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Abstract 11 

The flash calculation with large capillary pressure often turns out to be time-consuming and 12 

unstable. Consequently, the compositional simulation of unconventional oil/gas reservoirs, where large 13 

capillary pressure exists on the vapor-liquid phase interface due to the narrow pore channel, becomes 14 

a challenge to traditional reservoir simulation techniques.  In this work, we try to resolve this issue by 15 

combining deep learning technology with reservoir simulation. We have developed a compositional 16 

simulator that is accelerated and stabilized by stochastically-trained proxy flash calculation.   17 

We first randomly generated 300,000 data samples from a standalone physical flash calculator. 18 

We have constructed a two-step neural network, in which the first step is the classify the phase 19 

condition of the system and the second step is to predict the concentration distribution among the 20 

determined phases. Each network consists of four hidden layers in between the input layer and the 21 

output layer. The network is trained by Stochastic Gradient Descent (SGD) method with 100 epochs.  22 

With given temperature, pressure, feed concentration pore radius, the trained network predicts 23 

the phases and concentration distribution in the system with very low computational cost. Our results 24 

show that the accuracy of the network is above 97% in the metric of mean absolute percentage error. 25 

The predicted result is used as the initial guess of the flash calculation module in the reservoir 26 

simulator. With the implementation of the deep learning based flash calculation module, the speed of 27 

the simulator has been effectively increased and the stability (in the manner of the ratio of 28 

convergence) has been improved as well.   29 

Keywords 30 
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1. Introduction 32 

The oil and gas stored in unconventional reservoirs has some unique transport mechanism and 33 

phase behavior, including the pore confine effect [1,2], the large capillary pressure effect [3,4], 34 

multiscale pore structures [5] and gas slippage effect [6–9]. Moreover, the prediction of the complex 35 
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phase behaviors in unconventional reservoirs requires compositional modeling, of which the flash 36 

calculation is an essential yet time-consuming portion. To improve the speed as well as the stability of 37 

the flash calculation, several techniques have been adopted, including reduction method [10], phase 38 

stability test [11] and so on. Recently, the fast-arising artificial intelligence (AI) techniques have drawn 39 

the attention of researchers. Particularly, the fast development of the optimization algorithm, as well as 40 

hardware infrastructure, have greatly promoted the advance of stochastic learning techniques. The 41 

rapid development of GPU enables the training of deep learning (DL) networks (also known as Artificial 42 

Neural Network (ANN)) [12]. There are several trials of combining AI with flash calculation. Gaganis et 43 

al. [13,14] are among the first to propose the application of neural network approach in developing 44 

proxy flash calculation.  In their work, support vector classifier (SVC) is used to conduct phase stability 45 

test and a single layer ANN network is used to replace the physical flash calculation for liquid-vapor 46 

phase equilibrium calculation. Kashinath et al. [15] further improved Gaganis et al.’s model by bringing 47 

out a novel framework to conduct an isothermal flash calculation. In their work, the relevance vector 48 

machine [16] is combined with an single-layer artificial neural network. The former technique is used to 49 

classify phase condition, while the latter is used to determine the concentration distribution. All these 50 

proxy models have shown sound accuracy and have been successfully implemented into reservoir 51 

simulators, improving the speed of compositional simulation. Moreover, El-Sebakhy [17] and Rafiee-52 

Taghanaki et al. [18] used the support vector machine technique [19–22] to predict the PVT properties 53 

of crude oil, including gas oil ratio, oil volume factor, density and so on. Artificial neural networks have 54 

also been used to predict the PVT behavior of crude oil [23] and gas mixtures [24]. Nikravesh et al. [25] 55 

reviewed the applications of artificial intelligence techniques in the exploration and development of 56 

petroleum reservoirs.  57 

In this work, we further extend the work listed above to the compositional simulation of 58 

unconventional reservoirs with large capillary pressure effect.  We have developed a deep-learning 59 

based flash calculation module (proxy flash calculation) for the prediction of phase behaviors of oil and 60 

gas in unconventional reservoirs. This proxy flash calculation adopts multi-layer fully connected layers 61 

to regress the training data. The input parameters of our model include pressure, temperature, feed 62 

concentration and pore radius. The accuracy of the network is above 97% in the metric of mean 63 

absolute percentage error. The proxy flash calculation module is used as a preconditioner of the 64 

physical flash calculation and has been implemented in a reservoir simulator. We have also compared 65 

the performance of the network with different number of hidden layers.  The novelty of this work lies in 66 

