S. Aoyama, M. Nishizawa, J. Miyazaki, T. Shibuya, Y. Ueno et al., Recycled Archean sulfur in the mantle wedge of the Mariana Forearc and microbial sulfate reduction within an extremely alkaline serpentine seamount, Earth Planet. Sci. Lett, vol.491, pp.109-120, 2018.

W. Bach, Some compositional and kinetic controls on the bioenergetic landscapes in oceanic basement, Front. Microbiol, vol.7, p.107, 2016.

T. Barth and K. Bjørlykke, Organic acids from source rock maturation: generation potentials, transport mechanisms and relevance for mineral diagenesis, Appl. Geochem, vol.8, issue.93, p.90002, 1993.

W. J. Brazelton, M. O. Schrenk, D. S. Kelley, and J. A. Baross, Methane-and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem, Appl. Environ. Microbiol, vol.72, pp.6257-6270, 2006.

W. J. Brazelton, C. N. Thornton, A. Hyer, K. I. Twing, A. A. Longino et al., Metagenomic identification of active methanogens and methanotrophs in serpentinite springs of the Voltri Massif, Italy. PeerJ, vol.5, p.2945, 2017.

S. F. Breitenbach and S. M. Bernasconi, Carbon and oxygen isotope analysis of small carbonate samples (20 to 100 µg) with a GasBench II preparation device, Rapid Commun. Mass Spectrometry, vol.25, pp.1910-1914, 2011.

D. E. Canfield, B. B. Jørgensen, H. Fossing, R. Glud, J. Gundersen et al., Pathways of organic carbon oxidation in three continental margin sediments, Advances in Marine Biology, vol.113, pp.129-166, 1993.

W. W. Carothers and Y. K. Kharaka, Aliphatic Acid Anions in Oil-Field Waters-Implications for Origin of Natural Gas, AAPG Bull, vol.62, pp.2441-2453, 1978.

S. L. Clegg and M. Whitfield, Activity coefficients in natural waters, Activity Coefficients in Electrolyte Solutions, pp.279-434, 1991.

G. P. Cooles, A. S. Mackenzie, and R. J. Parkes, Non-hydrocarbons of significance in petroleum exploration: volatile fatty acids and non-hydrocarbon gases, Miner. Magaz, vol.51, pp.483-493, 1987.

M. Crespo-medina, K. I. Twing, M. D. Kubo, T. M. Hoehler, D. Cardace et al., Insights into environmental controls on microbial communities in a continental serpentinite aquifer using a microcosm-based approach, Front. Microbiol, vol.5, p.604, 2014.

M. M. Cross, D. A. Manning, S. H. Bottrell, and R. H. Worden, Thermochemical sulphate reduction (TSR): experimental determination of reaction kinetics and implications of the observed reaction rates for petroleum reservoirs, Organic Geochem, vol.35, pp.393-404, 2004.

A. C. Curtis, C. G. Wheat, P. Fryer, and C. L. Moyer, Mariana forearc serpentinite mud volcanoes harbor novel communities of extremophilic archaea, Geomicrobiol. J, vol.30, pp.430-441, 2013.

B. Debret, E. Albers, B. Walter, R. Price, J. D. Barnes et al., Shallow forearc mantle dynamics and geochemistry: new insights from IODP Expedition 366, Lithos, vol.326, issue.327, pp.230-245, 2019.

B. Debret and D. A. Sverjensky, Highly oxidising fluids generated during serpentinite breakdown in subduction zones, Sci. Rep, vol.7, p.10351, 2017.

A. Delacour, G. L. Früh-green, S. M. Bernasconi, P. Schaeffer, and D. S. Kelley, Carbon geochemistry of serpentinites in the Lost City hydrothermal system (30 degrees N, MAR), Geochim. Cosmochim. Acta, vol.72, pp.3681-3702, 2008.

A. Dhillon, M. Lever, K. G. Lloyd, D. B. Albert, M. L. Sogin et al., Methanogen diversity evidenced by molecular characterization of methyl coenzyme M reductase A (mcrA) genes in hydrothermal sediments of the Guaymas Basin, Appl. Environ. Microbiol, vol.71, pp.4592-4601, 2005.

P. K. Egeberg and T. Barth, Contribution of dissolved organic species to the carbon and energy budgets of hydrate bearing deep sea sediments (Ocean Drilling Program Site 997 Blake Ridge), Chem. Geol, vol.149, pp.25-35, 1998.

