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Résumé — Effets inertiels dans les écoulements diphasiques en fractures — Différents modèles de
description des écoulements diphasiques dans une fracture sont présentés : modèles du coefficient
d’inertie, de « passabilité » et de Lockhart-Martinelli. Ces modèles sont ensuite utilisés pour interpréter
des résultats expérimentaux obtenus avec un écoulement d’eau et d’air dans une fracture rugueuse. Il
apparaît que les coefficients de perméabilités relatives classiques Kr (sans terme d’inertie) ne dépendent
pas uniquement de la saturation mais également du rapport des débits des deux fluides. L’existence d’une
famille de courbes des Kr en fonction de la saturation à débit élevé peut être considérée comme un critère
de la manifestation des effets inertiels. En tenant compte des effets inertiels, les modèles du coefficient
d’inertie et de passabilité permettent de décrire correctement les résultats expérimentaux. Cependant, ces
modèles font intervenir quatre paramètres dont la détermination nécessite d’autres investigations. En
revanche, le modèle de Lockhart-Martinelli ne comporte que deux paramètres et peut être utilisé pour
prédire les résultats expérimentaux. Une relation empirique utilisée en génie chimique pour les milieux
poreux permet de prédire les résultats expérimentaux avec un écart relatif moyen inférieur à 20 %, sans
ajustement supplémentaire. Pour les trois modèles, l’utilisation du rapport des débits des fluides, plutôt
que la saturation, donne de meilleurs résultats. 
Mots-clés : écoulement diphasique, perméabilités relatives, effets inertiels, Forchheimer, coefficient d’inertie, passabilité, milieu
poreux, fracture.

Abstract — Inertial Effects in Two-Phase Flow through Fractures — Different approaches for 
modeling inertial effects during single-phase and two-phase flows through a fracture are presented: 
inertial factor, passability and Lockhart-Martinelli models. These different approaches are then used to
interpret experiments for air/water flow through a rough fracture. For these two-phase flow experiments,
the standard relative permeabilities (no inertial terms) are not only functions of the saturation but also of
the flow rate ratio. This family of curves at high velocity can be seen as a criterion for the presence of
inertial effects. By taking account of inertial effects, the inertial factor and passability models are similar
and provide a good representation of the experimental data. However, four unknown parameters must be
determined and the models cannot be used for prediction without further research. The Lockhart-
Martinelli approach has only two parameters to fit and can be used for prediction. An empirical law used
for porous media in chemical engineering agrees within 20% with air/water experiments without any
additional adjustment of parameters. For the three approaches, the use of the ratio of the flow rates as
variable instead of the saturation gives better results. 
Keywords: two-phase flow, relative permeabilities, inertial effects, Forchheimer, inertial factor, passability, porous media, fracture.
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INTRODUCTION

Multiphase flow of various fluids through fractured rocks is
involved in several industrial activities such as oil and gas
recovery, geothermal energy and storage of radioactive
wastes. In many cases, the fluids flow in very few open
fractures or porous layers with very high permeability and,
therefore, flow rates are high enough to generate inertial
effects. High flow rates of gas and liquids can also be found
in chemical engineering (trickle beds) and in problems
related to the cooling of debris after an accident in a nuclear
plant. The purpose of this paper is to review and discuss the
different approaches used to account for inertial flow during
multiphase flow through porous media and fractures.

The different approaches for modeling inertial effects
during the flow of a single-phase are first described. Then, a
generalization of these different models for two-phase flow is
proposed and the relationships between the models are
discussed. Finally, the various models are used to interpret a
set of experiments for air/water flow through a single rough
fracture.

