bstract

Nowadays, automotive manufacturers are submitted to strong constraints in engine calibra-

tion: lowest fuel consumption, emission-control legislation and driver requests for driving comfort

and performances. These constraints lead to an increasingly complexity of the engines and thus

an increasingly number of parameters to be tuned, making the empirical engine calibration by

a scan of parameter values impossible at engine test-bench. New methodologies in automated

engine calibration based on statistics and optimization have emerged in order to limit the number

of experimental tests to be run.

The optimization problem of engine calibration consists in the determination of engine tuning

parameter maps that minimize the cumulated fuel consumption and pollutant emissions, under

combustion noise constraints, on a driving cycle.

The usual way to get this result is to select specific operating points representing this cycle in

the engine working range and to define upper bounds applied on the different engine responses

(allocations) for each of them, in order to obtain a weighted sum of these local responses respect-

ing the global targets. The underlying problem is a multi-objective optimization problem: different

compromises between fuel consumption, noise and pollutant emissions on each operating point

are possible. We propose an adapted optimization method based on the MO-CMA-ES method

(Multi-objective Covariance Adaptation Evolution Strategy) which takes into account the non triv-

ial limits of the engine parameter variation domains and some robustness constraints.

An other point addressed in this paper is the map optimization which consists in a global optimiza-

tion of engine responses cumulated on the driving cycle. This method avoids the cumbersome

choice of allocations for each considered operating point and includes directly the map regularity

constraints in map parameterizations.

Finally, application on real dataset obtained at automated test-bench for a diesel engine are pre-

sented.

1 Introduction

Engine calibration consists in fulfilling the engine tuning maps that are used in engine controls of

the vehicle, i.e. in defining the optimal tuning of parameters used by engine control strategies.

Due to the highly increased number of these parameters (especially for diesel engines but spark

ignition engines are following the same trend) and the reduction of the development schedule

available for the calibration process, manual tuning of engine parameters is now replaced by

mathematically assisted calibration process. Such a process is based on the design of experi-

ments with associated modeling methods, in order to reduce the number of tests used to build

engine response models depending on engine control parameters, and optimization techniques

to determine the optimal settings within the model definition domain ([10], [3], [11], [1]). In order
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to perform the tests in a more productive way, these mathematical techniques are generally as-

sociated with test automation, requiring well controlled measurement methods and reliable test

equipments.

This paper describes the optimization methods developed for this application and illustrates

their effectiveness on a real case of a common rail diesel engine. The first section introduces

the classical steps of the calibration process and discusses the associated difficulties. In the

second section, we adapt the Multi-Objective Covariance-Adaptation Evolution Strategy method,

proposed by [5], for solving the optimization problem associated with a given engine operating

point defined by the engine speed and the engine load. In the third part, an integrated approach

is proposed in order to directly optimize the engine maps on the whole driving cycle (associated

with legislation norms) instead of the individual optimization of each engine operating point.

2 E ngine calibration

2.1 Sketch of the engine calibration process

The emission calibration workfl ow is classically divided into three steps ([10]):

1. a preliminary phase consists in choosing a sample of operating points (referred to as OP in

the following) to be studied and emissions targets associated with each OP, these targets

being called allocations hereafter.

2. the optimization of engine responses on each OP according to these targets,

3. the fulfilling of the maps with a smoothing step between these optimal settings.

The preliminary step deduces from a simple model of the vehicle the trajectory of the driving

cycle in the engine speed-load operating domain (see Figure 1). A limited number of specific

Operating Points are chosen to represent the cycle in the engine working range. Figure 1 gives

an example of NEDC (New European Driving Cycle) simulation and a selection of 16 OP. The

cumulated levels of pollutant emissions along the cycle are computed as weighted sums of the

pollutant emissions for each chosen OP. Note that the transient effects during the cycle as well

as the effect of the warming up of the engine and of the after-treatment on the emissions are not

taken into account in these weighted sums. They must be introduced when defining the objective

of optimisation (the allocation) for each OP.

Phase 2 consists of five steps:

i) defining the domain of variations of the engine control parameters ([2]: this is an essential

step of the process as it defines the validity domain of the models. The complexity of

the models to be used for engine response depends on the size of this domain: for tiny

domains low order polynomials are usually sufficient to accurately model engine responses.