G. Etiope and M. J. Whiticar, Abiotic methane in continental ultramafic rock systems: Towards a genetic model, Appl. Geochem, vol.102, pp.139-152, 2019.

N. Finke and B. B. Jørgensen, Response of fermentation and sulfate reduction to experimental temperature changes in temperate and Arctic marine sediments, ISME J, vol.2, pp.815-829, 2008.

N. Finke, V. Vandieken, and B. B. Jørgensen, Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard. FEMS Microbiol. Ecol, vol.59, pp.10-22, 2007.

F. Fischer and H. Tropsch, Über die direkte Synthese von Erdöl-Kohlenwasserstoffen bei gewöhnlichem Druck. (Erste Mitteilung), Berichte Deutsch Chem Gesellschaft, vol.59, pp.830-831, 1926.

P. N. Froelich, G. P. Klinkhammer, M. L. Bender, N. A. Luedtke, G. R. Heath et al., Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis, Geochim. Cosmochim. Acta, vol.43, pp.1075-1090, 1979.

G. Früh-green, M. Andreani, J. Baross, S. M. Bernasconi, C. Boschi et al., Serpentinization and life: biogeochemical and tectonomagmatic processes in young mafic and ultramafic seafloor, 2014.

G. L. Früh-green, J. A. Connolly, A. Plas, D. S. Kelley, and B. Grobéty, Serpentinization of oceanic peridotites: implications for geochemical cycles and biological activity, Geophys. Monogr. Ser, vol.144, pp.119-136, 2004.

G. L. Früh-green, D. S. Kelley, S. M. Bernasconi, J. A. Karson, K. A. Ludwig et al., 30,000 years of hydrothermal activity at the lost city vent field, Science, vol.301, pp.495-498, 2003.

P. Fryer, Serpentinite mud volcanism: observations, processes, and implications, Annu. Rev. Mar. Sci, vol.4, pp.345-373, 2012.

P. Fryer, M. J. Mottl, G. Wheat, C. L. Moyer, G. Moore et al., Mariana convergent margin: geochemical, tectonic, and biological processes at intermediate depths of an active subduction factory, 2003.

P. Fryer, C. G. Wheat, T. Williams, E. Albers, B. Bekins et al., Expedition 366 methods, Proceedings of the International Ocean Discovery Program, vol.366, 2018.

P. Fryer, C. G. Wheat, T. Williams, E. Albers, B. Bekins et al., Mariana convergent margin and south chamorro seamount, Proceedings of the International Ocean Discovery Program, 2018.

P. Fryer, C. G. Wheat, T. Williams, E. J. Albers, B. Bekins et al., Expedition 366 summary, Proceedings of the International Ocean Discovery Program, vol.366, 2018.

P. Fryer, G. Wheat, and T. Williams, Expedition 366 preliminary report: mariana convergent margin and south chamorro seamount, Int. Ocean Discov. Progr. 1, vol.366, p.40, 2017.

C. Glombitza, M. Egger, H. Røy, and B. B. Jørgensen, Controls on volatile fatty acid concentrations in marine sediments, Geochim. Cosmochim. Acta, vol.258, pp.226-241, 2019.

C. Glombitza, M. Jaussi, H. Roy, M. S. Seidenkrantz, B. A. Lomstein et al., Formate, acetate, and propionate as substrates for sulfate reduction in sub-arctic sediments of Southwest Greenland, Front. Microbiol, vol.6, p.846, 2015.

C. Glombitza, J. Pedersen, H. Røy, and B. B. Jørgensen, Direct analysis of volatile fatty acids in marine sediment porewater by two-dimensional ion chromatography-mass spectrometry, Limnol. Oceanogr. Methods, vol.12, pp.455-468, 2014.

S. Goodwin and J. G. Zeikus, Ecophysiological adaptations of anaerobic bacteria to low pH: analysis of anaerobic digestion in acidic bog sediments, Appl. Environ. Microbiol, vol.53, p.57, 1987.

J. A. Haggerty and J. B. Fisher, Short-chain organic acids in interstitial waters from mariana and bonin forearc serpentines: leg 125, Proceedings of the Ocean Drilling Program, p.125, 1992.

