M. N. Ardekani, P. Costa, W. P. Breugem, and L. Brandt, Numerical study of the sedimentation of spheroidal particles, International Journal of Multiphase Flow, vol.87, pp.16-34, 2016.

F. Auguste, Instabilités de sillage générées derrière un corps solide cylindrique, fixe ou mobile dans un fluide visqueux, 2010.

F. Auguste, D. Fabre, and J. Magnaudet, Bifurcations in the wake of a thick circular disk, Theoretical and Computational Fluid Dynamics, vol.24, issue.1, pp.305-313, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00877297

G. Batchelor, Slender-body theory for particles of arbitrary cross-section in stokes flow, Journal of Fluid Mechanics, vol.44, issue.3, pp.419-440, 1970.

G. K. Batchelor, An introduction to fluid dynamics, 1967.

P. Bergé, Y. Pomeau, and C. Vidal, Order within chaos, 1987.

J. Capecelatro and O. Desjardins, An euler-lagrange strategy for simulating particleladen flows, Journal of Computational Physics, vol.238, pp.1-31, 2013.

M. Chrust, G. Bouchet, D. , and J. , Parametric study of the transition in the wake of oblate spheroids and flat cylinders, Journal of Fluid Mechanics, vol.665, pp.199-208, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00586147

R. Clift, J. Grace, and M. Weber, Bubbles, drops, and particles, 1978.

M. Coutanceau and R. Bouard, Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. part 1. steady flow, Journal of Fluid Mechanics, vol.79, issue.2, pp.231-256, 1977.

R. Cox, The steady motion of a particle of arbitrary shape at small reynolds numbers, Journal of Fluid Mechanics, vol.23, issue.4, pp.625-643, 1965.

J. D. Crawford and E. Knobloch, Symmetry and symmetry-breaking bifurcations in fluid dynamics, Annual Review of Fluid Mechanics, vol.23, issue.1, pp.341-387, 1991.

F. Dorai, C. Moura-teixeira, M. Rolland, E. Climent, M. Marcoux et al., , 2015.

, Fully resolved simulations of the flow through a packed bed of cylinders: Effect of size distribution, Chemical Engineering Science, vol.129, pp.180-192

P. Ern, F. Risso, D. Fabre, and J. Magnaudet, Wake-induced oscillatory paths of bodies freely rising or falling in fluids, Annual Review of Fluid Mechanics, vol.44, pp.97-121, 2012.

A. Esteghamatian, A. Hammouti, M. Lance, and A. Wachs, Particle resolved simulations of liquid/solid and gas/solid fluidized beds, Physics of Fluids, vol.29, issue.3, p.33302, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01565238

D. Fabre, F. Auguste, and J. Magnaudet, Bifurcations and symmetry breaking in the wake of axisymmetric bodies, Physics of Fluids, vol.20, issue.5, p.51702, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00874366

M. Fiechter, Vortex systems on slender rotating bodies and their effect on the aerodynamic coefficients. NASA technical memorandum, 1966.

S. Gao, L. Tao, X. Tian, Y. , and J. , Flow around an inclined circular disk, Journal of Fluid Mechanics, vol.851, pp.687-714, 2018.

B. Ghidersa and J. Dusek, Breaking of axisymmetry and onset of unsteadiness in the wake of a sphere, Journal of Fluid Mechanics, vol.423, pp.33-69, 2000.

R. Glowinski, T. Pan, T. Hesla, J. , and D. , A distributed Lagrange multiplier/fictitious domain method for particulate flows, International Journal of Multiphase Flow, vol.25, issue.5, pp.755-794, 1999.

S. F. Hoerner, Fluid-dynamic drag: practical information on aerodynamic drag and hydrodynamic resistance, Hoerner Fluid Dynamics, 1965.

A. Hölzer and M. Sommerfeld, New simple correlation formula for the drag coefficient of non-spherical particles, Powder Technology, vol.184, issue.3, pp.361-365, 2008.

A. Hölzer and M. Sommerfeld, Lattice boltzmann simulations to determine drag, lift and torque acting on non-spherical particles, Computers & Fluids, vol.38, issue.3, pp.572-589, 2009.

H. H. Hu, D. D. Joseph, and M. J. Crochet, Direct simulation of fluid particle motions, Theoretical and Computational Fluid Dynamics, vol.3, pp.285-306, 1992.

J. C. Hunt, A. A. Wray, and P. Moin, Eddies, streams, and convergence zones in turbulent flows, 1988.

O. Inoue and A. Sakuragi, Vortex shedding from a circular cylinder of finite length at low reynolds numbers, Physics of Fluids, vol.20, issue.3, p.33601, 2008.

K. Jayaweera and B. Mason, The behaviour of freely falling cylinders and cones in a viscous fluid, Journal of Fluid Mechanics, vol.22, issue.4, pp.709-720, 1965.

T. Johnson and V. Patel, Flow past a sphere up to a reynolds number of 300, Journal of Fluid Mechanics, vol.378, pp.19-70, 1999.

T. Kempe and J. Fröhlich, An improved immersed boundary method with direct forcing for the simulation of particle laden flows, Journal of Computational Physics, vol.231, issue.9, pp.3663-3684, 2012.

R. Khayat and R. Cox, Inertia effects on the motion of long slender bodies, Journal of Fluid Mechanics, vol.209, pp.435-462, 1989.

I. Kim and S. Elghobashi, On the equation for spherical-particle motion: effect of reynolds and acceleration numbers, Journal of Fluid Mechanics, vol.367, issue.1, pp.221-253, 1998.

R. Kurose and S. Komori, Drag and lift forces on a rotating sphere in a linear shear flow, Journal of Fluid Mechanics, vol.384, pp.183-206, 1999.