H owever, choosing too small domains leads to difficulty in coherently fulfilling sub-optimal

engine maps ([1]).

ii) building the test matrix: various types of experimental designs can be used to build a test

matrix: D-Optimal, space filling... The choice of the type of design as well as the number

of tests to be done are directly correlated with the assumed complexity of the model and

thus with the size of the considered domain. D-Optimal test designs are often used with

hyper-cubic tiny domains ([10]).
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Figure 1: Simulation of the cycle from European legislation (NEDC: New European Driving Cycle)

and selection of operating points

iii) running this test matrix on the test bench: as the tests are predefined, the experiments can

be performed in an automated way, which drastically improves the productivity of the global

process. In this case, special attention must be paid to the validation of the experimental

data.

iv) modeling the engine responses: the type of mathematical models depends on the complex-

ity of the engine responses and on the size of the domain. As already mentioned, reducing

the size of the parameter variations may lead to difficulties to build coherent optimal engine

maps from the obtained optimal settings in those tiny domains. Often, low order polynomial

functions are used coupled with D-optimal design of experiments. For some response as

particulates or CO emissions, this type of models may be too limited, then non-parametric

response surfaces may be chosen as RB F or kriging ([11]). We will not detail this step of

the calibration process in this paper, the reader may find more details on this topic in [1] or

in [2].

v) optimizing the engine control parameters to meet the allocations. The problem may be

formulated as a classical mathematical problem of optimization under constraints or as
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a multi-objective optimization (searching for compromises between antagonist objectives)

as it is detailed in the following section. For this classical approach, the optimization is

performed one OP after the other, considering the allocations of each OP as constraints.

We refer in the following to this optimization problem as the OP optimization problem.

Figure 2: Projection of the domain of parameter variations in the (boost pressure, air mass)

plane. The limits of the domain are generally modeled by linear constraints on the engine control

parameters. The ellipse indicates the parameter dispersions (here projected on the 2D space)

modeled by a multidimensional G aussian probability law. The ellipse should remain in the engine

physical domain in order to avoid that any control parameter takes some value outside this domain

after the implementation in the control unit.

When the optimal settings are found, the last step consists in integrating them in the reference

engine maps (if available) or building maps from these settings on the whole engine operating

domain (see Table 2 for examples of engine maps). For the drivability of the target vehicle and

because sharp evolution of air loop parameters are not easily feasible during transient, it is neces-

sary to provide smooth engine maps. Thus, the settings are often moved away from their optimal

values in order to build smooth engine maps, especially for air loop parameters. This smoothing

process can be performed with respect to local constraints (such as maximum gradients), as

well as to keep some predefined shapes. The difficulty of this step is thus to remain as close as

possible to the local optima while preserving a smooth shape of the map, in order to keep all the

benefits of the optimization work and satisfy the targets. This delicate step is usually time con-

suming and is likely to deteriorate the work performed during the optimization phase by providing

sub-optimal engine tunings. This is the motivation for our proposal of an integrated method of

map optimization described in section 4.

2.2 T he O P optim iz ation problem form u lation

The OP optimization problem consists in minimizing some engine responses under constraints

on other engine responses whereas the engine control parameters are kept inside the domain

usually modeled by linear constraints coupling the parameters (see Figure 2). It leads to the

4



following multi-objective constrained optimization problem:


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

min
p∈R

Np

(f1(p), f2(p), . . . , fm(p))

subject to

l ≤ Ap ≤ u

f1(p) ≤ s1

f2(p) ≤ s2

. . .

fd(p) ≤ sd

(1)

In turbo-diesel engine, a classical bi-objective optimization problem concerns the NOx/particulates

trade-off. It could be formulated as the minimization of the particulate emissions and the NOx

emissions under constraints on fuel consumption (CO2 emissions), on CO and H C emissions

and engine noise level. G enerally, this multi-objective optimization problem (1) is replaced by

a constrained optimization problem where only one of the objective is effectively minimized, the

other being constrained to remain below some thresholds:



























min
p∈R

Np

(fi(p))

subject to

l ≤ Ap ≤ u

fj(p) ≤ sj j ∈ [1, d]

(2)

This constrained single-objective optimization problem (2) is then solved by a classical Sequential

Q uadratic Programming method run several times with different initial points to search for the

global optimum.