R. Hazael, F. Foglia, L. Kardzhaliyska, I. Daniel, F. Meersman et al., Laboratory investigation of high pressure survival in Shewanella oneidensis MR-1 into the gigapascal pressure range, Front. Microbiol, vol.5, p.612, 2014.

R. Hazael, F. Meersman, F. Ono, and P. F. Mcmillan, Pressure as a limiting factor for life, Life, vol.6, p.34, 2016.

I. M. Head, D. M. Jones, and S. R. Larter, Biological activity in the deep subsurface and the origin of heavy oil, Nature, vol.426, pp.344-352, 2003.

V. B. Heuer, M. A. Lever, Y. Morono, and A. Teske, The limits of life and the biosphere in Earth's interior, Oceanography, vol.32, pp.208-211, 2019.

V. B. Heuer, J. W. Pohlman, M. E. Torres, M. Elvert, and K. Hinrichs, The stable carbon isotope biogeochemistry of acetate and other dissolved carbon species in subseafloor sediments at the northern Cascadia Margin, Geochim. Cosmochim. Acta, vol.73, pp.3323-3336, 2009.

T. M. Hoehler, M. J. Alperin, D. B. Albert, and C. S. Martens, Thermodynamic control on hydrogen concentrations in anoxic sediments, Geochim. Cosmochim. Acta, vol.62, pp.1745-1756, 1998.

T. M. Hoehler and B. B. Jørgensen, Microbial life under extreme energy limitation, Nat. Rev. Microbiol, vol.11, pp.83-94, 2013.

T. M. Hoehler, C. S. Martens, D. B. Albert, A. , and M. J. , Apparent minimum free energy requirements for methanogenic Archaea and sulfatereducing bacteria in an anoxic marine sediment, FEMS Microbiol. Ecol, vol.38, pp.33-41, 2001.

N. G. Holm, A. , and E. M. , Hydrothermal systems, The Molecular Origins of Life: Assembling Pieces of the Puzzle, pp.86-99, 1998.

N. G. Holm and A. Neubeck, Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis, Geochem. Trans, vol.10, p.9, 2009.

S. M. Hulme, C. G. Wheat, P. Fryer, and M. J. Mottl, Pore water chemistry of the Mariana serpentinite mud volcanoes: A window to the seismogenic zone, Geochem. Geophys. Geosyst, vol.11, p.1, 2010.

A. Ijiri, F. Inagaki, Y. Kubo, R. R. Adhikari, S. Hattori et al., Deep-biosphere methane production stimulated by geofluids in the Nankai accretionary complex, Sci. Adv, vol.4, p.6, 2018.

F. Inagaki, K. U. Hinrichs, Y. Kubo, M. W. Bowles, V. B. Heuer et al., Exploring deep microbial life in coal-bearing sediment down to 2.5 km below the ocean floor, Science, vol.349, pp.420-424, 2015.

A. Joseph, Chapter 6 -seafloor hot chimneys and cold seeps: mysterious life around them, Investigating Seafloors and Oceans, pp.307-375, 2017.

J. Kallmeyer, R. Pockalny, R. R. Adhikari, D. C. Smith, D. et al., Global distribution of microbial abundance and biomass in subseafloor sediment, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.16213-16216, 2012.

S. Kawagucci, J. Miyazaki, Y. Morono, J. S. Seewald, C. G. Wheat et al., Cool, alkaline serpentinite formation fluid regime with scarce microbial habitability and possible abiotic synthesis beneath the South Chamorro Seamount, Prog. Earth Planet. Sci, vol.5, p.74, 2018.

D. S. Kelley and G. L. Früh-green, Volatile lines of descent in submarine plutonic environments: insights from stable isotope and fluid inclusion analyses, Geochim. Cosmochim. Acta, vol.65, pp.3325-3346, 2001.

D. S. Kelley, J. A. Karson, G. L. Fruh-green, D. R. Yoerger, T. M. Shank et al., A serpentinite-hosted ecosystem: the Lost City hydrothermal field, Science, vol.307, pp.1428-1434, 2005.

Y. K. Kharaka, P. D. Lundegard, G. Ambats, W. C. Evans, and J. L. Bischoff, Generation of aliphatic acid anions and carbon dioxide by hydrous pyrolysis of crude oils, Appl. Geochem, vol.8, pp.317-324, 1993.

Y. Kiyosu and H. R. Krouse, The role of organic acid in the abiogenic reduction of sulfate and the sulfur isotope effect, Geochem. J, vol.24, pp.21-27, 1990.

