G. Akiki, T. Jackson, and S. Balachandar, Pairwise interaction extended pointparticle model for a random array of monodisperse spheres, Journal of Fluid Mechanics, vol.813, pp.882-928, 2017.

F. Augier, F. Idoux, and J. Y. Delenne, Numerical simulations of transfer and transport properties inside packed beds of spherical particles, Chemical Engineering Science, vol.65, pp.1055-1064, 2010.

F. Augier, A. Koudil, A. Royon-lebeaud, L. Muszynski, and Q. Yanouri, Numerical approach to predict wetting and catalyst efficiencies inside trickle bed reactors, Chemical Engineering Science, vol.65, pp.255-260, 2010.

I. Calmet and J. Magnaudet, Large-eddy simulation of high-schmidt number mass transfer in a turbulent channel flow, Physics of Fluids, vol.9, pp.438-455, 1997.

R. Clift, J. R. Grace, and M. E. Weber, Bubbles, drops, and particles, 2005.

C. Dan and A. Wachs, Direct numerical simulation of particulate flow with heat transfer, International Journal of Heat and Fluid Flow, vol.31, pp.1050-1057, 2010.

N. G. Deen, E. Peters, J. T. Padding, and J. Kuipers, Review of direct numerical simulation of fluid-particle mass, momentum and heat transfer in dense gas-solid flows, Chemical Engineering Science, vol.116, pp.710-724, 2014.

F. Dorai, C. Moura-teixeira, M. Rolland, E. Climent, M. Marcoux et al., Fully resolved simulations of the flow through a packed bed of cylinders: Effect of size distribution, Chemical Engineering Science, vol.129, pp.180-192, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01151064

F. Duarte, R. Gormaz, and S. Natesan, Arbitrary lagrangian-eulerian method for navier-stokes equations with moving boundaries, Computer Methods in Applied Mechanics and Engineering, vol.193, pp.4819-4836, 2004.

Y. Haroun, D. Legendre, and L. Raynal, Volume of fluid method for interfacial reactive mass transfer: application to stable liquid film, Chemical Engineering Science, vol.65, pp.2896-2909, 2010.

H. H. Hu, N. A. Patankar, and M. Zhu, Direct numerical simulations of fluid-solid systems using the arbitrary lagrangian-eulerian technique, Journal of Computational Physics, vol.169, pp.427-462, 2001.

M. Kang, R. P. Fedkiw, and X. D. Liu, A boundary condition capturing method for multiphase incompressible flow, Journal of Scientific Computing, vol.15, pp.323-360, 2000.

A. Kapahi, J. Mousel, S. Sambasivan, and H. Udaykumar, Parallel, sharp interface eulerian approach to high-speed multi-material flows, Computers & Fluids, vol.83, pp.144-156, 2013.

R. H. Khiabani, Y. Joshi, and C. K. Aidun, Heat transfer in microchannels with suspended solid particles: lattice-boltzmann based computations, Journal of Heat Transfer, vol.132, p.41003, 2010.

H. Kruggel-emden, B. Kravets, M. Suryanarayana, and R. Jasevicius, Direct numerical simulation of coupled fluid flow and heat transfer for single particles and particle packings by a lbm-approach, Powder Technology, vol.294, pp.236-251, 2016.

H. Liu, S. Krishnan, S. Marella, and H. Udaykumar, Sharp interface cartesian grid method ii: A technique for simulating droplet interactions with surfaces of arbitrary shape, Journal of Computational Physics, vol.210, pp.32-54, 2005.

X. D. Liu, R. P. Fedkiw, and M. Kang, A boundary condition capturing method for poisson's equation on irregular domains, Journal of computational Physics, vol.160, pp.151-178, 2000.

J. Lu, S. Das, E. Peters, and J. Kuipers, Direct numerical simulation of fluid flow and mass transfer in dense fluid-particle systems with surface reactions, Chemical Engineering Science, vol.176, pp.1-18, 2018.

J. Magnaudet, M. Rivero, and J. Fabre, Accelerated flows past a rigid sphere or a spherical bubble. part 1. steady straining flow, Journal of fluid mechanics, vol.284, pp.97-135, 1995.

S. Marella, S. Krishnan, H. Liu, and H. Udaykumar, Sharp interface cartesian grid method i: an easily implemented technique for 3d moving boundary computations, Journal of Computational Physics, vol.210, pp.1-31, 2005.

