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Résumé — Influence d’irrégularités dans l’échantillonnage des données sur la migration 3D par
déport — En sismique 3D, le déport est un vecteur caractérisé par la distance source-récepteur et par un
azimut. Les irrégularités d’acquisition (dérive de la flûte en sismique marine par exemple) font que l’on ne
peut véritablement disposer de données à déport constant et que, en conséquence, la notion même de
migration par déport perd tout sens. Il convient alors d’introduire la notion de migration par classe de
déports, qui constitue une extension naturelle de la migration à déport commun : dans cette extension, on
migre toutes les traces sismiques appartenant à une même classe de déports, c’est-à-dire toutes les traces
dont le déport est proche d’un déport donné. Le résultat dépendra, bien sûr, de la façon dont la classe de
déports aura été constituée ou, en d’autres termes, de ce que l’on entendra par « proche d’un déport donné ». 

Dans cet article, nous regardons, par le biais d’une étude numérique 3D, comment les classes de déports
doivent être construites si l’on veut que les images migrées soient dépourvues d’artéfacts susceptibles d’en
perturber l’interprétation (c’est sur cette interprétation que repose le succès des techniques d’analyse de
vitesse de migration). La construction de telles classes de déports revient à trouver un compromis entre :

– des classes de déports trop lâches, c’est-à-dire dans lesquelles des déports très différents (et no-
tamment des azimuts très différents) se trouveraient mélangés ;

– des classes de déports trop étroites, qui conduiraient à des traces sismiques très éparses avec, en
conséquence, une illumination inadéquate des réflecteurs.

La qualité des images migrées se trouve principalement affectée par deux paramètres caractéristiques de
la classe de déports : la régularité des variations du déport et la distribution des points milieux. La
migration par classe de déports apparaît comme une procédure robuste tant que, à l’intérieur d’une même
classe, le déport varie lentement en fonction du point milieu. Enfin, les artéfacts résultant du mixage des
azimuts sont d’autant moins importants que la distance moyenne source-récepteur est, à l’intérieur de la
classe de déports considérée, petite.
Mots-clés : sismique réflexion, acquisition sismique 3D, migration 3D avant sommation.

Abstract — Influence of Data Irregularities on 3D Common Offset Migration — In 3D seismics offset
is a vector characterized by the source-receiver distance and azimuth. Due to irregularities in the
acquisition (for instance streamer feathering in marine acquisition) common offset data are not available
and, in turn, 3D common offset migration does not make sense any longer. We then introduce the concept
of migration by offset class: it is a straightforward extension of common offset migration in which we
migrate all traces that belong to a given offset class, namely all traces with offset close to a given one.
The result of such a migration depends of course on how the offset class is constructed or, in other
words, on what is meant with “close”.
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INTRODUCTION

For the seismic imaging of complex geological structures
(i.e. structures involving strong lateral velocity variations) the
KIM’s consortium (Kinematic Inversion Methods) proposes
the SMART (Sequential Migration Aided Reflection
Tomography) approach (Lailly and Ehinger, 1991; Ehinger
and Lailly, 1995). This migration velocity analysis technique
uses a detour through the prestack depth migrated domain for
accessing multi-offset kinematical information hardly
accessible in the time domain.

In 3D, such a method, as well as all other migration
velocity analysis methods, relies on a sound interpretation of
3D offset migrated images. However, because of irregularities
in seismic data acquisition (e.g. streamer feathering), seismic
traces associated with a given offset are very few in general:
by offset we mean here (and all along this paper) the vector
characterized by the source-receiver distance and azimuth.
As a consequence, a genuine common offset migrated image
would involve important artifacts resulting from an important
lack of illumination.

The goal of this paper is to determine how to produce nice
(i.e. well suited for an interpretation) migrated images in the
case of irregularities in the seismic acquisition.

1 COMMON OFFSET MIGRATION

In a 3D situation, any source-receiver pair can be identified
by an offset and a midpoint , which are defined by: 

(1)

(2)

where vectors and characterize the locations of the
source and the receiver, respectively.