3 S olving th e O P multi-objective optimization problem

In this section, we present a method to solve the constrained multi-objective problem (1). It is

based on the algorithm proposed by [4] namely the Multi-objective Covariance Matrix Adaptation

Evolution Strategy method (MO-CMA-ES).

The MO-CMA-ES method belongs to the class of evolution strategy methods which allow to

solve global optimization problems. These methods are popular for their ability to find a global

minimum but their slow convergence rate is often criticized. In [5], H ansen has proposed the

CMA-ES method for optimization of real-space functions, based on an original mutation operator

that increases the convergence rate thanks to the adaptation of the mutation distribution at each

generation.

3 .1 C M A -E S m ethod for single-objectiv e optim iz ation

In the CMA-ES evolutionary algorithm, a new population is created from the current population

by generating realizations of a G aussian probability law

x
(g+1)
k ∼ N

(

m(g), σ
(g)2
k · C(g)

k

)

(3)
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where m(g) is the barycenter of the best µ individuals with respect to the objective function to be

minimized,

m(g) =

µ
∑

i= 1

wix
(g)
i:λ ,

with

µ
∑

i= 1

wi = 1 and wµ ≤ wµ−1 ≤ . . . ≤ w1 ≤ 1,

(4)

x
g
i:λ being the ith best individual of the current population x(g) with respect to the function to be

minimized. The next population is thus directed towards the best points.

An ideal choice for the covariance matrix would be the inverse of the H essian matrix of the

objective function, the idea proposed by H ansen is then to approximate this matrix as for a

Q uasi-Newton method but without any computation of the derivatives. The update formula for

the covariance matrix is then

C(g+1) = (1 − cco v )C
(g) + cco v

µ
∑

i= 1

wi

(

x
(g+1)
i:λ − m(g)

σ(g)

)(

x
(g+1)
i:λ − m(g)

σ(g)

)T

(5)

which amounts to adding to the current covariance matrix a µ-rank term that takes into account the

repartition of the best µ individuals of the new population. An other update formula is proposed

by H ansen which does not take into account only the last iteration as in (5) but all the previous

iterations from the beginning.

In the same way, an update formula of the standard deviation is built: the main idea is here to

avoid that two consecutive iterations lead to a displacement of the barycenter of the population

m(g) in the same direction, replacing these two iterations by one with a larger standard deviation

would have been a better choice. Likewise, a small standard deviation is preferred to a large one

which leads to two iterations with opposite displacements of the barycenter of the population. The

reader is referred to [5] for more details. Figure 3 illustrates on a 2D single-objective optimization

example the adaptation of the covariance matrix and of the standard deviation leading to an

efficient evolution of the population toward the global minimum.

3 .2 M O -C M A -E S m ethod for m u lti-objectiv e optim iz ation

Adapting the CMA-ES method to multi-objective optimization requires the definition of new criteria

to define what is a g ood and a bad individual for selection step of the evolutionary algorithm (see

[4]). Two criteria are implemented in MO-CMA-ES:

1. A classical criterion for multi-objective optimization is the Pareto dominance:

Definition 1. A n ind iv id u al x is said to d om inate anoth er ind iv id u al x′, w h ich is sym boliz ed

by x ≺ x′, if and only if

{

∀m ∈ {1, ..., M} : fm(x) ≤ fm(x′)
∃m ∈ {1, ..., M} : fm(x) < fm(x′).

(6)

Definition 2. T h e set of Pareto op tim al p oints of th e set X is th u s d efi ned by th e set

{x | @x′ ∈ X : x′ ≺ x}.

6



Figure 3: An application of CMA-ES method on the analytical function f(x, y) = x2+y2

10
−

1
2

(

c o s(2π
5

x) + co s(2π
5
y)
)

+ 3. From top left to bottom right, the population at iterations 1, 5, 8

and 20 are represented. The ellipse represents the 95% -isovalue of the G aussian probability

density of the mutation operator with the adaptive covariance matrix.

The Pareto front is composed of the values taken by the objectives for all the Pareto opti-

mal solutions. Examples of Pareto fronts are given in Figure 5. The individuals of a given

population A are sorted by their non-dominance level. The non-dominated solutions of A

are given by:

n dom(A) = {a ∈ A | @a′ ∈ A : a′ ≺ a}.