the implementation of the deep learning based flash calculation module as a preconditioner for both 67 

phase condition detection and concentration determination, which improves the speed as well as the 68 

stability of compositional simulation of unconventional reservoirs while maintaining the same results as 69 

physical flash calculation.  70 
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This paper is organized as follows. In Chapter 2, we present the physical flash calculation used 71 

to train the network. In Chapter 3, we describe the structure, training as well as results of our deep-72 

learning based flash calculation module. In Chapter 4, we describe the implementation of the 73 

developed module into an in-house reservoir simulator. In Chapter 5, we present the results of field 74 

scale reservoir simulation. In Chapter 6, we summarize and conclude this work.  75 

 76 

2. Forward modeling 77 

In this section, we briefly introduce the governing equations and flash calculation module used 78 

for the forward modeling. 79 

2.1. Flow governing equations 80 

The reservoir simulator used in this work is named as MSFLOW_CO2 [3,26,27]. 81 

MSFLOW_CO2 is a general three-dimensional reservoir simulator for the simulation of complex 82 

multiphase flow in porous media. Based on the law of mass conservation, the flow governing equations 83 

of MSFLOW_CO2 describe the transport of hydrocarbon components in a petroleum reservoir.  For a 84 

vapor-liquid compositional system with CN components, the mass conservation equation for component 85 

k is as below 86 

  ., , ., 1, ...... .. ,..rk k k
a C

K
S x K P g x q L G k N

t
 

     
 


   


  

               
 

                           1 87 

where  is the rock porosity.  is the phase index referring to the liquid (L) or vapor/gas (G) phase. S   88 

and  are the saturation and density of phase  , respectively. 
rK  ,  and P are the relative 89 

permeability, viscosity and pressure of phase  , respectively. Ka is the apparent permeability. While 90 

for the liquid phase, Ka is the same as the rock absolute permeability K∞., for the vapor phase, Ka= 91 

K∞(1+b/p), in which b is the Klinkenberg parameter. kx is the mole concentration of component k in 92 

phase  . g


is the gravity term and q is the sink/source term. In this work the pore compressibility is 93 

temporally ignored.  94 

In MSFLOW_CO2, Equation 1 is discretized and solved by the Integrated Finite Difference (IFD) 95 

method, the details of which can be found in Ref. [28]. The flow between the rock matrix and the 96 

fracture system is described by the dual-porosity model [29]. The nonlinear system resulted from the 97 

discritization of IFD is solved by Newton-Raphson’s approach. Within each nonlinear iteration, the 98 

resulted linear system is solved by a multiscale linear solver [30]. 99 
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2.2. Flash calculation with capillary pressure 100 

In a compositional reservoir simulator, given the pressure (P), temperature (T) and mole 101 

concentration of each component (zi), the flash calculation module predicts the phase condition as well 102 

as the concentration of each component in each phase.  103 

In this work, we consider a two-phase system with vapor (V) and liquid (L) phase. The mole 104 

concentration of a component in the vapor (gas) phase and in the oil (liquid) phase is denoted 105 

respectively as yi and xi. Meanwhile, the total mole concentration of the vapor phase and the oil phase 106 

is denoted as Vn and Ln respectively. We then have the following relationship.  107 

 Li Vi iz x n y n                                                                                                                                           2 108 

The phase behavior of fluids stored in unconventional reservoirs is unlike that in conventional 109 

reservoirs. In the narrow pores of unconventional reservoirs, the capillary pressure cP between phases 110 

can be no longer ignored [31,32]. For simplicity, in this work, the capillary pressure, which is the 111 

difference between the vapor pressure 
Vp  and the oil phase pressure 

Lp , is calculated as below, 112 

assuming the oil phase is the wetting phase.   113 

2V L VL
c

cos
P p p

r

 
                                                                                                                                3 114 

In the above equation, VL is the interfacial tension between the vapor phase and the liquid phase.  is 115 

the contact angle and r is the pore radius.  116 

VL is calculated using the model from the work of Macleod [33] and Sugden [34], as follows 117 

  ,
1 1

,

C C
L L V V L V

VL a a i a i i a

N N

i i
iP P x P y P




    
 

 
     

 
                                                                                  4 118 

where 
L and 

V is the molar density of the liquid phase and the vapor phase respectively. L
aP and V

aP119 

is the parachor for the liquid phase and the vapor phase respectively. ,a iP is the parachor of component 120 

i , the value of which is listed in Table A.2.  is a parameter that is by default set to be 3.6 [35].  121 