1 SINGLE-PHASE FLOW

Single-phase flow in porous media is generally modeled using
Darcy’s law (Darcy, 1856) which is assumed to be valid as
long as the inertial forces are negligible compared to viscous
forces (Lindquist, 1933; Schneebeli, 1955; Hubbert, 1956;
Scheidegger, 1960; Chauveteau and Thirriot, 1967). The same
approach is also used for flow in fractures. For a horizontal
flow with no gravity effect, this law is written in the form:

(1)

where dP/dx is the pressure gradient, µ is the dynamic
viscosity, K is the permeability, and V is the superficial
velocity (flow rate per unit of section area). When inertial
forces cannot be neglected, the pressure gradient is
approximated by a quadratic function of the superficial
velocity. There are several empirical relationships that take
inertial effects into account (Bear, 1972; Dullien, 1992). In
petroleum engineering, the most commonly used is the
Forchheimer’s equation which includes an additional term
ß µV2 to account for inertial effects (Forchheimer, 1914):

(2)

where ρ is the fluid density and β is called the inertial factor
or the non-Darcy flow coefficient. In the nuclear industry, a
similar relationship uses the notion of passability factor η
(Buchlin and Stubos, 1987): 

(3)

In chemical engineering, the pressure drop with inertial
effects is generally related to the porosity ε of the medium
and to the average pore diameter d through the Ergun’s
equation (Ergun, 1952):

(4)

where A and B are both constants. The first term, which is
used to estimate the permeability, is also known as the
Kozeny-Carman’s equation in the petroleum literature
(Dullien, 1992):

(5)

Comparison of the inertial term in the three equations
leads to the following relationship:

(6)

Several studies were devoted to predicting the parameters
used in the previous relationships. In most of the studies
(Cornell and Katz, 1953; Bird, Stewart and Lightfoot, 1960;
Geertsma, 1974; Neasham, 1977; Noman and Archer, 1987),
the inertial factor β is essentially a function of geometrical
features of the medium (porosity, permeability, and rough-
ness). However, Tiss and Evans (1989) showed that β is also
a function of the fluid properties. Ergun (1952) proposed 
A = 180 and B = 1.8 as universal values. But other values of
A and B are also presented in the literature (Bear, 1972).
These various results show that the parameters related to
viscous and inertial effects cannot be predicted accurately.
They must be determined experimentally.

For flow in a fracture, the same approaches can be used.
However, the Ergun’s equation is not useful since it is
difficult to define an equivalent porosity for the fracture.

2 TWO-PHASE FLOW

Modeling two-phase flow in porous media and fractures is
based on the generalization of the single-phase flow
equations. The first two approaches, inertial factor and
passability, split the viscous and inertial effects. For both
models, the viscous effect is modeled using the concept of
relative permeability. A third approach, developed by
Lockhart and Martinelli (1949), considers globally viscous
and inertial effects. 

We first remind of the notion of relative permeability,
which is a generalization of Darcy’s equation (1) when
inertial forces are negligible compared to viscous forces:

(7)
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where subscripts L and G stand for liquid and gas, and Kr is
the relative permeability. Note that when capillary forces are
negligible, the pressure gradients in the two fluids are equal.
Consequently, dPL/dx = dPG/dx = dP/dx and KrL and KrG are
related to the superficial velocity ratio by:

(9)

Marle (1981) has established that the relative permeabilities
are functions of several dimensionless groups involving
properties of both the fluid and the medium. But, at least in
porous media, it is generally assumed that the Kr depends
essentially on the phase saturation. Several studies were
devoted to establishing relationships between relative
permeabilities and the saturation. The most commonly used
relationships for Kr in porous media are power laws (Corey,
1954):

(10)

(11)

In these relations, Se is the effective liquid-phase saturation
defined by:

(12)

where SL is the liquid-phase saturation and Sr the residual
saturation. In fact, the value of the exponent in Equations
(10) and (11) has been found to vary for different porous
media (Brooks and Corey, 1966).

2.1 The Inertial Factor Model

The inertial factor approach is based on the generalization of
Forchheimer’s equation (2) for the two fluids. It was
developed for petroleum engineering to describe two-phase
flow occurring in the near-wellbore region of high-capacity
gas reservoirs and it is also used for condensate reservoirs:

(13)

(14)

The above equations contain four unknown coefficients,
which are functions of saturation or velocities of the fluids:
the relative permeabilities KrL and KrG and the inertial
factors βL and βG. Few experimental studies were performed
in order to quantify βL and βG for fluids flowing simul-
taneously (Martins, Milton-Taylor and Leung, 1990; Ali,
McGauley and Wilson, 1997; Blom and Hagoort, 1998). So
far, there is no correlation proposed in the literature. Other
studies (Geertsma, 1974; Evans and Evans, 1986; Evans,