We consider that these non-dominated solutions have a non-dominance level of 1. Recur-

sively, we define the points of non-dominance level equal to 2 as the non-dominated points

of the population A without the non-dominated solutions. We thus obtain the recursive

definition:
n domi(A) = n dom(domi−1(A))
with domi(A) = domi−1(A)\n domi(A) and dom0(A) = A.

(7)

2. The second criterion is a diversity criterion of the solutions to obtain an uniform repartition

of the solutions along the Pareto front. A measure of the dominance hyper-volume at a

non-dominated solution is defined by considering the surface of the rectangles defined in

Figure 4 (one rectangle for each non-dominated point).

Combining these two criteria allows to sort the individuals of the current population with respect

to the multiple objectives and then to apply the CMA-ES update formula of the covariance matrix

adaptation for the mutation. For more details on the MO-CMA-ES method, the reader is referred

to [4].
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Figure 4: Contributing dominance hyper-volumes for the evaluation of the diversity criterion

3 .3 A pplication of M O -C M A -E S m ethod to a real case of engine calibration

In this section we present results obtained from a real dataset associated with a turbo-diesel

engine. We consider the optimization problem (1) at a given engine operating point (1750 rpm -

1 bar). Models of the engine responses have been built from experimental data, the tests being

designed thanks to a classical D-optimal criterion: the models are cubic polynomials.

The optimization is performed on 6 engine control parameters: the main injection timing, the

pilot fuel injection quantity, the pilot injection timing, the fuel injection pressure, the mass air fl ow

and the boost pressure.

The optimization objectives are the particulate emissions and the NOx emissions, CO2, H C

and CO emissions and the engine noise being constrained to remain smaller than a given thresh-

old. Linear constraints defining physical limits of the domain of variations of the parameters are

introduced. These linear constraints may take into account the parameter dispersions, these new

constraints are denoted by robustness constraints hereafter.

Thus, the multi-objective optimization algorithm has been modified to deal also with linear

and non linear inequality constraints: they have been introduced via a l1 penalization term added

to the objectives (if the ith constraint is not satisfied, the misfit with the bound is added to the

objective functions, the penalization weight varying during the iterations).

The results are presented in Figure 5 : two optimizations are compared, one without taking

into account the parameter dispersions and one with the robustness constraint which consists

in taking into account the possible dispersion of the engine control parameters when applied on

the vehicle. This dispersion is modeled by an uncorrelated G aussian probability law, thus by
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Figure 5: Pareto fronts (stars) obtained with the MO-CMA-ES method for the OP 1750 rd/mn -

1 bar. The front at the right side of the Figure is associated with an optimization taking into

account the parameter dispersion (robustness constraints that ensure the effective engine control

parameter values to remain inside the engine physical domain). The other front results from

an optimization without these constraints. The dots are solutions obtained by single-objective

optimizations (weighted sum of the two objectives) associated with different initial points and

different penalization weights.

one standard deviation by parameter. As shown in Figure 2, a vicinity of the engine setting is

defined and this vicinity should remain inside the physical limits. The impact of this constraint is

noticeable in Figure 5 by an important shift of the Pareto front and a modification of its shape.

Engine experts were very interested in the different compromises between the two objectives that

have been obtained by the multi-objective optimization method. The points indicated with dots

are associated with successive runs of a local single-objective optimization with different initial

points and with a weighted sum of the two objectives (different weight values have been tested).

We notice that these optimizations lead to points not located on the Pareto front: these points are

some local minima. Moreover, as expected, the points obtained on the Pareto front are located

on the convex parts only.

The MO-CMA-ES method has performed on this example 3 times more evaluations of the

objective functions than the local optimization with different initial points and different weights.