At the equilibrium condition, the fugacity of component i in the vapor phase 
v

if  and in the liquid 122 

phase 
l

if  should be equal, as    123 

v l
i if f                                                                                                                                                       5 124 

We introduce the fugacity coefficient of component i in the vapor phase and the liquid phase, as  125 
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Moreover, the equilibrium ratio is defined as 128 
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By combining Equation 5 and Equation 8 and considering the constraints that 
1 1 1

1
C C CN N N

i i i
i i i

z y x
  

      , 130 

we can derive the Rachford-Rice equation as  131 
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


                                                                                                                                  9 132 

In this work, Peng-Robin equation of state (PR-EOS) [36] without volume factor correction is used for 133 

the calculation of the PVT properties of oil and gas. PR-EOS is a widely adopted cubic equation of 134 

state. For phase   (vapor or liquid), the compressibility can be formulated as  135 

            2 33 2 2
1 3 2 0..... ,Z B Z A B B Z A B B B L V                                              10 136 

where the term A and B are defined as follows 137 

2 2
m pa

A
R T


                                                                                                                                                11 138 

mb p
B

RT


                                                                                                                                                  139 

12 140 

In the above equations, Z  is the compressibility of phase  . the terms ma and mb are defined as 141 

follows as 142 

1 1

C CN N

m i j ij
i j

a z z a
 

                                                                                                                                       13 143 

 144 

 1ij ij i i j ja k a a                                                                                                                                 14 145 
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  2
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i
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i

C
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b

P
                                                                                                                                         19 152 

where R is the gas constant.  is the acentric factor. ijk is the binary interaction coefficient between 153 

component i and the component j. CT  and CP is the critical temperature and critical pressure 154 

respectively. The critical properties for the hydrocarbon used in this work are from NIST data [37]. The 155 

lartest root of the cubic equation is assigned to the compressibility of the vapor phase, while the 156 

smallest root is assigned to the compressibility of the liquid phase. Based on the assumption of 157 

isothermal flash calculation, in PR-EOS, the fugacity coefficients are calculated as  158 

       
 
1 21 2

ln ln ln
2 2 1 2
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i
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                  
                                            20 159 

In the above equation, the term i is 160 

 1i j i j i j ij
j

x a a k                                                                                                                        21 161 

The initial guess of the equilibrium ratio 
0
iK  is calculated by Wilson’s equation 162 

 0 exp 5.37 1 1ci ci
i i

p T
K

p T


      
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                                                                                                          22 163 

Initially, the capillary pressure is set to be 0. 164 

Prior to the flash calculation, a Gibbs energy based phase stability test is performed to 165 

preliminarily determine the single phase region. The approach used here follows the work of Sherafati 166 

and Jessen [35]. The tangent plane distance (TPD) based on Michelsen’s formulation [38] is as follows 167 

     
1

, ,
CN

T T z z
T Ti i i

i

TPD z P P 


    Tz z z                                                                                                  23 168 

where z and Tz refers to the mole concentration of the feed and a trial phase, respectively. T
i and z

i is 169 

the fugacity of component i in the trial phase and the feed respectively. TP and zP is the trial phase 170 

pressure and the reference pressure respectively. By switching the variable ln lnT T
i iZ z k   where k is 171 

the reduced value of the tangent plane distance at the stational points of Equation 23, the above 172 

equation can be expressed as 173 
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   
1

1 ln ln ln ln ln ln 1
CN

T T z
T Ti Ti i i i

i

TPD Z Z P z P 


         Z                                                           24 174 

where i  and T
i denotes the fugacity coefficient of component i in the feed and the trial phase, 175 

respectively. Finding the stationary points of TPD is equivalent to solving the below equation 176 

 ln ln ln ln ln ln 0T T z
Ti i i iZ P z P                                                                                                  25 177 

The above equation is iteratively solved by an accelerated direct substitution approach based on 178 

dominant eigenvalue method, as described by Orbach and Crowe [39]. It should be noticed that, unlike 179 

the phase stability test without capillary pressure, the solution of Equation 25 should take the pressure 180 

difference between the trial phase and the feed into consideration, as T Z
CP P P   . The sign before 181 

the capillary pressure is positive if the trial phase is the non-wetting (vapor) phase and the feed is the 182 

wetting (liquid) phase. The sign is negative if the trial phase and the feed is wetting phase and non-183 

wetting phase respectively. 184 

Based on the solution of the Rachford-Rich equation and the capillary pressure equation, the 185 

fugacities, as well as densities of the fluids, are obtained. The algorithm iteratively tunes the solution to 186 

minimize the residual of the equilibrium ratio as well as the capillary pressure until certain criteria are 187 

satisfied. In this work, the criterion of the convergence of the equilibrium ratio is set as 188 