Hudson and Greenlee, 1987; Martins, Milton-Taylor and
Leung, 1990; Narayanaswamy, Sharma and Pope, 1998)
attempted to find βG when the gas is flowing while the liquid
remains immobile. The main correlation proposed in this
case is the correlation of Geertsma (1974), where S is
saturation and ε is porosity:

(15)

2.2 The Relative Passability Model

The relative passability approach is based on the generalization
of the passability (Eq. 3). It was developed for nuclear
engineering in connection with the prevention of accidents in
nuclear reactors (Buchlin and Stubos, 1987):

(16)

(17)

where Kr and ηr stand for the relative permeability and
passability, respectively. 

As for the β approach, there are four unknown
coefficients: KrL, KrG, ηrL, and ηrG. Some authors suggest
that the relative permeability and passability of each fluid
must be equal (Lipinski, 1982; Saez and Carbonnell, 1985;
Lee and Catton; 1984). Another hypothesis is to consider KrL

and KrG to be the relative permeabilities that can be obtained
in the viscous regime where inertial forces are negligible
compared to viscous forces (Turland and Moore, 1983;
Lipinski, 1981; Schulenberg and Muller, 1984). The main
correlations found in the literature for porous media are
presented in Table 1 and plotted in Figure 1. SL is liquid
saturation and Se is the effective saturation (Eq. 12)
calculated with a residual saturation equal to 0.17. To our
knowledge, there is no correlation of ηr for fractures. 

TABLE 1

Correlations for relative permeabilities and passabilities

KrL KrG ηrL ηrG

Lipinski (1980) S3
L 1 – 1.11 SL S3

L (1 – SL)3
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5

Lipinski (1982) S3
L (1 – Se)

3 S3
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Figure 1

Correlations of relative passabilities with the liquid-phase
saturation.

2.3 The Lockhart and Martinelli Model

This third approach does not use the terminology of relative
permeability. The Lockhart and Martinelli approach was
developed for two-phase flow in pipes and it is generally
used in chemical engineering to analyze and design
multiphase reactors (trickle bed reactors). Lockhart and
Martinelli (1949) defined the following parameters:

(18)

(19)

(20)

where dP/dx is the two-phase pressure gradient and dPLS/dx
and dPGS/dx are the single-phase pressure gradients of liquid
and gas, respectively, which would be obtained if each fluid
was flowing alone at the same superficial velocity as under
two-phase flow conditions. ΦL and ΦG are called the liquid
and gas multipliers, and χ the Martinelli parameter. It may
be noted that when inertial forces are negligible compared to
viscous forces, Darcy’s law gives the single-phase pressure
gradient for each fluid and, consequently, χ2 and X (Eq. 9)
are equal. The various relationships between ΦL (or ΦG) and
χ reported in the literature are in very good agreement
(Table 2 and Fig. 2). Using Figure 2, we can illustrate how
simple this approach is to use. The value of χ is determined
from single-phase flow experiments, say 10, for instance.
From the curve (or the table), we determine values ΦL = 1.6

and ΦG = 16. This means that the pressure drop during the
two-phase flow is 2.6 (= 1.62) times the pressure drop when
the liquid flows alone at the same velocity (or 260 times the
pressure drop when the gas flows alone). The pressure drop
for the single-phase flow must account for inertial effects,
using the Ergun’s equation or a measurement at the given
flow rate.

TABLE 2

Correlations for phase multipliers

Sato et al. (1973) ΦL = 1.3 + 1.85 χ–0.85 0.1 < χ < 20

Midoux, Favier  

and Charpentier (1976)
ΦL = 1 + χ–1 + 1.14 χ–0.54 0.1 < χ < 80

Rao, Ananth  
ΦL = 1 + 0.99 χ–1 + 1.14 χ–0.5

and Varam (1983)

Tosun  (1984) ΦL = 1 + χ–1 + 1.424 χ–0.576

Figure 2

Correlations of phase multipliers with the Martinelli parameter.

2.4 Discussion

The inertial factor and the relative passability approaches are
equivalent, with the obvious relationships: 

(21)

However, the ηr approach is more attractive because the
two terms Kr and ηr are more symmetrical, both increase
with saturation and range between 0 and 1. 