Even if this performance is already very encouraging, some work on the stopping criteria may

reduce the number of evaluations of MO-CMA-ES.
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4 S olving th e map optimization problem

In the classical calibration process described in section 2.1, the engine map building in the

smoothing step is delicate and time consuming. In this section, we propose an alternative

method that consists in directly optimizing the cumulated engine responses over the cycle via

deformations of the engine maps themselves instead of optimizing individually the selected OP

and building afterward the engine maps by the smoothing step. The map optimization problem is

formulated as














































min
mp∈R

Np

∫ T

0

Fi (r(t), c(t), m
p1(r(t), c(t)), mp2(r(t), c(t)), . . . , , mpNp (r(t), c(t))) dt

subject to

l(r, c) ≤ Amp(r, c) ≤ u(r, c)
∫ T

0

Fj (r(t), c(t), mp1(r(t), c(t)), mp2(r(t), c(t)), . . . , , mpNp (r(t), c(t))) dt ≤ Sj

j ∈ [1, d]

(8)

where (r(t), c(t)) indicate the trajectory of the cycle within the engine speed-load domain, Fi is

the model of the engine response i depending on the engine control parameters but also on the

speed and load, mpi are the 2D engine maps of the control parameters in the engine (speed,load)

operating domain.

The objectives to be minimized (or constrained) are the engine responses cumulated on the

considered driving cycle: the cumulated responses may be either the weighted sums of the lo-

cal models defined at chosen representative OP or the integral of global models defined on the

whole operating domain (depending on engine speed and engine load or some models defined

on zones depending on the parameterizations: for instance number of injections). The latter for-

mulation allows a finer optimization with a fine sample of the integrals in (8). Additional smoothing

constraints such as global smoothing constraints (to preserve the regularity of the original maps)

or more local constraints (for example limits on the gradients of the maps) can also be introduced.

Note that, as with local optimization problem, the transient effects are not taken into account in

engine response modeling and must be introduced when defining the objective of global opti-

mization.

4 .1 M od eling the engine m aps

The formulation (8) requires an adapted parameterizations of the engine maps that must be fl ex-

ible enough to model the very different shapes of engine map surfaces (Figure 6) and should

not require too many parameters to limit the number of unknowns in the optimization process.

LoLiMoT models ([9], [3]) seem to be a good compromise between fl exibility, accuracy and com-

plexity: some very simple local models (linear or bilinear) are combined by a weighted sum

m(r, c) =
M
∑

i= 1

m̂i(r, c)Φi(r, c) with m̂i(r, c) = ω0i + ωrir + ωcic (9)

where the weights Φi(r, c), normalized G aussian functions, control the degree of smoothness of

the global surface:

Φi(r, c) =
µi(r, c)

∑M

j= 1 µj(r, c)
with µi(r, c) = ex p

(

−
1

2α

(r − ri
0)2

σr
i
2 +

(c − ci
0)2

σc
i
2

)

(10)
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Figure 6: Examples of LoLiMoT parameterizations of engine map. Left: patching of the domain.

A local linear model is defined on each patch. Right: the resulting surfaces modeled by LoLiMoT

for two different engine control parameters from given discrete reference maps.

This representation allows an adaptive refinement of the surface: the patching associated with

the definition domains of the local models may be refined during the optimization process. A

finer patching allows a finer optimization (the number of degrees of freedom being increased) but

may lead to a cumbersome optimization of a large number of parameters. The parametrization,

namely the patch definition for LoLiMoT description of the maps should refl ect the degree of

smoothness the user expects for the maps: for some parameters like boost pressure, the map

should remain smooth, for others like main injection timing, the smoothing constraint is not as

strong.

Thus, from some reference engine maps or some a priori information, a LoLiMoT parametriza-

tion of each map of engine tunings is defined (Figure 6). The unknowns of the optimization are

the LoLiMoT parameters (coefficients of local linear models ω.i in equation (9)).

4 .2 A pplication of m ap optim iz ation on a real case

The map optimization has been applied on a turbo-diesel engine application. The optimization

problem is defined as a constrained single-objective optimization problem where the cumulated

CO2 emissions are minimized and the cumulated particulates, CO, H C and NOx emissions are

constrained to remain under thresholds. Constraints are added to take into account the limits of

the physical domain: linear and non linear inequality constraints as described in [2]. Different

methods have been compared as described in Table 1:

• the loc a l m eth od is the most simple one but requires a smoothing step to build engine
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Table 1: Engine map optimization methods to be compared

Models O p tim iz ed resp on ses

L oc a l m eth od local models local resp on ses

(3rd deg ree p oly n omials) for each O P , m in
p∈R

Np

(F1(p), F2(p), . . . , Fm(p))