L. Kohl, E. Cumming, A. Cox, A. Rietze, L. Morrissey et al., Exploring the metabolic potential of microbial communities in ultra-basic, reducing springs at The Cedars, CA, USA: Experimental evidence of microbial methanogenesis and heterotrophic acetogenesis, J. Geophys. Res. Biogeosci, vol.121, 2016.

C. Konn, J. L. Charlou, J. P. Donval, N. G. Holm, F. Dehairs et al., Hydrocarbons and oxidized organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafic-hosted vents, Chem. Geol, vol.258, pp.299-314, 2009.

M. Koschorreck, Microbial sulphate reduction at a low pH, FEMS Microbiol. Ecol, vol.64, pp.329-342, 2008.

S. Q. Lang, S. M. Bernasconi, and G. L. Früh-green, Stable isotope analysis of organic carbon in small (µg C) samples and dissolved organic matter using a GasBench preparation device, Rapid Commun. Mass Spectrometry, vol.26, pp.9-16, 2012.

S. Q. Lang, D. A. Butterfield, M. Schulte, D. S. Kelley, and M. D. Lilley, Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field, Geochim. Cosmochim. Acta, vol.74, pp.941-952, 2010.

S. Q. Lang, G. L. Früh-green, S. M. Bernasconi, W. J. Brazelton, M. O. Schrenk et al., Deeply-sourced formate fuels sulfate reducers but not methanogens at Lost City hydrothermal field, Sci. Rep, vol.8, p.755, 2018.

M. A. Lever, V. B. Heuer, Y. Morono, N. Masui, F. Schmidt et al., Acetogenesis in deep subseafloor sediments of the Juan de Fuca Ridge Flank: a synthesis of geochemical, thermodynamic, and genebased evidence, Geomicrobiol. J, vol.27, pp.183-211, 2010.

M. A. Lever, K. L. Rogers, K. G. Lloyd, J. Overmann, B. Schink et al., Life under extreme energy limitation: a synthesis of laboratory-and field-based investigations, FEMS Microbiol. Rev, vol.39, pp.688-728, 2015.

M. A. Lever, O. J. Rouxel, J. Alt, N. Shimizu, S. Ono et al., Evidence for microbial carbon and sulfur cycling in deeply buried ridge flank basalt, Science, vol.339, pp.1305-1308, 2013.

Y. Lin, V. B. Heuer, T. Goldhammer, M. Y. Kellermann, M. Zabel et al., Towards constraining H2 concentration in subseafloor sediment: a proposal for combined analysis by two distinct approaches, Geochim. Cosmochim. Acta, vol.77, pp.186-201, 2012.

T. Lindahl and B. Nyberg, Rate of depurination of native deoxyribonucleic acid, Biochemistry, vol.11, pp.3610-3618, 1972.

B. A. Lomstein, A. T. Langerhuus, S. Hondt, B. B. Jorgensen, and A. J. Spivack, Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment, Nature, vol.484, pp.101-104, 2012.

P. D. Lundegard and Y. K. Kharaka, Geochemistry of organic acids in subsurface waters, Chemical Modeling of Aqueous Systems II, pp.169-189, 1990.

M. Luo, J. Gieskes, L. Chen, X. Shi, C. et al., Provenances, distribution, and accumulation of organic matter in the southern Mariana Trench rim and slope: implications for carbon cycle and burial in hadal trenches, Mar. Geol, vol.386, pp.98-106, 2017.

F. T. Manheim, A hydraulic squeezer for obtaining interstitial water from consolidated and unconsolidated sediments, US Geol. Survey Professional Paper, vol.550, pp.171-174, 1966.

L. E. Mayhew, E. T. Ellison, T. M. Mccollom, T. P. Trainor, and A. S. Templeton, Hydrogen generation from low-temperature water-rock reactions, Nat. Geosci, vol.6, pp.478-484, 2013.

T. M. Mccollom, Abiotic methane formation during experimental serpentinization of olivine, Proc. Natl. Acad. Sci, vol.113, pp.13965-13970, 2016.

T. M. Mccollom and W. Bach, Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks, Geochim. Cosmochim. Acta, vol.73, pp.856-875, 2009.

T. M. Mccollom, F. Klein, M. Robbins, B. Moskowitz, T. S. Berquó et al., Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine, Geochim. Cosmochim. Acta, vol.181, pp.175-200, 2016.