The weak point of these two approaches is that four
functions must be determined. Generally, a correlation is
assumed for Kr, and ηr (or β) is determined experimentally.
However, the result depends highly on the correlation chosen
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for Kr. For instance, the differences between the correlations
of ηr shown in Figure 1 are mainly due to the differences
between the correlations used for Kr. One possibility is to
assume that Kr and ηr have the same values for each phase.
This assumption is equivalent to using the Lockhart-
Martinelli approach:

(22)

On the other hand, the Lockhart-Martinelli approach has
fewer adjustable parameters and it is easy to use, whether the
inertial effects are negligible or not. In the first case, the
single-phase pressure gradient is given by Darcy’s law, and
comparison between the Lockhart-Martinelli and the Kr
approaches also leads to Equations (22). 

In the following section, we will test the different models
by using experimental results obtained with air and water
two-phase flow in an artificial rough fracture.

3 EXPERIMENTAL VALIDATION OF THE MODELS

The validity of the different models is tested with the results
reported in Fourar et al. (1993). 

Fourar et al. (1993) have studied the air-water two-phase
flow in a fracture consisting of two parallel glass plates 1 m
long and 0.5 m wide. The plates were artificially roughened
by gluing a single layer of 1-mm-diameter glass beads to
each plate. The injector consisted of 500 stainless steel tubes
with 1 mm outside diameter and 0.66 mm inside diameter.
Air and water were injected through alternating capillary
tubes to achieve uniform distribution of the inlet flow. For all
experiments, air was injected at a constant pressure and its
volumetric flow rate was measured by using a rotameter.
Water was injected by a calibrated pump. At the outlet of the
fracture, the gas escaped to the atmosphere and the water was
collected.

The fracture was initially saturated with water, which was
injected at a constant flow rate for each experiment. Air
injection was then started and increased stepwise. When the
steady state was reached for each flow rate, the pressure drop
was recorded and liquid volume fraction (saturation) was
determined from the volume of liquid displaced out of the
fracture. The saturation was measured by using a balance
method. Then, the fracture was re-saturated with water and
the experiment was repeated several times at different liquid
flow rates. Three sets of experiments were performed with
rough plates. However, as the results are qualitatively similar,
only one series of experiments is used for the test (aperture
equal to 1.3 mm). 

Single-phase flow results have shown that the inertial
forces were not negligible in these experiments. This
observation was confirmed by the fact that the relative
permeabilities calculated from the generalized Darcy’s 

Figure 3

Relative permeabilities versus liquid-phase saturation.

Figure 4

Relative permeabilities versus the parameter X.

equations (7) and (8) for various flow rates do not superpose
on a single curve either as function of saturation (Fig. 3) or X
(Eq. 9) in Figure 4. The presence of this family of curves
indicates the need for a model with an inertial contribution.

3.1 Modeling Relative Permeability

For fractures, Romm (1966) and Mahoney and Doggandt
(1997) showed that relative permeabilities were equal to fluid
saturations. However, other authors (Merrill, 1975; Kouamé,
1989; Fourar et al., 1993; Persoff and Pruess, 1995)
concluded that, due to the interaction between phases, the
sum of Kr is less than 1. To take this interaction into account,
Fourar and Lenormand (1998) proposed a simple model that
agrees with experiments performed without inertial effects.
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Their model takes into account the viscous coupling between
the fluids and leads to the following relationships: 

(23)

(24)

From Equations (9), (23) and (24), we can derive a
relationship between the liquid-phase saturation and the flow
rate ratio:

(25)

This “viscous coupling” model will be used to determine
the relative inertial factor and passability.

3.2 The Inertial Factor Model

We have seen that the inertial factor approach leads to
Equations (13) and (14) containing four unknown variables:
KrL, KrG, βL and βG. For a given flow rate, the KrL and KrG
are calculated using the “viscous coupling” model (Eqs. 23
and 24). Finally, βL and βG are calculated from their
definition (Eq. 13 and 14). They verify: 

(26)

The plot of βL and βG against the measured liquid-phase
saturation is presented in Figure 5. It can be seen that there
are several curves of βL and βG against SL. However, when
these factors are plotted against the parameter X in Figure 6,
it appears that they are a function of only the parameter X.
Thus, relationships between βL and βG and X can be obtained
by the least squares method as a power law:

(27)

(28)

The measured and the calculated pressure gradients using
these power laws are compared in Figure 7. In this case, the
mean relative error is 9%.