Mix ed loc a l m eth od local models weig h ted su m of local resp on ses

(3rd deg ree p oly n omials) m in
mp∈R

Np

NOP
∑

l= 1

ωlF
(l)
i

(

mp1 (rl, cl), m
p2 (rl, cl), . . . , , m

pNp (rl, cl)
)

Mix ed g lob a l m eth od g lob al/z on al models weig h ted su m of g lob al resp on ses

(k rig in g ) m in
mp∈R

Np

NOP
∑

l= 1

ωlFi

(

mp1 (rl, cl), m
p2 (rl, cl), . . . , , m

pNp (rl, cl)
)

G lob a l m eth od g lob al/z on al models in teg ral over th e cy cle of g lob al resp on ses

(k rig in g ) m in
mp∈R

Np

∫ T

0
Fi

(

r(t), c(t), mp1 (r(t), c(t)), . . . , , m
pNp (r(t), c(t))

)

dt

maps. This step may destroy the optimization work by modifying the obtained local optima

at a set of 16 selected OP as explained in Section 2.1. The engine maps are sub-optimal

maps because of the smoothing step but also because of the limited number of selected

OP.

• the m ix ed loc a l m eth od allows to build optimized engine maps by a global map optimiza-

tion on cumulated responses on selected OP, responses being modeled only locally on

each selected OP. The models are cubic polynomials built from data obtained thanks to a

D-optimal design. This method may suffer from a lack of accuracy because of the limited

number of OP as for the local method but, on the contrary to the latter, this method avoids

the delicate smoothing step.

• the m ix ed g lob a l m eth od is very similar to the mixed local method with responses modeled

globally on the operating domain. We use kriging models ([6], [8]) that allow to model

complex responses and to take into account an estimate of measurement errors (see [2] for

more details on the design of experiments). This method is not very interesting in practice:

since we have at our disposal global models, an optimization of a finer sampling of the

driving cycle is possible and should give more accurate results.

• the g lob a l m eth od is the most complex method but the most accurate: it consists in the

map optimization of the cumulated responses on a fine sample of the cycle (in our example,

1H z sampling i.e. 1019 OP, see Figures 12 and 13). The models are the same as in the

mixed global models.

As shown by Figures 7 and 8, the four methods match the constraints on the cumulated

engine responses. Some of the engine maps obtained with these methods are displayed in Table

2: we observe that the maps obtained with mixed methods and global method are smoother

than the maps obtained with local method. This is not surprising: the smoothing step of the

local method is cumbersome, a compromise between smoothing and keeping the maps close to

the local optima has to be found. A first advantage of the engine map optimization is thus the

additional degree of freedom introduced by optimizing directly the cumulated responses instead

of successive optimizations of local responses at each OP as in the local method. A response
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Table 2: Examples of engine maps obtained with the different optimization methods. The green

dots are the OP used to sample the integral of the cumulated responses (16 OP pr 1019 OP

depending on the optimization method).

Map of pilot fuel

injection quantity

Map of pilot injection

tim ing

Map of fuel injection

pres s ure

Initial maps

L o c al me th o d

M ix e d lo c al me th o d

M ix e d g lo b al me th o d

G lo b al me th o d

13



Figure 7: Comparison of results obtained by local method and mixed local method. The cumu-

lated responses are computed by a weighted sum of 16 OP with local models. Upper bounds of

engine responses introduced in optimization are displayed in dotted red lines.

Figure 8: Comparison of results obtained with mixed global method and global method. The

cumulated responses are computed by a 1H z sampling of the integral of global models (1019

OP). Upper bounds of engine responses introduced in optimization are displayed in dotted red

lines.
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Figure 9: Comparison of estimation of cumulated responses on the driving cycle with a weighted

sum of 16 OP and the integral with a discretisation of 1H z (1019 OP).

at an OP may be slightly increased in order to keep the regularity of maps. We observe the gain

on Figure 7: the mixed local method gives smoother engine maps (Table 2) and allows to obtain

smaller CO2 emissions.

Finally, the estimate of cumulated responses on the driving cycle should be more accurate:

as shown on Figure 9, the approximation of the integrals by a weighted sum on 16 OP gives very

different results from the 1H z discretisation. The choice of the 16 OP and the associated weights

is cumbersome and may explain partly the differences. The accuracy of these approximations

depends also on the accuracy of the models of the engine responses. The global models of the

engine responses are not as accurate as the local models when considered locally. A special

care should be taken in the validation of the global model.