For a given velocity field v, the migrated image at a
subsurface point M for offset is defined by superposition

of elementary migrated images associated with all

source-receiver pairs (S, R) with offset . We consider in
this paper the simplest superposition, namely the diffraction
stack formula (Schneider, 1978): 

(3)

where the elementary migrated image is defined as: 

(4)

where

is the seismic trace associated with the source receiver pair
(S, R) and tm is the traveltime from S to M to R in the velocity
field v.

Note that, if the midpoints are adequately sampled,
Equation (3) can be viewed as a discrete version of integral: 

(5)

where (qx, qy) are the midpoint coordinates.
Considering an event with a single arrival time ,

use of the stationary phase method (see for instance Bleistein,
1984) yields the location of the support of the offset migrated
event by the following system: 

(6)

where (sx, sy) are the source coordinates.
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The aim of this paper is to investigate by means of a 3D numerical study how to design offset classes so
as to obtain migrated images that can be interpreted without trouble (such an interpretation is a key
element for a successful migration velocity analysis). We have to find a trade-off between two extremes:
– a too loose offset class that would mix heterogeneous offsets (in particular mixing substantially

different azimuths can be dangerous); 
– a too narrow offset class that would result in sparse seismic traces with, in turn, an inadequate

coverage of the reflector.
The regularity, within an offset class, of the offset variation as well as the one of the distribution of
midpoints are parameters that can have a drastic influence on the quality of the migrated image. It is
shown that migration by offset class appears as a robust procedure all the more than the offset varies
slowly with the midpoint coordinate within an offset class. Besides, the smaller the mean offset norm, the
lower is the contamination of the image due to the mixing of azimuths within an offset class.
Keywords: reflection seismology, 3D seismic acquisition, 3D prestack migration.
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Figure 1

Construction of the offset migrated event in 2D. 

(a) The traveltime te(s, s + h0) defines the isochron, which is
the ellipse (for a homogeneous velocity field) with focal
points S and R. 

(b) The geometry of the migrated event is the envelope of the
isochrons associated with each source-receiver pair.

This mathematical result can be interpreted as follows: for
a given source-receiver pair, the first equation defines an
isochron surface, i.e. a set of points M which are possible
diffraction points (for a homogeneous velocity field, an
isochron is an ellipsoid). Together with the second equation,
System (6) defines the geometry of a migrated event as the
envelope of the family, parameterized by , of isochrons.
This holds as well for the exact as for an erroneous migration
velocity field (Figs. 1a and 1b).

This theory can be experimentally confirmed by running
3D common offset migrations, with different migration
velocities, on 3D regular synthetic data. For this experiment,
the 3D two-layer model described in Figures 2a and 2b has
been created: the interface shows a relatively high curvature
and extends from –3 to 21 km in the x direction, –4 to 16 km
in the y direction. The interface, explicit in the z direction, is
represented by 60 × 40 B-spline parameters. Above the
interface the velocity field is constant: v = 3.0 km/s.

The survey involves regularly distributed midpoints with a
50 m spacing both in the x and y directions, a fixed azimuth
α = 0 (α being the angle between the direction of the offset
and the x axis) and a constant source-receiver distance =
3000 m (source locations are displayed in Figure 3a)1. The
seismic traces are generated by our two-point ray tracing
software Jerry (Jurado et al., 1996) which provides quite 

(1) The choice to lead the study principally with a large offset norm has
been made because, as it is shown in Figure 17 for instance, the
contamination of the image due to offset fluctuations is stronger for
large than for small offset norms.

accurate reflection traveltimes when the velocity is constant.
These times are then convolved by a seismic wavelet, a
Ricker centered on 25 Hz, so as to produce seismic traces.
We have computed the migrated data (with a classical
diffraction stack algorithm) on a cube which extends from
3.5 to 11 km in the x direction and from 4 to 6 km in the y
direction. 