3.3 The Relative Passability Model

For this approach, it is also assumed that the relative
permeabilities are given by the viscous model. The relative
passabilities are then calculated from their definitions (Eqs.
16 and 17). They verify the following relationship:

(29)

Figure 5

Inertial factors versus liquid-phase saturation.

Figure 6

Inertial factors versus the parameter X.

Figure 7

Comparison between measured and calculated pressure
gradients using the inertial factor approach.
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which can be expressed as a function of the parameter X as
follows:

(30)

where ξ is a parameter depending on fluid properties:

(31)

For air and water, ξ is equal to 0.278.

Relative passabilities are first presented as a function of
the measured SL in Figure 8 and the parameter X in Figure 9.
As for β, experimental results show that ηrL and ηrG are not
only a function of the saturation. However, there is a unique
curve of ηr for each fluid against the parameter X. This curve
can be fitted by an empirical formula, which can be used in
numerical simulations. Considering that ηrL must be 0 when
X = 0 and that ηrG equals 1 when X tends to infinity, and
using the relationship between ηrG and ηrL (Eq. 29), we
propose the following expressions: 

(32)

(33)

where f(X) is a function of X alone. Figure 10 shows that f(X)
can be approximated by a power law:

(34)

Using the above equations, we are able to calculate the
pressure gradient for a given value of the flow rate ratio.
Thus, the calculated and the measured values of pressure
gradient are compared in Figure 11. In this case, the mean
relative error is only 7%.

Figure 8

Relative passabilities versus liquid-phase saturation.

Figure 9

Relative passabilities versus the parameter X.

Figure 10

Function f(X) defined by Equation (32) against the parameter X.

Figure 11

Comparison between measured and calculated pressure
gradients using the relative passability approach.
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3.4 The Lockhart-Martinelli Approach

The phase multipliers ΦL and ΦG are first plotted as a
function of saturation SL in Figure 12. Several curves are
obtained showing that the saturation is not the judicious
parameter to correlate the phase multipliers. The plot of ΦL
and ΦG against χ (calculated using the single-phase
experiments) is presented in Figure 13. The correlation of
Midoux, Favier and Charpentier (1976), which was obtained
for porous media (Table 2), is in good agreement with
experimental fracture results. This correlation was then used
to calculate pressure gradients, which were compared with
the measured values in Figure 14. For low values of the
pressure gradient, (dP/dx < 4 kPa·m-1) the correlation of
Midoux, Favier and Charpentier (1976) is in accordance with
experimental results. However, when the pressure gradient
increases, the calculated values are underestimated. The
mean relative error is 17%.

Figure 12

Phase multipliers versus liquid-phase saturation.

Figure 13

Phase multipliers versus the Martinelli parameter.

Figure 14

Comparison between measured and calculated pressure
gradients using the Lockhart and Martinelli approach.

CONCLUSION

We have reviewed three different approaches used to account
for inertial effects in two-phase flow through fractures:
inertial factor, passability and Lockhart-Martinelli models.
Using experimental results obtained with air and water in an
artificial rough fracture, we compared these approaches. The
main results are the following:
– the standard relative permeabilities (no inertial terms) are

not only functions of the saturation but also of the flow
rate ratio. This presence of a family of curves at high flow
rate can be seen as a criterion for the presence of inertial
effects;

– the inertial factor and passability models proposed to
account for inertial effects are similar and provide a good
fit of the experimental data. However, four functions must
be experimentally determined. Consequently, these models
cannot be used for predictions without further research; 

– the relative passability model has the advantage of being
dimensionless and of varying between 0 and 1 like the
relative permeability;

– the Lockhart-Martinelli approach which has the advantage
of using only two fitting parameters is more useful for
prediction. An empirical law used in chemical engineering
agrees within 20% with gas/liquid experiments without
any additional adjustment of parameters; 

– for the three approaches, the use of the ratio of the flow
rates as a parameter gives better results than saturation. 
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