A. Aiuppa, C. Federico, P. Allard, S. Gurrieri, and M. Valenza, Trace metal modeling of groundwater-gas-rock interactions in a volcanic aquifer, Chemical Geology, vol.216, pp.289-311, 2005.

C. A. Appelo and D. Postma, Geochemistry, groundwater and pollution, 1993.

J. T. Armstrong, Quantitative analysis of silicate and oxide materials: Comparison of Monte Carlo, ZAF, and U(qz) procedures, Microbeam Analysis, 1988.

B. Auffray, B. Garcia, C. Lienemann, L. Sorbier, and A. Cerepi,

. Zn, Mn(II) and Sr(II) behavior in natural carbonate reservoir system. Part II : impact of geological CO 2 storage conditions

F. Behar, V. Beaumont, and H. L. Penteado, Rock-Eval 6 Technology: Performances and Developments, vol.56, pp.111-134, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02053894

B. Bourgueil and J. Gabilly, , 1971.

J. Bruno, L. Duro, J. De-pablo, I. Casas, C. Ayora et al.,

, Chemical Geology, vol.151, pp.277-291

A. Cerepi, Milieux poreux matriciel, fractures et teneur en eau d'un calcaire en zone de diagenèse météorique : Calcaire à astéries "Pierre de Bordeaux, Oligocène, 1997.

B. Coto, C. Martos, J. L. Peña, R. Rodríguez, and G. Pastor, Fluid Phase Equilibria Effects in the solubility of CaCO 3 : Experimental study and model description, Fluid Phase Equilibria, vol.324, pp.1-7, 2012.

E. Curti, Coprecipitation of radionuclides with calcite: estigeochemical data, Applied Geochemistry, vol.14, pp.433-445, 1999.

D. Daval, I. Martinez, J. Corvisier, N. Findling, B. Goffé et al.,

, Carbonation of Ca-bearing silicates, the case of wollastonite: Experimental investigations and kinetic modeling, Chemical Geology, vol.265, pp.63-78

J. A. Davis and D. B. Kent, Surface Complexation Modeling in Aqueous Geochemistry, Reviews in Mineralogy and Geochemistry, vol.23, 1990.

D. Lucia, M. Bauer, S. Beyer, C. Kühn, M. Nowak et al., Modelling CO 2 -induced fluid-rock interactions in the Altensalzwedel gas reservoir. Part I: from experimental data to a reference geochemical model, Environmental Earth Sciences, vol.67, pp.563-572, 2012.

P. M. Dove and M. F. Hochella, Calcite precipitation mechanisms and inhibition by orthophosphate: In situ observations by Scanning Force Microscopy, Geochimica et Cosmochimica Acta, vol.57, pp.705-714, 1993.

E. J. Elzinga and R. J. Reeder, X-ray absorption spectroscopy study of Cu 2+ and Zn 2+ adsorption complexes at the calcite surface: Implications for site-specific metal incorporation preferences during calcite crystal growth, Geochimica et Cosmochimica Acta, vol.66, pp.3943-3954, 2002.

P. Fenter, P. Geissbühler, E. Dimasi, G. Srajer, L. B. Sorensen et al., Surface speciation of calcite observed in situ by high-resolution X-ray reflectivity, Geochimica et Cosmochimica Acta, vol.64, pp.1221-1228, 2000.

S. J. Freij, A. Godelitsas, and A. Putnis, Crystal growth and dissolution processes at the calcite-water interface in the presence of zinc ions, Journal of Crystal Growth, vol.273, pp.535-545, 2005.

B. Garcia, V. Beaumont, E. Perfetti, V. Rouchon, D. Blanchet et al., Experiments and geochemical modelling of CO 2 sequestration by olivine: Potential, quantification, Applied Geochemistry, vol.25, pp.1383-1396, 2010.
URL : https://hal.archives-ouvertes.fr/insu-00677011

A. Glasner and D. Weiss, The crystallization of calcite from aqueous solutions and the role of zinc and magnesium ions -I. Precipitation of calcite in the presence of Zn 2+ ions, Journal of Inorganic and Nuclear Chemistry, vol.42, pp.655-663, 1980.

P. E. Hillner, S. Manne, A. J. Gratz, and P. K. Hansma, AFM images of dissolution and growth on a calcite crystal, vol.2, pp.1387-1393, 1992.

