A. Dechezleprêtre, M. Glachant, and Y. Ménière, The Clean Development Mechanism and the international diffusion of technologies: An empirical study, Energy Policy, vol.36, pp.1273-1283, 2008.

C. Bonnet, S. Carcanague, E. Hache, G. S. Seck, and M. Simoen, Vers une géopolitique de l'énergie plus complexe ? Une analyse prospective tridimensionnelle de la transition énergétique, IRIS (The French Institute for International and Strategic Affairs), Policy Research Working Paper, 2019.

R. Jaffe, J. Price, G. Ceder, R. Eggert, and T. Graedel, Energy Critical Elements: Securing Materials for Emerging Technologies, A Report by the APS Panel on Public Affairs & the Materials Research Society, 2011.

T. E. Graedel, On the Future Availability of the Energy Metals, Annual Review of Materials Research, vol.41, pp.323-335, 2011.

O. Vidal, Matières premières et énergie: les enjeux de demain, Collection Energie, 2018.

E. Hache, Do renewable energies improve energy security in the long run?, International Economics, vol.156, pp.127-135, 2018.

E. Hache, La géopolitique des énergies renouvelables : amélioration de la sécurité énergétique et / ou nouvelles dépendances ?, Revue Internationale et Stratégique, vol.101, pp.36-46, 2016.

B. Gleich, B. Achzet, H. Mayer, and R. A. , An empirical approach to determine specific weights of driving factors for the price of commodities-a contribution to the measurement of the economic scarcity of minerals and metals, Resources Policy, vol.38, pp.350-62, 2013.

, Minerals, Critical Materials And the U.S. Economy, Prepublication Version, 2008.

T. E. Graedel, E. M. Harper, N. T. Nassar, P. Nuss, and B. K. Reck, Criticality of metals and metalloids, Proceedings of the National Academy of Sciences of the United States of America, vol.112, pp.4257-4262, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01138486

L. Erdmann and T. E. Graedel, Criticality of non-fuel minerals: a review of major approaches and analyses, Environ. Sci. Technol, vol.45, pp.7620-7630, 2011.

B. Achzet and C. Helbig, How to evaluate raw material supply risks -an overview, Resources Policy, vol.38, pp.435-447, 2013.

T. E. Graedel and B. K. Reck, Six years of criticality assessments: what have we learned so far?, J. Ind. Ecol, vol.20, pp.692-699, 2016.

X. Du and T. E. Graedel, Global In-Use Stocks of the Rare Earth Elements: A First Estimate, Environmental Science & Technology, vol.45, pp.4096-4101, 2011.

T. G. Goonan, Rare Earth Elements -End Use and Recyclability. Scientific Investigations Report, pp.2011-5094, 2011.

A. Golev, M. Scott, P. D. Erskine, S. H. Ali, and G. R. Ballantyne, Rare earths supply chains: Current status, constraints and opportunities, Resources Policy, vol.41, pp.52-59, 2014.

, Assessment of the Methodology for Establishing the EU List of Critical Raw Materials, JRC Technical reports, 2017.

L. Baldi, M. Peri, and D. Vandone, Clean Energy Industries and Rare Earth Materials: Economic and financial issues, vol.66, pp.53-61, 2014.

E. M. Harper, Z. Diao, S. Panousi, P. Nuss, M. J. Eckelman et al., The criticality of four nuclear energy metals. Resources, Conseration and, Recycling, vol.95, pp.193-201, 2015.

E. M. Harper, G. Kavlak, L. Burmeister, M. J. Eckelman, S. Erbis et al., Criticality of the geological zinc, tin, and lead family, Journal of Industrial Ecology, vol.19, pp.628-644, 2015.

N. T. Nassar, X. Du, and T. E. Graedel, Criticality of the rare earth elements, Journal of Industrial Ecology, vol.19, pp.1044-1054, 2015.

V. Bach, N. Finogenova, M. Berger, L. Winter, and M. Finkbeiner, Enhancing the assessment of critical resource use at the country level with the SCARCE methodCase study of Germany, Resources Policy, vol.53, pp.283-299, 2017.

H. Hatayama and K. Tahara, Adopting an objective approach to criticality assessment: Learning from the past, Resources Policy, vol.55, pp.96-102, 2018.

K. Habib, L. Hamelin, and H. Wenzel, A dynamic perspective of the geopolitical supply risk of metals, Journal of Cleaner Production, vol.133, pp.850-858, 2016.

D. Rosenau-tornow, P. Buchholz, A. Riemann, and M. Wagner, Assessing the long-term supply risks for mineral raw materials-a combined evaluation of past and future trends, Resources Policy, vol.34, pp.161-175, 2009.

P. Buchholz, M. Liedtke, and M. Gernuks, Evaluating supply risk patterns and supply and demand trends for mineral raw materials: Assessment of the zinc market, Non-Renewable Resource Issues, 2012.