For the exact velocity, as predicted by the theory, the
migrated event is the one that peaks on the reflector of the
model (Figs. 4a and 4b). There are also artifacts often
referred to migration smiles (events 1 and 2) and which are
due to the finite extent of the acquisition, i.e. data truncation.
Indeed the migrated image, which is defined by Equation (3)
as the envelope of the isochrons associated with each source-
receiver pair, is made by constructive interferences between
elementary migrated images everywhere except where there
is a discontinuity in the data. Other artifacts (event 3) are due
to insufficient spatial sampling that results from a locally too
low density of midpoints in the survey.

To save computing time, we will, in the sequel, restrict the
imaging to a domain that ranges from 6 to 8.3 km in the x
direction, from 4 to 6 km in the y direction and whose
extension in the z direction is 1 km on either side of the
reflector (Fig. 5). Such a domain indeed allows:
− to show how the steep slope of the anticline is imaged; 
− to see (thanks to the large window in the z direction) the

migrated event even with a quite erroneous migration
velocity; 

while avoiding artifacts caused by holes in the illumination
(Fig. 3b), at least for the exact migration velocity.

For a 33% too low migration velocity (v = 2000 m/s) the
migrated event is not as deep as the one obtained with the
exact velocity and its slope is not as steep (Fig. 6).

For a 33% too high migration velocity (v = 4000 m/s) the
geometry of the migrated event is totally modified and three
cusp branches appear (Fig. 7). There are also branches due to
data truncation: use of this migration velocity makes the
migrated event move on the left in the x direction as
compared to the result obtained with the exact velocity.

2 OFFSET CLASS MIGRATION

In practice data associated with a given offset consist of
very sparse seismic traces and, in turn, a common offset migra-
tion becomes inadequate. This leads us to extend the notion of
common offset migration by introducing offset class migration.

We define an offset class as the set of all source-receiver 

pairs such that their offset belongs to a neigh-
borhood of vector . The offset class migrated image at 
a subsurface point M is then defined as previously by
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superposition of elementary migrated images associated with
all seismic traces of the considered offset class:

(7)

We have used such an imaging technique on synthetic
data generated as before (that is by using Jerry on the model
in Figures 2a and 2b) but associated with source-receiver
pairs whose locations come from a field marine acquisition in
the North Sea. Such an acquisition involves weak variations
in the azimuth.

We have considered far offset data: = 3000 m. We
have constituted the offset class consisting of source-receiver
pairs whose distance belongs to [2950 m; 3050 m] (Figs. 8a
and 8b).

The offset class migrated images (Fig. 9) show imaging
artifacts strong enough to harm a migration velocity analysis.

A more selective offset class gathering source-receiver
pairs whose distance belongs to [2995 m; 3005 m] does not
really help (Figs. 10a, 10b and 11).

At this stage we may wonder if offset class migration is a
theoretically justified seismic imaging technique, or if we
lack insights on how to constitute offset classes.

3 THEORETICAL FOUNDATION OF OFFSET CLASS
MIGRATION

As common offset migration, the theoretical foundation of
offset class migration is based on the analysis of a continuous
problem. To generalize the continuous definition (5) to offset

r
h0

m M m M q
h

q
h

C
v

el
v

q C
h

h

r

r
r

r
r

r
r

0

0

2 2
( ) ; ,= − +





∈

∑

410

-0.5 0 0.5 1.0 1.5 2.0 2.5

z 
(k

m
) 

(x
10

4 )

x (km) (x104)
y (km)

0.2
0.4

0.8

1.2

1.6

2.0

0.6

1.0

1.4

1.8

-5000
0 5000

10 000
20 000

15 000

(a)

(b)

Figure 2

The synthetic 3D model. The velocity field above the reflector is constant, v = 3.0 km/s. 

(a) A 3D view of the interface. 