T. M. Mccollom and J. S. Seewald, A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine, Geochim. Cosmochim. Acta, vol.65, pp.3769-3778, 2001.

T. M. Mccollom and J. S. Seewald, Experimental constraints on the hydrothermal reactivity of organic acids and acid anions: I. Formic acid and formate, Geochim. Cosmochim. Acta, vol.67, pp.3625-3644, 2003.

T. M. Mccollom and J. S. Seewald, Experimental study of the hydrothermal reactivity of organic acids and acid anions: II. Acetic acid, acetate, and valeric acid, Geochim. Cosmochim. Acta, vol.67, pp.3645-3664, 2003.

T. M. Mccollom and J. S. Seewald, Abiotic synthesis of organic compounds in deep-sea hydrothermal environments, Chem. Rev, vol.107, pp.382-401, 2007.

J. M. Mcdermott, J. S. Seewald, C. R. German, and S. P. Sylva, Pathways for abiotic organic synthesis at submarine hydrothermal fields, Proc. Natl. Acad. Sci, vol.112, pp.7668-7672, 2015.

H. M. Miller, L. E. Mayhew, E. T. Ellison, P. Kelemen, M. Kubo et al., Low temperature hydrogen production during experimental hydration of partially-serpentinized dunite, Geochim. Cosmochim. Acta, vol.209, pp.161-183, 2017.

F. Millero, The activity coefficients of non-electrolytes in seawater, Mar. Chem, vol.70, pp.5-22, 2000.

F. J. Millero and D. R. Schreiber, Use of the ion pairing model to estimate activity coefficients of the ionic components of natural waters, Am. J. Sci, vol.282, pp.1508-1540, 1982.

M. H. Møller, C. Glombitza, M. A. Lever, L. Deng, Y. Morono et al., D:L-amino acid modeling reveals fast microbial turnover of days to months in the subsurface hydrothermal sediment of Guaymas Basin, Front. Microbiol, vol.9, p.967, 2018.

R. Y. Morita and C. E. Zobell, Occurrence of bacteria in pelagic sediments collected during the mid-Pacific expedition, Deep Sea Res, vol.3, pp.90036-90044, 1955.

Y. Morono, T. Hoshino, T. Terada, T. Suzuki, T. Sato et al., Assessment of capacity to capture DNA aerosols by clean filters for molecular biology experiments, Microbes Environ, vol.33, pp.222-226, 2018.

Y. Morono, F. Inagaki, V. B. Heuer, Y. Kubo, L. Maeda et al., Expedition 370 methods, Proceedings of the International Ocean Discovery Program, vol.370, 2017.

Y. Morono, T. Terada, J. Kallmeyer, and F. Inagaki, An improved cell separation technique for marine subsurface sediments: applications for highthroughput analysis using flow cytometry and cell sorting, Environ. Microbiol, vol.15, pp.2841-2849, 2013.

Y. Morono, T. Terada, N. Masui, and F. Inagaki, Discriminative detection and enumeration of microbial life in marine subsurface sediments, ISME J, vol.3, pp.503-511, 2009.

P. L. Morrill, W. J. Brazelton, L. Kohl, A. Rietze, S. M. Miles et al., Investigations of potential microbial methanogenic and carbon monoxide utilization pathways in ultra-basic reducing springs associated with present-day continental serpentinization: the Tablelands, NL, CAN. Front. Microbiol, vol.5, p.613, 2014.

M. J. Mottl, Highest pH, Geochem. News, vol.141, p.9, 2009.

M. J. Mottl, H. D. Holland, and R. F. Corr, Chemical exchange during hydrothermal alteration of basalt by seawater-II. Experimental results for Fe, Mn, and sulfur species, Geochim. Cosmochim. Acta, vol.43, pp.869-884, 1979.

M. J. Mottl, S. C. Komor, P. Fryer, and C. L. Moyer, Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: Ocean Drilling Program Leg 195, Geochem. Geophys. Geosyst, vol.4, p.9009, 2003.

A. J. Oakley, A multi-channel seismic and bathymetric investigation of the central Mariana convergent margin, 2008.

A. J. Oakley, B. Taylor, and G. F. Moore, Pacific Plate subduction beneath the central Mariana and Izu-Bonin fore arcs: new insights from an old margin, Geochem. Geophys. Geosyst, vol.9, pp.1-28, 2008.