*
41 1.0

 
i

ii

K
e

K
                                                                                                                                     26 189 

where 
* iK is the equilibrium ratio solved at the previous iteration step. A flowchart of the K-value based 190 

flash calculation with capillary pressure effect is shown in Figure 1. The parameters, including binary 191 

interaction factor and parachor values, for the physical flash calculation are listed in Appendix A. As an 192 

example, the phase envelops of n-Decane-CO2 binary mixture with and without the capillary pressure 193 

are shown in Figure 2. Our results match well with experimental results [40]. 194 

 195 
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 196 
Figure 1 Flowchart of the K-value based flash calculation with capillary pressure effect.  197 

 198 
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 199 
Figure 2 Phase envelop of n-Decane-CO2 binary mixture at 71 °C. 200 

 201 
 202 

3. Proxy flash calculator 203 

3.1. General information 204 

In this work, we have developed a data-driven flash calculation module based on deep learning 205 

techniques to improve the speed and convergence performance of the flash calculation in the 206 

unconventional reservoirs. In the new framework, the initial guess of the flash calculation is obtained 207 

from a stochastically trained neural network instead of Wilson’s equation. We use deep-learning based 208 

stochastic training technique to develop the proxy simulator. We have trained a neural network, which 209 

has an input layer, an output layer, and four hidden layers. Within each layer, there are several neurons 210 

(elements). All neurons belonged to two neighboring layers are fully connected, as shown in Figure 3. 211 

The neural network adopts fully connected (dense) layers and is trained as a standalone 212 

module. Once trained, the neural network predicts the phase condition, capillary pressure as well as 213 

concentration distribution by simple interpolations. As will be shown in the later chapters, the accuracy 214 

of the developed network is above 97%. Therefore, a much more accurate initial guess for the flash 215 

calculation can be obtained. The fully connected layers are an imitation of human’s neural system. 216 

Each element within the network has one weight value and one bias value, indicating the ‘contribution’ 217 

of the element. In the fully connected layers, each element is connected to all elements belonged to its 218 

neighboring layers. Activation functions are used between layers. For a given set of input parameters, 219 

the network predicts the output results by interpolating from the weight values and the bias values. 220 

During the training process, the weight and the bias of the elements are optimized by certain 221 

optimization algorithms to achieve the best prediction. Then in the prediction step as shown in Figure 4, 222 



10   

the simulator only needs to load the trained weight and bias values into the memory and conduct 223 

simple interpolation, which is very cheap in terms of computational time.    224 

In this work, the training process consists of two steps. The first step, which is named the phase 225 

classification step, determines the phase condition of the system under the given condition. In the 226 

second step, which is named the concentration determination step, the phase ratio, component 227 

concentration, and capillary pressure are determined. The input parameters for both steps include 228 

pressure, temperature, feed concentration and pore radius. The input parameters are all normalized to 229 

[0,1] scale before being substituted into the network.  230 

 231 
Figure 3 Conceptual model of the fully connected neural network.  232 

 233 

Figure 4 Conceptual framework of the prediction step. 234 

 235 
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3.2. Phase classification 236 

The network for the phase classification step consists of six layers, including the input layer 237 

(layer 1), the output layer (layer 6) and four hidden layers (layer 2 to 5). The number of input 238 

parameters is 3cN  . The input parameters X  include the feed concentration, pressure, temperature, 239 

and pore radius. All input parameters are normalized to [0,1] scale. The dimension of layer 1 to layer 4 240 

is 64, and the dimension of the output layer is 3. Therefore, the network classifies the phase condition 241 

into three types, namely pure vapor phase (V), pure oil phase (L), and double phases (V+L).  242 

1, , , ,...,
c

T

NX P T r z z                                                                                                                                  27 243 

The activation function for layer 1 to 4 is ReLU function, as follows 244 

 
0 for 0

ReLU
for 0

x
x

x x


  

                                                                                                                   28 245 

The activation function for the output layer is Softmax function, as follows 246 

 

