B. Jin and H. Nasrabadi, Phase behavior of multi-component hydrocarbon systems in nano-pores 459 using gauge-GCMC molecular simulation, Fluid Phase Equilib, vol.425, pp.324-358, 2016.

L. Travalloni, M. Castier, and F. W. Tavares, Phase equilibrium of fluids confined in porous media from 462 an extended Peng-Robinson equation of state, Fluid Phase Equilib, vol.362, pp.335-376, 2014.

Y. Xiong, Development of a compositional model fully coupled with geomechanics and its 465 application to tight oil reservoir simulation. Colorado School of Mines, vol.466, 2015.

Y. Zhang, H. R. Lashgari, Y. Di, and K. Sepehrnoori, Capillary Pressure Effect on Hydrocarbon Phase 468 Behavior in Unconventional Reservoirs, vol.469, p.2016

S. Wang, A. E. Pomerantz, W. Xu, A. Lukyanov, R. L. Kleinberg et al., The impact of kerogen 471 properties on shale gas production: A reservoir simulation sensitivity analysis, J Nat Gas Sci Eng, vol.472, 2017.

U. Kuila and M. Prasad, Understanding Pore-Structure And Permeability In Shales, SPE Annu. Tech

. Conf and . Exhib, Society of Petroleum Engineers, 2011.

S. Wang, A. A. Lukyanov, L. Wang, Y. Wu, A. Pomerantz et al., A non-empirical gas 476 slippage model for low to moderate Knudsen numbers, Phys Fluids, vol.29, p.477, 2017.

S. Wang, Z. Pan, J. Zhang, Z. Yang, Y. Wang et al., On the Klinkenberg effect of 479 multicomponent gases, Proc. -SPE Annu. Tech. Conf. Exhib, 2017.

S. Wang, A. A. Lukyanov, and Y. Wu, Second-order gas slippage model for the Klinkenberg effect of 481 multicomponent gas at finite Knudsen numbers up to 1, Fuel, vol.235, pp.1275-86, 2019.

V. Gaganis and N. Varotsis, Machine Learning Methods to Speed up Compositional Reservoir 491

, Society of Petroleum Engineers, Simulation. SPE Eur. Annu. Conf, 2012.

V. Gaganis and N. Varotsis, An integrated approach for rapid phase behavior calculations in 494 compositional modeling, J Pet Sci Eng, vol.118, pp.74-87, 2014.

A. Kashinath, M. L. Szulczewski, and A. H. Dogru, A fast algorithm for calculating isothermal phase 496 behavior using machine learning, Fluid Phase Equilib, vol.465, pp.73-82, 2018.

E. M. Tipping, The relevance vector machine, 12th Int. Conf. Neural Inf. Process. Syst, pp.652-660, 1999.

E. A. El-sebakhy, Forecasting PVT properties of crude oil systems based on support vector 501 machines modeling scheme, J Pet Sci Eng, vol.64, pp.25-34, 2009.

S. Rafiee-taghanaki, M. Arabloo, A. Chamkalani, M. Amani, M. H. Zargari et al.,

, Implementation of SVM framework to estimate PVT properties of reservoir oil, Fluid Phase 504 Equilib, vol.346, pp.25-32, 2013.

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Min Knowl, vol.506, pp.121-67, 1998.

K. Kobayashi and F. Komaki, Information criteria for support vector machines, IEEE Trans Neural 508 Networks, vol.17, pp.571-578, 2006.

B. Schölkopf and A. J. Smola, Learning with kernels : support vector machines, regularization, 510 optimization, and beyond, 2002.

V. Vapnik, The Nature of Statistical Learning Theory, 2000.

R. B. Gharbi, M. Adel, A. Elsharkawy, and M. Karkoub, Universal Neural-Network-Based Model for 513 Estimating the PVT Properties of Crude Oil Systems, 1999.

M. Kamyab, J. H. Sampaio, F. Qanbari, and A. W. Eustes, Using artificial neural networks to estimate the 515 z-factor for natural hydrocarbon gases, J Pet Sci Eng, vol.73, pp.248-57, 2010.