R. L. Moss, E. Tzimas, H. Kara, P. Willis, and J. Kooroshy, The potential risks from metals bottlenecks to the deployment of Strategic Energy Technologies, Energy Policy, vol.55, pp.556-564, 2013.

K. Roelich, D. A. Dawson, P. Purnell, C. Knoeri, R. Revell et al.,

K. , Assessing the dynamic material criticality of infrastructure transitions: A case of low carbon electricity, Applied Energy, vol.123, pp.378-386, 2014.

A. Beylot, D. Guyonnet, S. Muller, S. Vaxelaire, and J. Villeneuve, Mineral raw material requirements and associated climate-change impacts of the French energy transition by 2050, Journal of Cleaner Production, vol.208, pp.1198-1205, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01942977

A. Boubault, S. Kang, and N. Maizi, Closing the TIMES integrated assessment model (TIAM-FR) raw materials gap with life-cycle inventories, Journal of Industrial Ecology, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01652739

P. Viebahn, O. Soukup, S. Samadi, J. Teubler, K. Wiesen et al., Assessing the need for critical minerals to shift the German energy system towards a 39 high proportion of renewables, Renewable and Sustainable Energy Reviews, vol.49, pp.655-671, 2015.

D. García-gusano, D. Iribarren, M. Martín-gamboa, J. Dufour, K. Espegren et al., Integration of life-cycle indicators into energy optimisation models: the case study of power generation in Norway, Journal Cleaner Production, vol.112, pp.2693-2696, 2016.

H. E. Daly, K. Scott, N. Strachan, and J. Barrett, Indirect CO 2 emission implications of energy system pathways: linking IO and TIMES models for the UK, Environmental Science & Technology, vol.49, pp.10701-10709, 2015.

W. Mcdowall, B. Solano-rodriguez, A. Usubiaga, and J. Acosta-fernández, Is the optimal decarbonization pathway influenced by indirect emissions? Incorporating indirect life-cycle carbon dioxide emissions into a European TIMES model, Journal of Cleaner Production, vol.170, pp.260-268, 2018.

T. E. Graedel, R. Barr, C. Chandler, T. Chase, J. Choi et al., Methodology of metal criticality determination, Environ. Sci. Technol, vol.46, pp.1063-1070, 2012.

C. Helbig, L. Wietschel, A. Thorenz, and A. Tuma, How to evaluate raw material vulnerability , An overview, Resources Policy, vol.48, pp.13-24, 2016.

, Global EV Outlook 2018: towards crossmodel electrification, International Energy Agency IEA, 2018.

E. Hache, G. S. Seck, and M. Simoen, Electrification du parc automobile mondial et criticité du lithium à l'horizon 2050, 2018.

H. Vikström, S. Davidsson, and M. Höök, Lithium availability and future production outlooks, Applied Energy, vol.110, pp.252-266, 2013.

C. Grosjean, P. H. Miranda, M. Perrin, and P. Poggi, Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry, Renewable and Sustainable Energy Reviews, vol.16, pp.1735-1744, 2012.

G. Martin, L. Rentsch, M. Höck, and M. Bertau, Lithium market research -global supply, future demand and price development, Energy Storage Materials, vol.6, pp.171-179, 2017.
DOI : 10.1016/j.ensm.2016.11.004

A. Yaksic and J. Tilton, Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium, Resources Policy, vol.34, pp.185-194, 2009.

J. Speirs, M. Contestabile, Y. Houari, and R. Gross, The future of lithium availability for electric vehicle batteries, Renewable and Sustainable Energy Reviews, vol.35, pp.183-193, 2014.

S. Ziemann, D. B. Müller, L. Schebek, and M. Weil, Modeling the potential impact of lithium recycling from EV batteries on lithium demand: A dynamic MFA approach, Resources Conservation And Recycling, vol.133, pp.76-85, 2018.

X. Zeng, J. Li, and L. Liu, Solving spent lithium-ion battery problems in China: Opportunities and challenges, Renewable and Sustainable Energy Reviews, vol.52, pp.1759-1767, 2015.
DOI : 10.1016/j.rser.2015.08.014

C. Helbig, A. M. Bradshaw, L. Wietschel, A. Thorenz, and A. Tuma, Supply risks associated with lithium-ion battery materials, Journal of Cleaner Production, vol.172, pp.274-286, 2018.
DOI : 10.1016/j.jclepro.2017.10.122

X. Wang, G. Gaustad, C. W. Babbitt, and K. Richa, Economies of scale for future lithium-ion battery recycling infrastructure, Resources Conservation and Recycling, vol.83, pp.53-62, 2014.