J. C. Maxwell, W. Garnett, and P. Pesic, An elementary treatise on electricity, 2005.

C. Montero, A. Remiro, P. L. Benito, J. Bilbao, and A. G. Gayubo, Optimum operating conditions in ethanol steam reforming over a ni/la 2 o 3-?al 2 o 3 catalyst in a fluidized bed reactor, Fuel Processing Technology, vol.169, pp.207-216, 2018.

M. Rahmani and A. Wachs, Free falling and rising of spherical and angular particles, Physics of Fluids, vol.26, p.83301, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01085146

R. Ramachandran, C. Kleinstreuer, and T. Y. Wang, Forced convection heat transfer of interacting spheres, Numerical heat transfer, vol.15, pp.471-487, 1989.

W. Ranz and W. Marshall, Evaporation from drops, Chem. Eng. Prog, vol.48, pp.141-146, 1952.

S. Romkes, F. Dautzenberg, C. Van-den-bleek, and H. Calis, Cfd modelling and experimental validation of particle-to-fluid mass and heat transfer in a packed bed at very low channel to particle diameter ratio, Chemical Engineering Journal, vol.96, pp.3-13, 2003.

X. Shao, Y. Shi, and Z. Yu, Combination of the fictitious domain method and the sharp interface method for direct numerical simulation of particulate flows with heat transfer, International Journal of Heat and Mass Transfer, vol.55, pp.6775-6785, 2012.

Y. Shi, Z. Yu, and X. Shao, Combination of the direct-forcing fictitious domain method and the sharp interface method for the three-dimensional dielectrophoresis of particles, Powder technology, vol.210, pp.52-59, 2011.

M. Sulaiman, E. Climent, A. Hamoutti, and A. Wachs, Mass transfer towards a reactive particle in a fluid flow : numerical simulations and modeling, Chemical Engineering Science, vol.65, pp.1055-1064, 2018.

B. Sun, S. Tenneti, and S. Subramaniam, Modeling average gas-solid heat transfer using particle-resolved direct numerical simulation, International Journal of Heat and Mass Transfer, vol.86, pp.898-913, 2015.

B. Sun, S. Tenneti, S. Subramaniam, and D. L. Koch, Pseudo-turbulent heat flux and average gas-phase conduction during gas-solid heat transfer: flow past random fixed particle assemblies, Journal of Fluid Mechanics, vol.798, pp.299-349, 2016.

H. Udaykumar and L. Mao, Sharp-interface simulation of dendritic solidification of solutions, International journal of heat and mass transfer, vol.45, pp.4793-4808, 2002.

M. Uhlmann, An immersed boundary method with direct forcing for the simulation of particulate flows, Journal of Computational Physics, vol.209, pp.448-476, 2005.

A. Wachs, Rising of 3d catalyst particles in a natural convection dominated flow by a parallel dns method, Computers & Chemical Engineering, vol.35, pp.2169-2185, 2011.

A. Wachs, A. Hammouti, G. Vinay, and M. Rahmani, Accuracy of finite volume/staggered grid distributed lagrange multiplier/fictitious domain simulations of particulate flows, Computers & Fluids, vol.115, pp.154-172, 2015.

S. Whitaker, Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles, AIChE Journal, vol.18, pp.361-371, 1972.

J. Xia, K. Luo, and J. Fan, A ghost-cell based high-order immersed boundary method for inter-phase heat transfer simulation, International Journal of Heat and Mass Transfer, vol.75, pp.302-312, 2014.

Z. Yu, X. Shao, and A. Wachs, A fictitious domain method for particulate flows with heat transfer, Journal of Computational Physics, vol.217, pp.424-452, 2006.

, reactive spheres: mean surface concentration C s of sphere 2 as a function of Re in configuration A at ? = 0.1 and Sc = 1. Lines correspond to model and markers correspond to numerical simulation

, aligned reactive spheres: mean surface concentration C s of sphere 3 as a function of Re in configuration A at ? = 0.1 and Sc = 1. Lines correspond to model and markers correspond to numerical simulation, vol.3

, aligned reactive spheres: mean volume concentration C v of sphere 1 as a function of Re in configuration A at ? = 0.1 and Sc = 1. Lines correspond to model and markers correspond to numerical simulation, vol.3

, aligned reactive spheres: mean volume concentration C v of sphere 2 as a function of Re in configuration A at ? = 0.1 and Sc = 1. Lines correspond to model and markers correspond to numerical simulation, vol.3

, aligned reactive spheres: mean volume concentration C v of sphere 3 as a function of Re in configuration A at ? = 0.1 and Sc = 1. Lines correspond to model and markers correspond to numerical simulation, vol.3