1

softmax
j

k

x

Kj
x

k

e
x

e





                                                                                                                            29 247 

where K is the total number of parameters and ex is the exponential function. A detailed structure of the 248 

network is as shown in Figure 5.  249 

 250 
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 251 

Figure 5 Structure of the fully connected neural network for the phase classification step. The 252 
numbers refer to the dimension of the layers.  253 

 254 

3.3. Concentration determination 255 

The network for the concentration determination step consists of six layers, including the input 256 

layer (layer 1), the output layer (layer 6) and four hidden layers (layer 2 to 5). The dimension, as well as 257 

physical meanings of the input parameters of this step, are the same as those of the phase 258 

classification step. The dimension of layer 1 to layer 4 is 64, and the dimension of the output layer is 259 

2 3cN  , including the capillary pressure CP , the vapor phase ratio Vn , the oil phase ratio Ln , and the 260 

component concentration in the vapor phase , 1,...,i cy i N  and oil phase , 1,...,i cx i N . The activation 261 

function for layer 1 to 4 is ReLU function, as shown in Equation 28. The activation function for the 262 

output layer is Sigmoid equation, as shown in Equation 30. 263 

  1
sigmoid

1 x
x

e


                                                                                                                               30 264 

A detailed structure of the network is as shown in Figure 6. 265 

 266 
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 267 
Figure 6 Structure of the neural network for the concentration determination step. The numbers 268 

refer to the dimension of the layers.  269 

 270 

3.4. Training 271 

We have investigated five cases with different combinations of hydrocarbon components. For 272 

each case, we use 300,000 training samples generated from the standalone flash calculation module 273 

described in Chapter 2. The samples are generated randomly using Latin Hypercube Sampling [41,42] 274 

technique. The range of the input parameters is listed in Table 1. 275 

 276 

Table 1 Range of the parameters of the training samples. 277 

 Unit Minimum Maximum 

Pressure MPa 1 80 

Temperature °C 40 100 

Pore radius nm 30 100 

Feed concentration dimensionless 0 1 

 278 

 279 
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We use stochastic gradient descent (SGD) algorithm [43] to train the network on Keras [44] with a GTX 280 

1080Ti GPU of 11 GB in memory. The algorithm of SGD can be briefly described as follows (Bottou 281 

2012). For an object function Q with the primary variable wof n dimensions,   282 

1

1
( ) ( )

n

i i
i

w
n 

  w                                                                                                                                 31 283 

Instead of optimizing all n dimensions at the same time, SGD randomly optimizes a randomly chosen 284 

group (batch) of the variables using gradient descent optimization, as below 285 

 1t t j tw w w                                                                                                                                  32 286 

where t is the number of iteration steps. j is the index of a batch.  is the learning rate. After the 287 

completion of one epoch, all the training samples are shuffled. Hence, the optimization of one high-288 

dimensional problem is effectively converted to the optimization of numerous low-dimensional 289 

problems. In this work, we have compared the choice of the learning rate. The optimal value is found to 290 

be 0.001. The neural network for the phase classification step and the concentration determination step 291 

is trained with 100 epochs, respectively. We use the mean absolute percentage error (MAPE) as a 292 

metric (loss function) during the training, which is defined as follows. 293 

1

100%
MAPE

N
i i

i i

A F

N A


                                                                                                                       33 294 

In the above equation, N refers to the number of testing samples. A and F refer to actual value and 295 

predicted (forecast) value, respectively. The accuracy of the training sample is cross validated by K-296 

folds approach. The training samples are randomly divided into ten groups. For every ten epochs of the 297 

training, one group is chosen for testing and the rest of the nine groups are used for training. The 298 

variation of the loss function during the training process for Case 5 is shown in Figure 7. The error 299 

metric for each of the five cases is listed in Table 2. According to the results, the accuracy of our neural 300 

network is above 97% for the cases we run. We have compared the accuracy of the network with 301 

different number of hidden layers and found out network with four hidden layers achieves optimal 302 

performance. Generally speaking, more hidden layers (with more degree of freedom) result in deeper 303 

network and better accuracy. However, beyond a certain level the addition of more layers cannot 304 

contribute to accuracy and may even cause over-fitting issue [12]. We have also compared the 305 

performance of different activation functions for the hidden layers, including sigmoid function (as 306 

defined in Equation 30), tanh function [12] and ReLU function (as defined in Equation 28) for Case 4. 307 

The results are listed in Figure 9, which shows that ReLU function achieves the highest accuracy. 308 

However till today the choice of activation function as well as the number of layers is still like an art.  309 