X. Sun, H. Hao, F. Zhao, and Z. Liu, Tracing global lithium flow : A trade-linked material flow analysis, Resources, Conservation & Recycling 214, pp.50-61, 2017.
DOI : 10.1016/j.resconrec.2017.04.012

H. Hao, Z. Liu, F. Zhao, Y. Geng, and J. Sarkis, Material flow analysis of lithium in China, Resources Policy, vol.51, pp.100-106, 2017.

B. Kohl and L. Farthing, Material constraints to popular imaginaries: The extractive economy and resource nationalism in Bolivia, Political Geography, vol.31, pp.225-235, 2012.

J. Bates, An Evaluation of the Lithium Mining Environment in South America, 2016.

X. Zeng and J. Li, Implications for the carrying capacity of lithium reserve in China, Resources, Conservation and Recycling, vol.80, pp.58-63, 2013.

J. H. Miedema and H. C. Moll, Lithium availability in the EU27 for battery-driven vehicles: The impact of recycling and substitution on the confrontation between supply and demand until 2050, Resources Policy, vol.38, pp.204-211, 2013.

R. Loulou, U. Remme, A. Kanudia, A. Lehtila, and G. Goldstein, Documentation for the TIMES model, ETSAP, 2016.

M. Gargiulo, Getting started with TIMES VEDA, Version 2.7, 2009.

L. G. Fishbone, G. Giesen, G. Goldstein, H. A. Hymmen, K. J. Stocks et al., User.s Guide for MARKAL (BNL-51701), 1983.

R. Loulou and A. Kanudia, The MARKAL family of Models: Relevance to Global Environmental Analysis, Proc. of the CERI Environment-Energy Modelling Forum, 1997.

R. Loulou, G. Goldstein, and K. Noble, Documentation for the MARKAL family models, ETSAP, 2004.

E. Van-der-voort, E. Donni, C. Thonet, E. Bois-d'enghien, C. Dechamps et al., Energy Supply Modelling Package EFOM-12C, 1984.

R. Loulou and M. Labriet, ETSAP-TIAM: the TIMES integrated assessment model Part I: Model structure, Computational Management Science, vol.5, issue.2, pp.7-40, 2008.

Y. Lechon, H. Cabal, M. Varela, R. Saez, C. Eherer et al.,

T. Hamacherc and G. Tosato, A global energy model with fusion, Fusion Engineering and Design, pp.1141-1144, 2005.

K. Vaillancourt, M. Labriet, R. Louloua, and J. Waaub, The role of nuclear energy in long-term climate scenarios: An analysis with the World-TIMES model, Energy Policy, vol.36, pp.2296-2307, 2008.

F. Gracceva and P. Zeniewski, Exploring the uncertainty around potential shale gas development-A global energy system analysis based on TIAM, TIMES Integrated Assessment Model), Energy, vol.57, pp.443-457, 2013.

S. Selosse and O. Ricci, Achieving negative emissions with BECCS (bioenergy with carbon capture and storage) in the power sector, New insights from the TIAM-FR, vol.76, pp.967-975, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01069978

B. Van-der-zwaan, I. Keppo, and F. Johnsson, How to decarbonize the transport sector?, Energy Policy, vol.61, pp.562-573, 2013.

G. Anandarajah, W. Mcdowall, and P. Ekins, Decarbonising road transport with hydrogen and electricity: Long term global technology learning scenarios, international journal of hydrogen energy, vol.38, pp.3419-3432, 2013.

, International Energy Agency IEA, 2016.

, Renewable Power Generation, International Renewable Energy Agency IRENA, p.2017, 2018.

S. Schimpf, F. Sturm, V. Correa, B. Bodo, and C. Keane, The word of raw materials 2050: scoping future dynamics in raw materials through scenarios, vol.125, pp.6-13, 2017.

U. Remme, M. Blesl, and U. Fahl, Global resources and energy trade : An overview for coal, natural gas, oil and uranium, 2007.

E. Hache, G. S. Seck, and M. Simoen, What is the level of criticality of lithium for electrification of the global automobile fleet?, Fiche Panorama IFPEN (IFP Energies Nouvelles), 2018.

L. Li, F. Dababneh, and J. Zhao, Cost-effective supply chain for electric vehicle battery remanufacturing, Applied Energy, vol.226, pp.277-286, 2018.

M. Diao, Towards sustainable urban transport in Singapore: Policy instruments and mobility trends, Transport policy, 2018.

. Un-habitat, Planning and design for sustainable urban mobility: Global report on human settlements, 2013.

G. Santos, H. Behrendt, and A. Teytelboym, Part II: Policy instruments for sustainable road transport, Research in Transportation Economics, vol.28, pp.46-91, 2010.

M. Goletz, I. Feige, and D. Heinrichs, What drives mobility trends: results from case studies in Paris, Transportation Research Procedia, vol.13, pp.49-60, 2016.

U. Bardi, Extracting Minerals from Seawater: An Energy Analysis, vol.2, pp.980-992, 2010.

J. L. Mero, The Mineral Resources of the Sea, 1965.