, IPCC (2005) Special Report on Carbon Capture and Storage

J. W. Johnson, E. H. Oelkers, and H. C. Helgeson, SUPCRT92: A software package for calculating the standard molal thermodynamic properties of mineral, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C, Computer & Geosciences, vol.18, pp.899-947, 1992.

Y. K. Kharaka, D. R. Cole, S. D. Hovorka, W. D. Gunter, K. G. Knauss et al., Gas-water-rock interactions in Frio Formation following CO 2 injection: Implications for the storage of greenhouse gases in sedimentary basins, Geology, vol.34, pp.577-580, 2006.

Y. K. Kharaka, J. J. Thordsen, S. D. Hovorka, H. S. Nance, D. R. Cole et al., Potential environmental issues of CO 2 storage in deep saline aquifers: Geochemical results from the Frio-I Brine Pilot test, Applied Geochemistry, vol.24, pp.1106-1112, 2009.

E. Lafargue, F. Marquis, and D. Pillot, Rock-Eval 6 Applications in Hydrocarbon Exploration, Production, and Soil Contamination Studies, vol.53, pp.421-437, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02079005

L. Z. Lakshtanov and S. L. Stipp, Experimental study of nickel (II) interaction with calcite: Adsorption and coprecipitation, Geochimica et, Cosmochimica Acta, vol.71, pp.3686-3697, 2007.

L. Pape, P. Ayrault, S. Quantin, and C. , Trace element behavior and partition versus urbanization gradient in an urban river, Journal of Hydrology 472-473, pp.99-110, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00825052

M. G. Little and R. B. Jackson, Potential impacts of leakage from deep CO 2 geosequestration on overlying freshwater aquifers, Science and Technology, vol.44, pp.9225-9257, 2010.

C. Loisy, G. Cohen, C. Laveuf, O. Le-roux, P. Delaplace et al., The CO 2 -Vadose Project: Dynamics of the natural CO 2 in a carbonate vadose zone, International Journal of Greenhouse Gas Control, vol.14, pp.97-112, 2013.

R. B. Lorens, Sr, Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate, Geochimica et Cosmochimica Acta, vol.45, pp.553-561, 1981.

A. Martin-garin, P. Van-cappellen, and L. Charlet, Aqueous cadmium uptake by calcite: A stirred flow-through reactor study, Geochimica et, Cosmochimica Acta, vol.67, pp.2763-2774, 2003.

M. C. Morris, H. F. Mcmurdie, E. H. Evans, B. Paretzkin, H. S. Parker et al., Standard X-ray Diffraction Powder Patterns, vol.25, 1981.

A. Mucci, Growth kinetics and composition of magnesian calcite overgrowths precipitated from seawater: Quantitative influence of orthophosphate ions, Geochimica et Cosmochimica Acta, vol.50, pp.2255-2265, 1986.

D. L. Parkhurst and C. A. Appelo, User's guide to PHREEQC (version 2) -A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations, 1999.

D. L. Parkhurst and C. A. Appelo, Description of Input and Examples for PHREEQC Version 3 -A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations, 2013.

H. Pauwels, I. Gaus, Y. M. Le-nindre, J. Pearce, and I. Czernichowskilauriol, Chemistry of fluids from a natural analogue for a geological CO 2 storage site (Montmiral, France): Lessons for CO 2 -water-rock interaction assessment and monitoring, Applied Geochemistry, vol.22, pp.2817-2833, 2007.

L. Pérez-del-villar, J. Bruno, R. Campos, P. Gomez, J. S. Cozar et al., The uranium ore from Mina Fe (Salamanca, Spain) as a natural analogue of processes in a spent fuel repository, Chemical Geology, vol.190, pp.395-415, 2002.

N. E. Pingitore and M. P. Eastman, The experimental partitioning of Ba 2+ into calcite, Chemical Geology, vol.45, pp.113-120, 1984.

N. E. Pingitore and M. P. Eastman, The coprecipitation of Sr 2+ with calcite at 25°C and 1 atm, Geochimica et Cosmochimica Acta, vol.50, pp.2195-2203, 1986.

N. E. Pingitore, M. P. Eastman, M. Sandidge, K. Oden, and B. Freiha,

, The coprecipitation of manganese(II) with calcite: an experimental study, Marine Chemistry, vol.25, pp.107-120

, Oil & Gas Science and Technology -Rev. IFP Energies nouvelles, vol.71, p.47, 2016.