Figure 8 illustrates the results obtained with mixed global method and global method: the

method differs only by the discretisation of the driving cycle for computing the cumulated re-

sponses to be optimized (discretised with 16 OP or with 1019 OP for a 1H z sampling). The

results are very similar: for this example, the mixed global method does not suffer from the rough

sampling of the cycle. Nevertheless, the cumulated CO2 emissions are smaller for the maps ob-

tained by the global method. Figures 10 and 11 show the gain on the maps of the responses: the

global method minimized more globally the CO2 emissions than the mixed global method. Fig-

ures 12 and 13 display the optimized engine settings and the gain on engine responses obtained

with global map optimization.

5 O utlook

The methods proposed in this paper are based on experimental tests in stabilized conditions.

The transient effects during the cycle as well as the effect of the warming up of the engine and

of the post-treatment of the emissions are not taken into account during modeling process. They

are only introduced in the definition of the objectives of optimization (the allocation for each OP
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Figure 10: Maps of differences of engine responses (modeled by kriging global models) obtained

with initial maps and maps obtained with mixed global methods. The white dots indicate the

driving cycle OP.
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in local approach or the objectives of map optimization in mixed or global approaches), with

empirical methods based on the know-how of engine experts. These methods consist generally

of minimizing each emission target by transfer coefficient between hot and cold behavior and

between stabilized and transient behavior. Such coefficient are often determined by experience

on similar engines or preliminary tests.

New challenge is to develop methods allowing to take into account in a more robust way the

behavior of the engine during transient operations (load, speed and/or thermal variations). Ex-

perimental methods are in development, based on the realization of transient operations at test

bench, for example by using DoE. Such method could be proposed in addition to methods based

on stabilized tests (map corrections to take into account transient effect) or be used directly to

obtain optimal maps. Some others methods proposed in the literature are based on generating

APRB S signals (Amplitude modulated Pseudo Random B inary Signals) at each operating point

for the identification of the non-linearity of the engine ([7]). We also consider that coupling be-

tween experimental (statistical) models and physical modeling of the engine is a very promising

way. The idea is to simulate the behavior of vehicle and engine in order to get the conditions

in the combustion chamber before combustion(gas composition, injection behavior,...) and to

use statistical models to obtain engine-out emissions. Such a simulation tool could be used for

optimizing control parameters on the cycle, taking into account transient behavior.

6 C onclusions

In this paper, the optimization problems encountered in stationary engine calibration are ad-

dressed. The constrained multi-objective optimization has been successfully solved by the MO-

CMA-ES method modified to handle inequality constraints. The performance of this method on

the considered real case application is very encouraging. The resulting Pareto front gives to

the engine experts a worth information on the possible compromises between antagonist engine

responses as particulate emissions and NOx emissions of a diesel engine. In a second part,

an other formulation of the engine map optimization is proposed based on a cycle optimization

instead of an optimization at given engine operating points. This formulation allows to handle the

smoothing constraints on the maps directly in the optimization process, thus to avoid the gen-

erally cumbersome step of map smoothing in classical engine calibration process. Results of a

constrained single-objective map optimization have shown the efficiency of the method compared

to local methods. A comparison of the different approaches on this example shows the efficiency

of the map optimization. A next study will be to apply a multi-objective approach as for the OP op-

timization, the difficulty being the large size of the parameter space (500 parameters to describe

all the engine maps). Taking into account transient behavior of the engine during optimization

process by the use of dedicated tests or by the use of simulation tool is an other challenge for

calibration engineers.
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Figure 12: The first and second figures from the top are respectively the engine speed and the

MEP (Mean Effective Pressure) along the considered driving cycle. The other figures represent

the optimized engine tunings along the driving cycle obtained by the global optimization method:

from top to bottom, the injected air quantity, the fuel injection pressure, the pilot fuel injection

quantity, the main injection timing, the pilot injection timing, the position of variable geometry

turbine, the boost pressure.
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Figure 13: Optimized engine responses along the driving cycle obtained by the global optimiza-

tion method: from top to bottom, H C, CO, CO2, NOx, particles emissions and noise.
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