Moreover, as expected when the number of hydrocarbon components increases, the accuracy 310 

decreases accordingly, due to the increase of the dimensions in the parameter space. In general, the 311 

proxy flash calculator based on deep learning techniques is much more accurate than any other 312 
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existing techniques.  313 

 314 

 315 

Table 2 Summary of errors of the fully connected network. 316 

  
Phase 

Classification 
Concentration 
Determination 

Overall 
Accuracy 

Case 
index 

Feed component 

Mean 
Absolute 

Percentage 
Error 

Mean Absolute 
Percentage 

Error 

Mean 
Absolute 

Percentage 
Accuracy 

1 C1+C2+C3 0.01% 0.46% 99.53% 

2 C1+C2+C3+C6 0.02% 0.73% 99.25% 

3 C1+C2+C3+C4+C5 0.02% 1.02% 98.96% 

4 C1+C2+C3+C5+C7+C9 0.04% 1.86% 98.10% 

5 
C1+C2+C3+C4+C5 

C8+C9+C10 
0.06% 2.24% 97.83% 

 317 

 318 

 319 

Figure 7 Variation of the loss function of the phase classification step during the training 320 

process of Case 4. 321 
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 322 

Figure 8 Comparison of the accuracy with different number of hidden layers for Case 4. 323 

 324 

 325 

Figure 9 Comparison of the performance of different activation functions for the hidden layers 326 
in Case 4. 327 

 328 

 329 
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4. Deep learning based flash calculator 330 

The trained deep learning (DL) network is implemented in our flash calculation module. The 331 

proxy flash calculator provides the initial guess of the equilibrium ratio as well as the capillary pressure, 332 

replacing Wilson’s equation. Since the phase classification step is of very high accuracy, the phase 333 

condition predicted by that step is adopted as the ‘final’ result. Therefore, if the phase classification step 334 

predicts that only one phase exists in the system, the DL proxy calculator directly outputs the results. If, 335 

however, the phase classification step predicts that two phases exist in the system, the flash calculator 336 

will start the K-value based iteration using the predicted equilibrium ratio and capillary pressure, until 337 

global convergence.  A simplified and a detailed flowchart of the deep leaning based flash calculator 338 

are shown in Figure 10 and Figure 11 respectively. 339 

The comparison between the average number of iterations of the flash calculation with and 340 

without DL preconditioning is shown in Table 3. According to the comparison of the numerical 341 

performance, the number of iterations has been cut by above 50%. According to the results, DL based 342 

proxy calculation effectively reduces the number of iterations of flash calculation and, thus accelerates 343 

the reservoir simulation. 344 

Moreover, we have observed that DL based preconditioner effectively improves the stability 345 

(convergence) of flash calculation. The large capillary effect causes the flash calculation with Wilson’s 346 

initial guess to be difficult to get converged, which prohibits its applications. As shown in Table 4, with 347 

the implementation of the DL based preconditioner, the ratio of the converged flash calculations among 348 

the 300,000 data sets (parameters shown in Table 1) increases from 90% to above 98%. This is also 349 

because that the DL based preconditioner provides a much more accurate initial guess to the flash 350 

calculation, making it close enough to the real solution for the Newton-based algorithm to converge. 351 

 352 
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 353 
Figure 10 Flowchart of the proxy flash calculation in a reservoir simulator.  354 

 355 

 356 
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 357 
Figure 11 Flowchart of the deep leaning based flash calculator.  358 

 359 
 360 
 361 
 362 
 363 
 364 

Table 3 Comparison of the number of iterations with and without the number of deep-learning 365 
based preconditioner. 366 

Case  
index 

Feed component 
Iterations without DL 

preconditioner 
Iterations with DL 

preconditioner 

1 C1+C2+C3 3.7 1.3 

2 C1+C2+C3+C6 8.6 2.0 

3 C1+C2+C3+C4+C5 14.3 2.2 
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4 C1+C2+C3+C5+C7+C9 17.0 3.6 

5 C1+C2+C3+C4+C5 
C8+C9+C10 

25.8 4.5 

 367 
 368 

Table 4 Comparison of the ratio of convergence with and without the number of deep-learning 369 
based preconditioner. 370 