O. S. Pokrovsky, J. A. Mielczarski, O. Barres, and J. Schott, Surface Speciation Models of Calcite and Dolomite/Aqueous Solution Interfaces and Their Spectroscopic Evaluation, Langmuir, vol.16, pp.2677-2688, 2000.

W. Preis and H. Gamsjäger, Solid + solute) phase equilibria in aqueous solution. XIII. Thermodynamic properties of hydrozincite and predominance diagrams for (Zn 2+ + H 2 O + CO 2 ), Journal of Chemical Thermodynamics, vol.33, pp.803-819, 2001.

R. J. Reeder, Carbonates: Mineralogy and Chemistry, 1983.

R. J. Reeder, Interaction of divalent cobalt, zinc, cadmium, and barium with the calcite surface during layer growth, Geochimica et, Cosmochimica Acta, vol.60, pp.1543-1552, 1996.

R. C. Smyth, S. D. Hovorka, J. Lu, K. D. Romanak, J. W. Partin et al., Assessing risk to fresh water resources from long term CO 2 injection -laboratory and field studies, Energy Procedia, vol.1, pp.1957-1964, 2009.

S. L. Stipp and M. F. Hochella, Structure and bonding environments at the calcite surface as observed with X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED), Geochimica et Cosmochimica Acta, vol.55, pp.1723-1736, 1991.

S. L. Stipp, Toward a conceptual model of the calcite surface: Hydration, hydrolysis, and surface potential, Geochimica et Cosmochimica Acta, vol.63, pp.3121-3131, 1999.

D. A. Sverjensky, Standard states for the activities of mineral surface sites and species, Geochimica et Cosmochimica Acta, vol.67, pp.17-28, 2003.

H. E. Swanson, R. K. Fuyat, and G. M. Ugrinic, NBS Circular, vol.539, 1954.

E. Tertre, C. Beaucaire, A. Juery, and J. Ly, Methodology to obtain exchange properties of the calcite surface -Application to major and trace elements: Ca(II), HCO 3 -, and Zn(II), Journal of Colloid and Interface Science, vol.347, pp.120-126, 2010.

A. Tsusue and H. D. Holland, The coprecipitation of cations with CaCO 3 -III. The coprecipitation of Zn 2+ with calcite between 50 and 250°C, Geochimica et Cosmochimica Acta, vol.30, pp.439-440, 1966.

A. Villegas-jiménez, A. Mucci, and J. Paquette, Proton/calcium ion exchange behavior of calcite, Physical Chemistry Chemical Physics, vol.11, pp.8895-8912, 2009.

A. Villegas-jiménez, A. Mucci, O. S. Pokrovsky, and J. Schott, Defining reactive sites on hydrated mineral surfaces: Rhombohedral carbonate minerals, Geochimica et Cosmochimica Acta, vol.73, pp.4326-4345, 2009.

H. Viswanathan, Z. Dai, C. Lopano, E. Keating, J. A. Hakala et al., International Journal of Greenhouse Gas Control, vol.10, pp.199-214, 2012.

K. Wright, R. T. Cygan, and B. Slater, Structure of the (1014) surfaces of calcite, dolomite and magnesite under wet and dry conditions, Physical Chemistry Chemical Physics, vol.3, pp.839-844, 2001.

J. M. Zachara, C. E. Cowan, and C. T. Resch, Sorption of divalent metals on calcite, Geochimica et Cosmochimica Acta, vol.55, pp.1549-1562, 1991.

J. M. Zachara, J. A. Kittrick, and J. B. Harsh, The mechanism of Zn 2+ adsorption on calcite, Geochimica et Cosmochimica Acta, vol.52, pp.2281-2291, 1988.

B. Auffray, B. Garcia, C. Lienemann, L. Sorbier, and A. Cerepi, Zn(II), Mn(II) and Sr(II) Behavior in a Natural Carbonate Reservoir System, Oil Gas Sci. Technol, vol.71, pp.47-48, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02186776

, Impact of the database used for calculations of the H 2 O -CO 2 -CaCO 3 system equilibrium in saline (100 g/L NaCl) conditions Experiment ID Minteq.v4.dat Pitzer

. Ca, II)eq (mol/L) Ca(II)eq (mol/L) Delta Ca(II) (mol/L) % (relative to pitzer