R. Mittal and G. Iaccarino, Immersed boundary methods, Annu. Rev. Fluid Mech, vol.37, pp.239-261, 2005.

. Note1, For instance if there are two modes

. Note2, The increase of numerical errors for low Reynolds number flow past immersed boundaries is also observed by Kempe and Fröhlich [31] and ? ]. In their cases those are a direct consequence of IBM forcing before the implicit step of the Crank-Nicholson method

. Note3, This bifurcation might already exist since the mean of the lift force observed in the periodic regimes is not exactly zero (Appendix C 1). A more detailed study could clarify if the non-zero mean value is due to a real bifurcation or to numerical errors

. Note4, Single pairs of steady counter-rotating vortices are found for (Re = 25, ? = 75 ? ) and (Re = 125, ? = 70 ? ). This regime is presented in the next section and detailed in Appendix C 2

. Note5, We have purposely considered a range of yaw angles larger than the one discussed in the present section, since the added regimes (? = 65 ? ) have slightly different wake patterns but comparable

. Note6, It is possible to include higher order terms, but it does not improve significantly the model. Indeed one of the drawbacks of slender body theory is that

J. B. Perot, An analysis of the fractional step method, Journal of Computational Physics, vol.108, issue.1, pp.51-58, 1993.

J. Pierson and J. Magnaudet, Inertial settling of a sphere through an interface. part 1. from sphere flotation to wake fragmentation, Journal of Fluid Mechanics, vol.835, pp.762-807, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01660645

S. Popinet, A quadtree-adaptive multigrid solver for the Serre-Green-Naghdi equations, Journal of Computational Physics, vol.302, pp.336-358, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01163101

A. Prosperetti and G. Tryggvason, Computational methods for multiphase flow, 2009.

M. Rahmani and A. Wachs, Free falling and rising of spherical and angular particles, Physics of Fluids, vol.26, issue.8, p.83301, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01085146

S. Ramberg, The effects of yaw and finite length upon the vortex wakes of stationary and vibrating circular cylinders, Journal of Fluid Mechanics, vol.128, pp.81-107, 1983.

E. Relf and C. Powell, Tests on Smooth and Stranded Wires Inclined T the Wind Direction, and a Comparison of Results on Stranded Wires in Air and Water, 1917.

L. Rosendahl, Using a multi-parameter particle shape description to predict the motion of non-spherical particle shapes in swirling flow, Applied Mathematical Modelling, vol.24, issue.1, pp.11-25, 2000.

A. Saha, Three-dimensional numerical simulations of the transition of flow past a cube, Physics of Fluids, vol.16, issue.5, pp.1630-1646, 2004.

H. Sakamoto and H. Haniu, A study on vortex shedding from spheres in a uniform flow, Transactions, Journal of Fluids Engineering, vol.112, pp.386-392, 1990.

S. K. Sanjeevi and J. T. Padding, On the orientational dependence of drag experienced by spheroids, Journal of Fluid Mechanics, p.820, 2017.

W. R. Sears, The boundary layer of yawed cylinders, Journal of the Aeronautical Sciences, 1948.

A. G. Tomboulides and S. A. Orszag, Numerical investigation of transitional and weak turbulent flow past a sphere, Journal of Fluid Mechanics, vol.416, pp.45-73, 2000.

C. Toupoint, P. Ern, and V. Roig, Freely falling cylinders at moderate reynolds numbers; part 1: kinematics and wake, Journal of Fluid Mechanics, 2018.

M. Uhlmann, An immersed boundary method with direct forcing for the simulation of particulate flows, Journal of Computational Physics, vol.209, pp.448-476, 2005.

M. Uhlmann and J. Du?ek, The motion of a single heavy sphere in ambient fluid: a benchmark for interface-resolved particulate flow simulations with significant relative velocities, International Journal of Multiphase Flow, vol.59, pp.221-243, 2014.

A. Vakil and S. I. Green, Drag and lift coefficients of inclined finite circular cylinders at moderate reynolds numbers, Computers & Fluids, vol.38, issue.9, pp.1771-1781, 2009.
DOI : 10.1016/j.compfluid.2009.03.006

A. Wachs, A dem-dlm/fd method for direct numerical simulation of particulate flows: Sedimentation of polygonal isometric particles in a newtonian fluid with collisions, Computers & Fluids, vol.38, issue.8, pp.1608-1628, 2009.

A. Wachs, PeliGRIFF, a parallel DEM-DLM/FD direct numerical simulation tool for 3D particulate flows, Journal of Engineering Mathematics, vol.71, issue.1, pp.131-155, 2011.

A. Wachs, A. Hammouti, G. Vinay, and M. Rahmani, Accuracy of finite volume/staggered grid distributed lagrange multiplier/fictitious domain simulations of particulate flows, Computers & Fluids, vol.115, pp.154-172, 2015.

C. Wieselsberger, Further data on the law of liquid and air drag, Phys. Z, vol.23, pp.219-224, 1922.

M. Zastawny, G. Mallouppas, F. Zhao, and B. Van-wachem, Derivation of drag and lift force and torque coefficients for non-spherical particles in flows, International Journal of Multiphase Flow, vol.39, pp.227-239, 2012.

M. Zdravkovich, V. Brand, G. Mathew, W. , and A. , Flow past short circular cylinders with two free ends, Journal of Fluid Mechanics, vol.203, pp.557-575, 1989.
DOI : 10.1017/s002211208900159x

M. M. Zdravkovich, Flow around Circular Cylinders, vol.2, 2003.
DOI : 10.1115/1.3242521

M. Zhao, L. Cheng, and T. Zhou, Direct numerical simulation of three-dimensional flow past a yawed circular cylinder of infinite length, Journal of Fluids and Structures, vol.25, issue.5, pp.831-847, 2009.