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Abstract—New morphological descriptors of complex porous
networks are introduced and validated in this paper. These
descriptors are based on the concept of "reachable volume
fraction" here applied on multi-scale Boolean schemes; this
fraction is computable for percolating spheres using step by step
erosions of the porous network, providing information about the
percolation strength of spherical particles with increasing radius.
This process yields a critical radius, which, together with the
dynamic reachable volume fraction provide a characterization of
the porous media.
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I. INTRODUCTION

Critical percolation-threshold is a crucial morphological
descriptor for porous media in filtration systems and diphasic
materials in conductive devices [1], [2]. Several approaches
can be used to estimate this characteristic: probability
formalism [3], [4], topology [5] or excluded volume [6], [2]
for instance. It can be defined as a critical volume fraction
[7] for an infinite volume size [8].
We propose a complementary approach of the critical
percolation-threshold study, leading to new descriptors based
on the reachable volume fraction as a function of the radius
of a penetrating sphere. In this way, porous media may be
characterized by such a discrete curve or its critical point (last
one), that we will name descriptors in the sequel.
Firstly, we recall the link between these new descriptors
and the critical percolation-threshold. Then we focus on the
numerical study of single-scale Boolean schemes [9], [1],
[10], for which we have a reference value, with a potential
speed up of critical percolation-threshold computation. Finally
we apply our new characterization to complex multi-scale
Boolean schemes of platelets.

II. METHOD

Critical radius

For a Boolean scheme A, according to [11], the density
θ of objects A′ is given by:

1 − Vv = exp(−θ.V̄ (A′)) (1)

with Vv the volume fraction of A and V̄ (A′) the average
volume of objects A′. For a Boolean scheme of spheres of
radius R, V̄ (A′) = 4/3.π.R3.

Let Ad be a Boolean scheme defined as the dilation of A by
the ball B(r),

Ad = A⊕B(r) (2)

This dilated Boolean scheme is equivalent to a Boolean scheme
with a sphere of radius R+ r, i.e. V̄ (A′

d) = 4/3.π.(R+ r)3.
Let Vv,d be the volume fraction of the Boolean scheme Ad
defined as

1 − Vv,d = exp(−θ.V̄ (A′
d)) (3)

Using (1) and the expressions of V̄ (A′) and V̄ (A′
d) we can

express Vv,d as a function of Vv

1 − Vv,d = exp

(
ln(1 − Vv).
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where α =

(
R+ r

R

)3

.

Henceforth a limit value of r that we called the critical
radius rc can be obtained when Vv,d is equal to the critical
percolation-threshold ρc.

1 − ρc = exp

(
ln(1 − Vv).
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(5)

The critical radius rc is then defined by

rc = ( 3
√
β − 1).R (6)

where β =
ln(1 − ρc)

ln(1 − Vv)
.

Assessment of the critical percolation-threshold

As in [1], [10], we consider that a realization percolates
when there exists at least one connected component connect-
ing two parallel faces of a representative cube. The critical
percolation-threshold ρc is numerically computed in [1] by
dichotomic search. Several set of 2N realizations of Boolean
schemes are processed with different Vv . ρc is obtained as
the volume fraction of objects when exactly N realizations
percolate.
Our method avoids the dichotomic search and allows a time-
saving trick. N realizations of Boolean scheme are generated
and successive dilations applied on A′ increase Vv . The 3D
distance transform (see [12]) to which an increasing threshold
is applied, allows these dilations. ρc is then computed without



generation of new realizations with different Vv .
We assess ρc on 20 realizations of size 3003 of a single-scale
Boolean scheme of spheres with Vv = 0.5 and R = 10. We
obtain a critical percolation-threshold value equal to 0.914 for
the complementary set in close relationship with the reference
value 0.946 numerically found in [13]. This discrepancy finds
its origin in the low precision computation due to the small
ratio: volume size/(R+ r)(this ratio is equal to 30, whereas it
is 400 in [13]).

Numerical computation of the reachable volume fraction

Our quantitative approach of the percolation allows the
definition of new morphological descriptors. The computation
process is described. N realizations of single-scale Boolean
schemes of spheres with given Vv and R are generated. Let I
be one of these realizations. We focused in the percolation of
the complementary set Ic. We erode Ic by a spherical element
with increasing radius r and the reachable volume fraction Vr
is computed at each step. Vr is defined as the summation of the
volume fraction of all connected components which percolate,

Vr =
∑
i

V (CCi)/VT (7)

where CCi the ith percolating connected component, V (CCi)
its volume and VT the total volume. The term "reachable"
represents then the accessibility for spherical particle which
looks for percolating through the porous network. The
successive erosions, efficiently computed by means of a
geodesic distance map Dg [12] (threshold of Dg), allow the
simulation of a percolating sphere with increasing radius until
rc is reached. In practical the algorithm’s end is defined by
Vr equal to zero, the critical point is the coordinates which
precede this "limit". The numerical rc is the abscissa of this
critical point.
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Fig. 1: (a) Realization of a Boolean scheme of spheres with
R = 10 and Vv = 0.5 and (b) its complementary set.

