J. Lu, P. J. Liyanage, S. Solairaj, S. Adkins, G. P. Arachchilage et al., New surfactant developments for chemical enhanced oil recovery, J. Pet. Sci. Eng, vol.120, pp.94-101, 2014.
DOI : 10.1016/j.petrol.2014.05.021

B. Creton, C. Nieto-draghi, and N. Pannacci, Prediction of surfactants' properties using multiscale molecular modeling tools: A review, Oil Gas Sci. Technol. -Rev. IFP Energies nouvelles, vol.67, pp.969-982, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00815707

J. Salager, A. M. Forgiarini, and J. Bullón, How to attain ultralow interfacial tension and three-phase behavior with surfactant formulation for enhanced oil recovery: A review. Part 1. Optimum formulation for simple surfactantoil-water ternary systems, J. Surfactants Deterg, vol.16, pp.449-472, 2013.

M. Budhathoki, T. Hsu, P. Lohateeraparp, B. L. Roberts, B. J. Shiau et al., Design of an optimal middle phase microemulsion for ultra high saline brine using Hydrophilic Lipophilic Deviation (HLD) method, Colloids Surf. A: Physicochem. Eng. Aspects, vol.488, pp.36-45, 2016.

J. L. Salager, J. C. Morgan, R. S. Schechter, W. H. Wade, and E. Vasquez, Optimum formulation of surfactant/ water/oil systems for minimum interfacial tension or phase behavior, Soc. Pet. Eng. J, vol.19, pp.107-115, 1979.

E. J. Acosta, J. Yuan, . Sh, A. Bhakta, and . Sh, The characteristic curvature of ionic surfactants, J. Surf. Deterg, vol.11, pp.145-158, 2008.

C. Marliere, B. Creton, F. Oukhemanou, N. Wartenberg, T. Courtaud et al., Impact of live crude oil composition on optimal salinity of a surfactant formulation, Paper SPE 179792-MS presented at the SPE EOR Conference at Oil and Gas West Asia, p.179792, 2016.

F. Oukhemanou, T. Courtaud, M. Morvan, P. Moreau, P. Mougin et al., Alkaline surfactant-polymer formulation evaluation in live oil conditions: The impact of temperature, pressure and gas on oil recovery performance, Paper SPE 169130-MS presented at the SPE Improved Oil Recovery Symposium, pp.12-16, 2014.

A. , , p.169130

F. Bouton, M. Durand, V. Nardello-rataj, A. P. Borosy, C. Quellet et al., A QSPR model for the prediction of the fish-tail temperature of cie4/water/polar hydrocarbon oil systems, Langmuir, vol.26, pp.7962-7970, 2010.

T. Lukowicz, A. Benazzouz, V. Nardello-rataj, and J. Aubry, Rationalization and prediction of the equivalent alkane carbon number (EACN) of polar hydrocarbon oils with COSMO-RS r-moments, Langmuir, vol.31, pp.11220-11226, 2015.

T. Lukowicz, E. Illous, V. Nardello-rataj, and J. Aubry, Prediction of the equivalent alkane carbon number (EACN) of aprotic polar oils with COSMO-RS r-moments, Colloids Surf. A: Physicochem. Eng. Aspects, vol.536, pp.53-59, 2018.

J. L. Cayias, R. S. Schechter, and W. H. Wade, Modeling crude oils for low interfacial tension, Soc. Pet. Eng. J, vol.16, pp.351-357, 1976.
DOI : 10.2118/5813-pa

L. Cash, J. L. Cayias, G. Fournier, D. Macallister, T. Schares et al., The application of low interfacial tension scaling rules to binary hydrocarbon mixtures, J. Colloid Interface Sci, vol.59, pp.90336-90344, 1977.

B. Creton and P. Mougin, Equivalent alkane carbon number of live crude oil: A predictive model based on thermodynamics, Oil Gas Sci. Technol. -Rev. IFP Energies nouvelles, vol.71, p.62, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01395312

G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci, vol.27, pp.1197-1203, 1972.

A. Péneloux, E. Rauzy, and R. Fréze, A consistent correction for Redlich-Kwong-Soave volumes, Fluid Phase Equilib, vol.8, pp.80002-80004, 1982.

B. Creton, Chemoinformatics at IFP Energies nouvelles: Applications in the fields of energy, transport, and environment, Mol. Informatics, vol.36, pp.80096-80100, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01701705

A. R. Katritzky, M. Kuanar, S. Slavov, C. D. Hall, M. Karelson et al., Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction, Chem. Rev, vol.110, pp.5714-5789, 2010.