A. J. Oakley, B. Taylor, G. F. Moore, P. Fryer, A. M. Goodliffe et al., Emplacement, growth, and gravitational deformation of serpentinite seamounts on the Mariana forearc, Geophys. J. Intern, vol.170, pp.615-634, 2007.

Y. Ohara, M. K. Reagan, K. Fujikura, H. Watanabe, K. Michibayashi et al., A serpentinite-hosted ecosystem in the Southern Mariana Forearc, Proc. Natl. Acad. Sci, vol.109, pp.2831-2835, 2012.

R. J. Parkes, P. Wellsbury, I. D. Mather, S. J. Cobb, B. A. Cragg et al., Temperature activation of organic matter and minerals during burial has the potential to sustain the deep biosphere over geological timescales, Organic Geochem, vol.38, pp.845-852, 2007.

L. N. Plummer and E. T. Sundquist, Total individual ion activity coefficients of calcium and carbonate in seawater at 25 ? C and 35%. salinity, and implications to the agreement between apparent and thermodynamic constants of calcite and aragonite, Geochim. Cosmochim. Acta, vol.46, pp.90252-90258, 1982.

M. Preiner, J. C. Xavier, F. L. Sousa, V. Zimorski, A. Neubeck et al., Serpentinization: connecting geochemistry, ancient metabolism and industrial hydrogenation, Life (Basel), vol.8, p.41, 2018.

G. Proskurowski, M. D. Lilley, J. S. Seewald, G. L. Früh-green, E. J. Olson et al., Abiogenic hydrocarbon production at Lost City hydrothermal field, Science, vol.319, pp.604-607, 2008.

M. Quéméneur, M. Bes, A. Postec, N. Mei, J. Hamelin et al., Spatial distribution of microbial communities in the shallow submarine alkaline hydrothermal field of the Prony Bay, Environ. Microbiol. Rep, vol.6, pp.665-674, 2014.

K. R. Rempfert, H. M. Miller, N. Bompard, D. Nothaft, J. M. Matter et al., Geological and geochemical controls on subsurface microbial life in the Samail Ophiolite, Oman. Front. Microbiol, vol.8, p.56, 2017.

P. Sabatier and J. B. Senderens, Action of hydrogen on acetylene in presence of nickel, Comptes Rendus Hebdomadais Seances l'Acad. Sci, vol.128, p.1173, 1899.

B. Schink, R. K. Thauer, and . Lettinga, Energetics of syntrophic methane formation and the influence of aggregation, Granular Anaerobic Sludge: Microbiology and Technology, pp.5-17, 1988.

M. O. Schrenk, W. J. Brazelton, and S. Q. Lang, Serpentinization, carbon, and deep life, Rev. Mineral. Geochem, vol.75, pp.575-606, 2013.

W. E. Seyfried, D. I. Foustoukos, and Q. Fu, Redox evolution and mass transfer during serpentinization: an experimental and theoretical study at 200 ? C, 500bar with implications for ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges, Geochim. Cosmochim. Acta, vol.71, pp.3872-3886, 2007.

A. Sharma, J. H. Scott, G. D. Cody, M. L. Fogel, R. M. Hazen et al., Microbial activity at gigapascal pressures, Science, vol.295, pp.1514-1516, 2002.

M. A. Shebl and R. C. Surdam, Redox reactions in hydrocarbon clastic reservoirs: experimental validation of this mechanism for porosity enhancement, Chem. Geol, vol.132, pp.103-117, 1996.

, Site 780, Proceedings of the Ocean Drilling Program, vol.125, pp.147-178, 1990.

A. R. Smith, B. Kieft, R. Mueller, M. R. Fisk, O. U. Mason et al., Carbon fixation and energy metabolisms of a subseafloor olivine biofilm, ISME J, vol.13, pp.1737-1749, 2019.

J. Sørensen, D. Christensen, and B. B. Jørgensen, Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment, Appl. Environ. Microbiol, vol.42, pp.5-11, 1981.

A. J. Stams, Metabolic interactions between anaerobic bacteria in methanogenic environments, Antonie Van Leeuwenhoek, vol.66, pp.271-294, 1994.

A. D. Steen, B. B. Jørgensen, and B. A. Lomstein, Abiotic racemization kinetics of amino acids in marine sediments, PLoS ONE, vol.8, p.71648, 2013.