Case  
index 

Feed component 
Ratio of convergence 

without DL preconditioner 
Ratio of convergence 

with DL preconditioner 

1 C1+C2+C3 96.1% 99.4% 

2 C1+C2+C3+C6 94.9% 99.1% 

3 C1+C2+C3+C4+C5 93.4% 98.8% 

4 C1+C2+C3+C5+C7+C9 92.7% 98.5% 

5 C1+C2+C3+C4+C5 
C8+C9+C10 

91.3% 98.3% 

 371 

 372 

5. Case study 373 

We have implemented the deep-learning based flash calculator into our simulator 374 

MSFLOW_CO2 and have conducted several case studies to investigate the performance of the deep 375 

learning based compositional simulator. In this chapter, all numerical cases are executed by an Intel i7-376 

6700 processor with 3.40 GHz. We have investigated the compositional simulation of a fractured 377 

reservoir. The reservoir is naturally fractured. A horizontal well is drilled through the reservoir, and a 378 

hydraulic fracture is engineered within the reservoir, creating a stimulated reservoir volume (SRV) in the 379 

vicinity of the hydraulic fracture. The conceptual model of the problem is shown in Figure 12, in which 380 

the green and the orange part indicates the area within and outside the SRV, respectively.  381 

The natural fractured reservoir part and the SRV are both modeled as dual-porosity systems. In 382 

the dual-porosity system, the fracture network provides flow channel while the matrix rock stores the 383 

hydrocarbon. A ‘shape-factor’ [46–48] is used to quantify the flow between the matrix rock and the 384 

fracture network. Wu and Pruess [49] incorporated the shape factor into the integrated finite difference 385 

(IFD) framework. Therefore, in this work the single-continuum and dual-porosity model are both 386 

discretized using the same IFD approach, as suggested by Wu and Qin [50]. The length of the entire 387 

reservoir along x- and y- direction is 540m and the 400m, respectively, while the length of the SRV 388 

along x- and y-direction is 120m and 160m, respectively. The conceptual model of the case is shown in 389 

Figure 12. The relative permeability of the gas phase and the oil phase is modeled by the classic 390 
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Brooks-Corey model [51], as shown in Equation 34 and 35, where orS and grS refers to the residual 391 

saturation of the oil and gas phase, respectively. ,ro maxk  and ,rg maxk  refer to the maximum relative 392 

permeability of the oil and gas phase, respectively. on and gn  are two constants.  393 

, 1

on

o or
ro ro max

or gr

S S
k k

S S

 
     

                                                                                                                        34 394 

, 1

gn

g gr
rg rg max

or gr

S S
k k

S S

 
     

                                                                                                                        35 395 

  The initial distribution of components of this case is shown in Table 5.  The geomechanical 396 

impact is not considered in this case. The input parameters, including the rock properties, are listed in 397 

Table 6. We run this case with three different grid block sizes, namely 10 m*10 m, 8 m*8 m and 4 m*4 398 

m for 8 years. As the results, the oil pressure fields of the fracture system and the matrix rock at the 399 

end of the production are shown in Figure 13.  The comparison of the oil saturation fields of the matrix 400 

rock system at the end of the first year of production and at the end of the eighth year of production is 401 

shown in Figure 14. According to the results, the fractures in the vicinity of the hydraulic fracture get 402 

quickly drained by the production, while the pressure inside the matrix rock system declines much 403 

slower. As the pressure decreases, the gas phase expands and the oil saturation decreases.  404 

We compare three types of initialization strategy of the flash calculation, namely initializing by 405 

Wilson’s equation, initializing by the primary variable from the previous NR iteration step, and initializing 406 

by the DL preconditioner. In the second type, the initial guess of the equilibrium ration of the flash 407 

calculation is calculated by the primary variable of the last Newton-Raphson iteration step of the same 408 

grid block. In the second, the equilibrium ratio is obtained from the deep learning based proxy flash 409 

calculation module. The comparison of the CPU time of the three types with different grid block sizes is 410 

shown in Figure 15. According to Figure 15, the DL preconditioner effectively reduces the CPU time by 411 

about 10% to 12%, compared to initializing by the equilibrium ratio from the previous iteration step. The 412 

results presented in this case show that DL preconditioner is capable of accelerating the performance 413 

of large scale compositional simulation for unconventional reservoirs. 414 
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 415 

Figure 12 Conceptual model of the case study with the DL based reservoir simulator.  416 