C. Nieto-draghi, G. Fayet, B. Creton, X. Rozanska, P. Rotureau et al., A general guidebook for the theoretical prediction of physicochemical properties of chemicals for regulatory purposes, Chem. Rev, vol.115, pp.13093-13164, 2015.
URL : https://hal.archives-ouvertes.fr/ineris-01855187

W. Wan, J. Zhao, J. H. Harwell, and B. Shiau, Characterization of crude oil equivalent alkane carbon number (EACN) for surfactant flooding design, J. Dispers. Sci. Technol, vol.37, pp.280-287, 2016.

D. M. Jewell, J. H. Weber, J. W. Bunger, H. Plancher, and D. R. Latham, Ion-exchange, coordination, and adsorption chromatographic separation of heavy-end petroleum distillates, Anal. Chem, vol.44, pp.1391-1395, 1972.

A. M. Kharrat, J. Zacharia, V. J. Cherian, and A. Anyatonwu, Issues with comparing SARA methodologies, Energy Fuels, vol.21, pp.3618-3621, 2007.

F. Behar, S. Roy, and D. Jarvie, Artificial maturation of a type I kerogen in closed system: Mass balance and kinetic modelling, Org. Geochem, vol.41, pp.1235-1247, 2010.

N. Aske, H. Kallevik, and J. Sjöblom, Determination of saturate, aromatic, resin, and asphaltenic (SARA) components in crude oils by means of infrared and near-infrared spectroscopy, Energy Fuels, vol.15, pp.1304-1312, 2001.

T. Fan and J. S. Buckley, Rapid and accurate SARA analysis of medium gravity crude oils, Energy Fuels, vol.16, pp.1571-1575, 2002.

D. Molina, U. N. Uribe, and J. Murgich, Correlations between SARA fractions and physicochemical properties with 1H NMR spectra of vacuum residues from colombian crude oils, Fuel, vol.89, pp.185-192, 2010.

A. Chamkalani, Correlations between SARA fractions, density, and RI to investigate the stability of asphaltene, Anal. Chem, p.219276, 2012.

M. Sinnathambi, C. , M. Nor, and N. , Relationship between SARA fractions and crude oil fouling, J. Appl. Sci, vol.12, pp.2479-2483, 2012.

S. Ashoori, M. Sharifi, M. Masoumi, M. Salehi, and M. , The relationship between SARA fractions and crude oil stability, Egypt. J. Pet, vol.26, pp.209-213, 2017.

S. Weigel and D. Stephan, Relationships between the chemistry and the physical properties of bitumen, Road Mater, vol.7, pp.1636-1650, 2018.

, Materials Studio. version 7.0, Accelrys Software Inc, 2014.

P. Gramatica, Principles of QSAR models validation: Internal and external, QSAR Comb. Sci, vol.26, pp.694-701, 2007.

K. Lin and L. I. , A concordance correlation coefficient to evaluate reproducibility, Biometrics, vol.45, pp.255-268, 1989.

N. Chirico and P. Gramatica, Real external predictivity of QSAR models: How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient, J. Chem. Inf. Model, vol.51, pp.2320-2335, 2011.

N. Chirico and P. Gramatica, Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection, J. Chem. Inf. Model, vol.52, pp.2044-2058, 2012.

D. P. Searson, D. E. Leahy, and M. J. Willis, GPTIPS: an open source genetic programming toolbox for multigene symbolic regression, Proceedings of the International MultiConference of Engineers and Computer Scientists 2010, pp.77-80, 2010.

D. P. Searson, Chapter GPTIPS 2: an open-source software platform for symbolic data mining, in: Handbook of genetic programming applications, pp.551-573, 2015.

A. H. Gandomi, A. H. Alavi, and C. Ryan, Handbook of genetic programming applications, 2015.

A. Tropsha, P. Gramatica, and V. K. Gombar, The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models, QSAR Comb. Sci, vol.22, pp.69-77, 2003.

A. Garg, A. Garg, and K. Tai, A multi-gene genetic programming model for estimating stress-dependent soil water retention curves, Comput. Geosci, vol.18, pp.45-56, 2014.

M. Mohamadi-baghmolaei, R. Azin, Z. Sakhaei, R. Mohamadibaghmolaei, and S. Osfouri, Novel method for estimation of gas/oil relative permeabilities, J. Mol. Liq, vol.224, pp.1109-1116, 2016.

A. Garg, A. Garg, K. Tai, and S. Sreedeep, Estimation of factor of safety of rooted slope using an evolutionary approach, Ecol. Eng, vol.64, pp.314-324, 2014.