B. Moyse, Raschig ring HDS catalysts reduce pressure drop, Oil Gas J, p.82, 1984.

B. H. Cooper, B. B. Donnis, and B. Moyse, Hydroprocessing conditions affect catalyst shape selection, Oil Gas J, p.84, 1986.

S. Afandizadeh and E. Foumeny, Design of packed bed reactors: guides to catalyst shape, size, and loading selection, Appl. Therm. Eng, vol.21, pp.669-682, 2001.

J. S. Mohammadzadeh and A. Zamaniyan, Catalyst shape as a design parameterOptimum shape for methane-steam reforming catalyst, Chem. Eng. Res. Des, vol.80, pp.383-391, 2002.

A. Rakotonirina, Fluid-solid interaction in a non-convex granular media : application to rotating drums and packed bed reactors, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01483571

N. J. Mariani, C. Mocciaro, S. D. Keegan, O. M. Martínez, and G. F. Barreto, Evaluating the effectiveness factor from a 1D approximation fitted at high Thiele modulus: Spanning commercial pellet shapes with linear kinetics, Chem. Eng. Sci, vol.64, pp.2762-2766, 2009.

R. Aris, On shape factors for irregular particles -I: The steady state problem. Diffusion and reaction, Chem. Eng. Sci, vol.6, pp.262-268, 1957.

A. Attou, C. Boyer, and G. Ferschneider, Modelling of the hydrodynamics of the cocurrent gas-liquid trickle flow through a trickle-bed reactor, Chem. Eng. Sci, vol.54, pp.785-802, 1999.

S. Ergun, Fluid flow through packed columns, Chem. Eng. Prog, vol.48, pp.89-94, 1952.

F. Larachi, R. Hannaoui, P. Horgue, F. Augier, Y. Haroun et al., X-ray micro-tomography and pore network modeling of single-phase fixed-bed reactors, Chem. Eng. J, vol.240, pp.290-306, 2014.

P. C. Carman, Fluid flow through granular beds, Transactions-Institution of Chemical Engineers, vol.15, pp.150-166, 1937.

D. Nemec and J. Levec, Flow through packed bed reactors: 1. Single-phase flow, Chem. Eng. Sci, vol.60, pp.6947-6957, 2005.

F. Dorai, C. M. Teixeira, M. Rolland, E. Climent, M. Marcoux et al., Fully resolved simulations of the flow through a packed bed of cylinders: Effect of size distribution, Chem. Eng. Sci, vol.129, pp.180-192, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01151064

A. Donev, I. Cisse, D. Sachs, E. Variano, F. Stillinger et al., Improving the density of jammed disordered packings using ellipsoids, Science, p.990, 2004.

M. Ramaioli, L. Pournin, and T. M. Liebling, Vertical ordering of rods under vertical vibration, Phys. Rev. E, p.21304, 2007.

W. Man, A. Donev, F. Stillinger, M. Sullivan, W. Russel et al., Experiments on random packings of ellipsoids, Phys. Rev. Lett, 2005.

B. Saint-cyr, K. Szarf, C. Voivret, E. Azéma, V. Richefeu et al., Particle shape dependence in 2D granular media -CEGEO-shape Group, Europhys. Lett, p.44008, 2012.

S. R. Williams and A. P. Philipse, Random packings of spheres and spherocylinders simulated by mechanical contraction, Phys. Rev. E, p.51301, 2003.

F. Dorai, M. Rolland, A. Wachs, M. Marcoux, and E. Climent, Packing fixed bed reactors with cylinders: influence of particle length distribution, Procedia Eng, vol.42, pp.1335-1345, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00990268

B. D. Lubachevsky and F. H. Stillinger, Geometric properties of random disk packings, J. Stat. Phys, vol.60, pp.561-583, 1990.

C. Voivret, F. Radjai, J. Delenne, and M. S. Youssoufi, Space-filling properties of polydisperse granular media, Phys. Rev. E, p.21301, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00759644

P. A. Cundall and O. D. Strack, A discrete numerical model for granular assemblies, Geotechnique, vol.29, pp.47-65, 1979.

P. A. Cundall, Formulation of a three-dimensional distinct element model-Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol.25, pp.107-116, 1988.

A. Wachs, L. Girolami, G. Vinay, and G. Ferrer, Grains3D, a flexible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations, Powder Technol, vol.224, pp.374-389, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02171452

A. Rakotonirina and A. Wachs, Grains3D, a flexible DEM approach for particles of arbitrary convex shape -Part II: Parallel implementation and scalable performance, Powder Technol, vol.324, pp.18-35, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01857743

L. Seelen, J. Padding, and J. Kuipers, A granular Discrete Element Method for arbitrary convex particle shapes: Method and packing generation, Chem. Eng. Sci, vol.189, pp.84-101, 2018.

G. Nolan and P. Kavanagh, Random packing of nonspherical particles, Powder Technol, vol.84, pp.199-205, 1995.

A. D. Rakotonirina, J. Delenne, and F. Radjai, Wachs, A. Grains3D, a flexible DEM approach for particles of arbitrary convex shape -Part III: extension to non-convex particles modelled as glued convex particles, Comput. Part. Mech, vol.5, pp.1-30, 2018.

E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, A fast procedure for computing the distance between complex objects in three-dimensional space, IEEE J. Robot. Autom, vol.4, pp.193-203, 1988.

E. G. Gilbert and C. Foo, Computing the distance between general convex objects in three-dimensional space, IEEE Trans. Robot. Autom, vol.6, pp.53-61, 1990.

H. E. Sliney and C. Dellacorte,

, Contract/Grant number: RTOP 505-63-5A). Prepared for U.S. Department of Energy, Conservation and Renewable Energy, Office of Vehicle and Engine R&D, NAS 1, vol.15, p.106348, 1992.

R. Zou and A. Yu, Wall effect on the packing of cylindrical particles, Chem. Eng. Sci, vol.51, pp.1177-1180, 1996.

M. Leva and M. Grummer, Pressure drop through packed tubes. 3. Prediction of voids in packed tubes, Chem. Eng. Prog, vol.43, pp.713-718, 1947.

B. Partopour and A. Dixon, An integrated workflow for resolved-particle packed bed models with complex particle shapes, Powder Technol, vol.322, pp.258-272, 2017.

F. Dorai, L. Briquet, A. Hammouti, M. Rolland, and A. Wachs, Multi-Scale Simulation of Reactive Flow Through a Fixed Bed of Catalyst Particles, ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels, 2014.

N. Deen and J. Kuipers, Direct numerical simulation of fluid flow and mass transfer in dense fluid-particle systems, Ind. Eng. Chem. Res, vol.52, pp.11266-11274, 2013.

J. Lu, S. Das, E. Peters, and J. Kuipers, Direct numerical simulation of fluid flow and mass transfer in dense fluid-particle systems with surface reactions, Chem. Eng. Sci, vol.176, pp.1-18, 2018.

. .. , Contact force model parameters and estimate of contact features at v 0 = 2 m s ?1 . ? max denotes the theoretical maximum overlap of 2 rigid bodies and R e denotes the radius of a sphere of same volume as the particle, p.15