 417 

 418 
Table 5 Initial distribution of components for deep learning based compositional reservoir 419 

simulation case.  420 

Component Formula Mole fraction 

Methane CH4 0.40 

Ethane C2H6 0.15 

Propane C3H8 0.15 

Butane   C4H10 0.05 

n-Pentane C5H12 0.05 

n-Heptane C7H16 0.20 

 421 

Table 6 Input parameters for fractured reservoir case. 422 

Property Value Unit 

Permeability of the matrix rock 0.1 μd 

Porosity of the matrix rock 0.01 dimensionless 

Permeability of the hydraulic fracture 100 md 

Porosity of the hydraulic fracture 0.2 dimensionless 

Permeability of the fractures in SRV 50 md 

Porosity of the fractures in SRV 0.1 dimensionless 

Permeability of the fractures outside SRV 20 md 
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Porosity of the fractures outside SRV 0.05 dimensionless 

Rock compressibility 0.0 dimensionless 

Initial pressure 21.2 MPa 

Initial temperature 120 °C 

Production pressure 10.2 MPa 

Pore radius 50 nm 

Residual gas saturation (Sgr) 0.1 dimensionless 

Residual oil saturation (Sor) 0.1 dimensionless 

Maximum gas relative permeability 

( ,rg maxk ) 
0.7 dimensionless 

Maximum gas relative permeability 

( ,ro maxk ) 
0.9 dimensionless 

 gn  2.0 dimensionless 

 on  2.0 dimensionless 

 423 

 424 

 425 
Figure 13 Comparison of the oil pressure fields of the matrix rock system and the fracture 426 

system at the end of the 8-years production. Left: matrix rock system. Right: fracture system.  427 
 428 

 429 

 430 
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 431 
Figure 14 Comparison of the oil saturation fields of the matrix rock system at the end of the first 432 

year of production and at the end of the eighth year of production. Left: end of the first year. 433 
Right: end of the eighth year. 434 

 435 
 436 

 437 
Figure 15 Comparison of the CPU time of the compositional reservoir simulation cases 438 

initialized with different initial guesses.  439 
 440 

 441 

6. Summary and Conclusion 442 

To sum up, we have developed a data-based proxy flash calculator to speed up the time-443 

consuming flash calculation. The proxy flash calculator adopts an initial guess obtained from the deep 444 

neural network, the accuracy of which is above 95%. With the implementation of the proxy calculator, 445 

the number of iterations of the flash calculation has been effectively reduced by about 50%. Moreover, 446 

the stability of the flash calculation has been improved by the DL based preconditioner, with the ratio of 447 

convergence increased from 90% to above 98% percent. This work is among the first trials in this area. 448 
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In the present work, the fully-connected neural network is used for the proxy flash calculator. In 449 

the future, other structures can also be tried and compared, for instance, the convolutional neural 450 

network and the recurrent neural network. Moreover, other portions of the simulator may also be 451 

accelerated by the deep learning techniques. For example, the wellbore flow part, which is a very time-452 

consuming simulation of multiphase flow, can also be replaced by a DL based proxy calculator. 453 

 454 
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 579 

 580 

Appendix A Parameters for flash calculation 581 

 582 
Table A.1 Parameters for the calculation of component properties 583 

 
Tc (K) Pc 

(MPa) 
w Mw 

(g·mol-1) 

a0 
(KJ·(kg·K)-1) 

a1 
(KJ·(kg·K)-1) 

CH4 190.56 4.599 0.0115 16.043 2.191 0.002672 

C2H6 305.32 4.872 0.0995 30.07 1.651 0.004384 

C3H8 369.83 4.248 0.1523 44.096 0.79 0.00468 

n-C4H10 408.14 3.648 0.2002 58.123 0.818 0.004255 

n-C5H12 469.7 3.37 0.2515 72.15 -0.218 0.001895 
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n-C6H14 507.6 3.025 0.3013 86.177 -0.491 0.007187 

n-C7H16 540.2 2.74 0.3495 100.204 -0.756 0.007811 

n-C8H18 568.7 2.49 0.3996 114.231 -0.989 0.00836 

n-C9H20 594.6 2.29 0.4435 128.258 -1.236 0.008951 

n-C10H22 617.7 2.11 0.4923 142.285 -1.465 0.009484 

CO2 304.3 7.39 0.2236 44.01 0.727 0.003722 

 584 

 585 
Table A. 2 Parachor values for all hydrocarbon components 586 

Component Parachor 

CH4 77.0 

C2H6 108.0 

C3H8 150.3 

n-C4H10 203.4 

n-C5H12 231.5 

n-C6H14 271.0 

n-C7H16 312.5 

n-C8H18 351.5 

n-C9H20 393.0 

n-C10H22 617.7 
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