M. Nikravesh, F. Aminzadeh, and L. A. Zadeh, Soft computing and intelligent data analysis in oil 27 reservoirs, 2015.

Y. Wu and . Msflow, Multiphase Subsurface Flow Model of Oil. Gas and Water in Porous and 522

, Fractured Media with Water Shutoff Capability, Documentation and User's Guide, 1998.

T. N. Narasimhan and P. A. Witherspoon, An integrated finite difference method for analyzing fluid flow 525 in porous media, Water Resour Res, vol.12, pp.57-64, 1976.

M. Larsbo, S. Roulier, F. Stenemo, R. Kasteel, and N. Jarvis, An Improved Dual-Permeability Model of 527

, Water Flow and Solute Transport in the Vadose Zone, Vadose Zo J, vol.4, 2005.

S. Wang, A. A. Lukyanov, ;. Wu, and . Yu-shu, Application of algebraic smoothing aggregation two level 530 preconditioner to multiphysics fluid flow simulations in porous media, SPE Reserv. Simul. Conf, p.531

L. Wang, S. Wang, R. Zhang, C. Wang, Y. Xiong et al., Review of multi-scale and multi-533 physical simulation technologies for shale and tight gas reservoirs, J Nat Gas Sci Eng, vol.534, pp.560-78, 2017.

L. Wang, Y. Tian, X. Yu, C. Wang, B. Yao et al., Advances in improved/enhanced oil 536 recovery technologies for tight and shale reservoirs, Fuel, vol.210, pp.425-470, 2017.

D. B. Macleod, On a relation between surface tension and density, Trans Faraday Soc, vol.19, pp.38-539, 1923.

S. Sugden and . Vi, The variation of surface tension with temperature and some related functions, J, vol.541

, Chem Soc, Trans, vol.125, pp.32-41, 1924.

M. Sherafati and K. Jessen, Stability analysis for multicomponent mixtures including capillary 543 pressure, Fluid Phase Equilib, vol.433, pp.56-66, 2017.

D. Peng and R. Db, A new two-constant equation of state, J Ind Fng Chem J Phys Chem, vol.545

C. Ind-fng, Fundam J Agric Sci Van Stralen, S J 0. Lnt J Heat Mass Transf I O, vol.51, pp.385-546, 1972.

W. E. Lemmon, NIST Reference Fluid Thermodynamic and Transport Properties-REFPROP, vol.548

, Ver. 7.0. NIST Stand Ref Database, 2002.

M. L. Michelsen, The isothermal flash problem. Part I. Stability. Fluid Phase Equilib, vol.9, pp.1-19, 1982.

O. Orbach and C. M. Crowe, Convergence promotion in the simulation of chemical processes with 552 recycle-the dominant eigenvalue method, Can J Chem Eng, vol.49, pp.509-522, 1971.

H. H. Reamer and B. H. Sage, Phase equilibria in hydrocarbon systems, p.28

R. L. Iman and L. R. Iman, Large-scale machine learning with stochastic gradient descent, Proc

. Compstat', , pp.177-86, 2010.

F. Chollet and . Keras, , 2015.

L. Bottou, Stochastic gradient descent tricks, vol.565, pp.421-457, 2012.

J. E. Warren and P. J. Root, The Behavior of Naturally Fractured Reservoirs, Soc Pet Eng J, vol.567, pp.245-55, 1963.

J. R. Gilman and H. Kazemi, Improvements in Simulation of Naturally Fractured Reservoirs, Soc Pet, vol.569

J. Eng, , vol.23, pp.695-707, 1983.

K. T. Lim and K. Aziz, Matrix-fracture transfer shape factors for dual-porosity simulators, J Pet Sci Eng, vol.571, pp.169-78, 1995.

Y. Wu and K. Pruess, A multiple-porosity method for simulation of naturally fractured petroleum 573 reservoirs, SPE Reserv Eng, vol.3, pp.327-363, 1988.

Y. Wu and G. Qin, A generalized numerical approach for modeling multiphase flow and transport in 575 fractured porous media, Commun Comput Phys, vol.6, pp.85-108, 2009.

M. Delshad and G. Pope, Comparison of the three-phase oil relative permeability models