III. RESULTS AND DISCUSSION

Single-scale Boolean scheme

First we assess the critical percolation-threshold ρc by
increasing the volume fraction Vv on single-scale Boolean
schemes of spheres. The reachable volume fraction Vr can be
computed until rc is reached in the vicinity of ρc = 0.946. We
applied our descriptors on Boolean schemes of spheres with
Vv = 0.7 and R = 10. The volumes generated have a size of

3003. For an aesthetic purpose Boolean schemes of spheres
with Vv = 0.5 and R = 10 are shown. Figure 1 presents a
realization of such a model and 2D slices of Ic and distance
map Dg used to calculate erosion are shown figure 2.

(a) (b)

Fig. 2: (a) 2D slices of Ic and (b) of the geodesic distance
map Dg for a realization with R = 10 and Vv = 0.5.

Computation of Vr as a function of r is presented in Table
I. The third line presents the evolution of Vv and shows its
increase until the vicinity of ρc.

r 0 1 2 3
Vr 0.30 0.16 0.09 0.05
Vv 0.70 0.78 0.85 0.91

TABLE I: Morphological descriptors of single-scale Boolean
schemes of spheres with Vv = 0.7 R = 10.

Our morphological descriptors are then applied on single-
scale Boolean schemes of sphero-cylinders. A sphero-cylinder
is a cylinder with two hemispherical caps at each end, thus
defined by two parameters L the length of the cylinder and
R the radius for the hemispheres. Volume fraction Vv and
average volume V̄ (A′) are assigned the same as the Boolean
scheme of spheres. Figure 3 presents a 3D image of one
realization and the comparison of the descriptors with the
previous scheme of spheres.

(a) (b)

Fig. 3: (a) Single-scale Boolean scheme realization of sphero-
cylinders with R = 5, L = 47 and Vv = 0.7 and (b) the
reachable volume fraction evolution for Boolean schemes of
spheres (Vv = 0.7) (red) and sphero cylinders (yellow).



The critical radius rc is equal to 2 and 3 for Boolean
schemes of sphero-cylinders and spheres respectively. This
difference results from the diameter of sphero-cylinders which
is bigger than the one of spheres for a same volume. Here
the diameter is defined as the maximal distance between
two points of the object. Moreover the decrease of Vr for
sphero-cylinder’s case is more important than for sphere.
Both descriptors discriminate the schemes.

Multi-scale Boolean scheme of aggregates of constant radius

We applied our descriptors on complex multi-scale
Boolean schemes of platelets’ aggregates presented by Figure
4 which can be used to simulate digital microstructures of
alumina catalysis supports [14].

(a) (b)

Fig. 4: (a) Multi-scale Boolean scheme of platelets with
the radius of aggregate’s spheres equals to 150 and (b) its
complementary set.

This kind of Boolean scheme are defined by several pa-
rameters: shape of platelets, size of aggregates (Ragg radius of
spheres), volume fraction of platelets inside (Vagg) and outside
the aggregates. As seen previously the accessibility for an
enlarging sphere is assessed and the reachable volume fraction
Vr is computed for two schemes differing by one parameter,
in this case Ragg . The first scheme presented Figure 4 is
generated with Ragg = 150. The second one has a radius of
aggregate’s spheres equal to 50. We compute the assessments
on N = 20 realizations for each scheme.

(a) (b)

Fig. 5: (a) Multi-scale Boolean scheme of platelets with radius
of aggregate’s spheres equals to 50 and (b) the reachable
volume fraction evolution for radius of aggregate’s spheres
equal to 50 (red) and 150 (yellow).

The critical radius rc is identical for both schemes and
equal to 8 (abscissa of the critical point of both curves
Figure 5). Nevertheless there is a noticeable difference in
the evolution of Vr on the graph Figure 5. Here the scalar
descriptor does not be enough to distinguish the structures
and the vectorial description is necessary.

IV. CONCLUSION

We have presented an original approach to percolation
which leads to new morphological descriptors. These descrip-
tors allow the quantification of the volume accessibility of
complementary set (here multi-scale Boolean schemes) ac-
cording to specific percolating spheres with increasing radius.
In a further work we will apply these new descriptors to the
characterization of real porous lattices of catalysts.
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