W. Stumm and J. J. Morgan, Aquatic Chemistry Chemical Equilibria and Rates in Natural Waters, 1996.

S. Suzuki, S. I. Ishii, T. Hoshino, A. Rietze, A. Tenney et al., Unusual metabolic diversity of hyperalkaliphilic microbial communities associated with subterranean serpentinization at The Cedars, ISME J, vol.11, pp.2584-2598, 2017.

S. Suzuki, J. G. Kuenen, K. Schipper, S. Van-der-velde, S. I. Ishii et al., Physiological and genomic features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing site, Nat. Commun, vol.5, p.3900, 2014.

K. Takai, Limits of life and the biosphere: lessons from the detection of microorganisms in the deep sea and deep subsurface of the Earth, Origins and Evolution of Life: An Astrobiological Perspective, pp.469-486, 2011.

K. Takai, From the Origins of Life to the Search for Extraterrestrial Intelligence, Astrobiology, pp.323-344, 2019.

K. Takai, C. L. Moyer, M. Miyazaki, Y. Nogi, H. Hirayama et al., Marinobacter alkaliphilus sp. nov., a novel alkaliphilic bacterium isolated from subseafloor alkaline serpentine mud from Ocean Drilling Program Site 1200 at South Chamorro Seamount, Mariana Forearc, Extremophiles, vol.9, pp.17-27, 2005.

K. Takai, K. Nakamura, T. Toki, U. Tsunogai, M. Miyazaki et al., Cell proliferation at 122 ? C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation, Proc. Natl. Acad. Sci. 105, pp.10949-10954, 2008.

K. Takai, N. Spoelstra, J. K. Fredrickson, D. P. Moser, S. M. Pfiffner et al., Alkaliphilus transvaalensis gen. nov., sp. nov., an extremely alkaliphilic bacterium isolated from a deep South African gold mine, Int. J. Syst. Evol. Microbiol, vol.51, pp.1245-1256, 2001.

R. K. Thauer, M. , and G. , Metabolism of chemotrophic anaerobes: old views and new aspects, The Microbe, Part II, Prokaryotes and Eukaryotes, pp.123-168, 1984.

L. Truche, G. Berger, C. Destrigneville, A. Pages, D. Guillaume et al., Experimental reduction of aqueous sulphate by hydrogen under hydrothermal conditions: implication for the nuclear waste storage, Geochim. Cosmochim. Acta, vol.73, pp.4824-4835, 2009.

G. P. Van-der-laan and A. A. Beenackers, Kinetics and selectivity of the fischer-tropsch synthesis: a literature review, Catal. Rev, vol.41, pp.255-318, 1999.

D. Vanlint, R. Mitchell, E. Bailey, F. Meersman, P. F. Mcmillan et al., Rapid acquisition of gigapascal-high-pressure resistance by Escherichia coli, vol.2, p.10, 2011.

D. T. Wang, E. P. Reeves, J. M. Mcdermott, J. S. Seewald, and S. Ono, Clumped isotopologue constraints on the origin of methane at seafloor hot springs, Geochim. Cosmochim. Acta, vol.223, pp.141-158, 2018.

P. Wellsbury, K. Goodman, T. Barth, B. A. Cragg, S. P. Barnes et al., Deep marine biosphere fuelled by increasing organic matter availability during burial and heating, Nature, vol.388, pp.573-576, 1997.

P. Wellsbury, I. Mather, R. J. Parkes, X. Lu, Y. et al., Geomicrobiology of deep, low organic carbon sediments in the Woodlark Basin, Pacific Ocean, tb00995.x Wolfenden, vol.42, pp.6814-6815, 1998.

R. H. Worden, P. C. Smalley, and M. M. Cross, The influence of rock fabric and mineralogy on thermochemical sulfate reduction: khuff formation, Abu Dhabi. J. Sediment. Res, vol.70, pp.1210-1221, 2000.

P. Worm, N. Müller, C. Plugge, A. M. Stams, and B. Schink, Syntrophy in methanogenic degradation, (Endo)Symbiotic Methanogenic Archaea, pp.143-173, 2010.

H. Yu, Z. Wang, Q. Wang, Z. Wu, and J. Ma, Disintegration and acidification of MBR sludge under alkaline conditions, Chem. Eng. J, vol.231, pp.206-213, 2013.