(b) Map of the interface and different sections in the model: 

y sections (top): from left to right: y = 2 km, y = 4 km, y = 6 km; x sections (bottom): from left to right: x = 1 km, x = 7 km, x = 17 km.
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class migration, we now consider offsets that depend on
midpoint : these offsets are defined by the function 
that will be referred to as the offset class function and that is
assumed to remain in the vicinity of (see Figs. 12a and
12b for a 2D illustration). This function thus defines a set of
source-receiver pairs that depend on two parameters, the
midpoint coordinates qx and qy. Given an offset class
function , we introduce the continuous definition of
migration by offset class: 

(8)

which clearly appears as an extension of Equation (5).
Also, if the midpoints are adequately sampled, Formula (7)

appears as a discrete approximation of Equation (8). In this
context, the source-receiver pairs that contribute in the
construction of the offset class migrated image appear as
samples of the offset class function (see Figs. 12a and 12b
for a 2D illustration).

The analysis given in the Appendix proves the existence
of offset class migrated events, even in the case of an
erroneous migration velocity, provided that the offset class
function is smooth (the variation of offset with midpoints
coordinates must not show discontinuities). The geometry of
the offset class migrated event appears as the envelope of
isochrons associated with all source-receiver pairs defined by
the offset class function. Additional results about the
geometry of the offset class migrated events can be found in
the Appendix.

With these results, offset class migration appears to rely
on a sound theoretical basis. 

4 AN EXPERIMENTAL STUDY

The theory outlined in the previous section says almost
nothing on how to constitute offset classes for a good
imaging (we just know that the offset class function has to be
smooth). The difficulty met when we tried to image synthetic
data associated with a field acquisition geometry should lie in
incorrectly constituted offset classes. Indeed the offset classes
that were constituted show:
– offset variations both in norm and in azimuth and we do

not know to what extent such variations are allowed;
– a non-regular spacing between midpoints.

The goal of our experimental study is to investigate the
influence of the parameters that define an offset class on the
quality of the resulting migrated image. For this, two series
of experiments have been carried out.

In the first one, the distribution of midpoints is uniform and
either the norm is fixed (mixing of azimuths), or the azimuth
is fixed (mixing of norms) (Figs. 13a and 13b). In the second
series of experiments, we study the influence on the image of
a non-uniform distribution of midpoints, for a fixed offset.
The quality of the migrated image is essentially evaluated
with a visual criterion. It is thus dependent on the mode of
graphical representation that is chosen. In all the experiments
below, the scaling factor is the same so as to allow com-
parison between results associated with various acquisitions
but involving the same number of source-receiver pairs.

4.1 Variation of Offset for a Uniform Distribution 
of Midpoints

In this first part we consider offset classes involving varying
offsets but regularly sampled midpoints (the midpoints lie on
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Figure 3

Source locations of a regular synthetic acquisition: the midpoints are regularly distributed with a spacing of 50 m both in the x and y
directions, = 3000 m and α = 0. 

(a) Map of source locations. 

(b) 3D view of the impact points on the reflector.
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(b) Some x sections in the cube. Events 1 and 2 (called smiles) are artifacts of migration generated by data truncation due to the finite extent
of the acquisition array in the x and y directions. Event 3 is due to insufficient spatial sampling that results from a locally too low density
of midpoints in the survey.
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Survey from a marine acquisition in the North Sea.

(a) Map of locations of sources that have a receiver at a distance ranging within [2950 m; 3050 m].

(b) 3D view of the impact points on the reflector.
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Figures 8a and 8b. The amplitude of the imaging artifacts is ten times lower than the one of the migrated event corresponding to the reflector
of the model.
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Survey from a marine acquisition in the North Sea.

(a) Map of locations of sources that have a receiver at a distance ranging within [2995 m; 3005 m].

(b) 3D view of the impact points on the reflector.
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y sections in the cube of offset class migrated images with v = 3000 m/s and using the data associated with the marine survey shown in
Figures 10a and 10b. The amplitude of the imaging artifacts is ten times lower than the one of the migrated event corresponding to the
reflector of the model.
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Irregular seismic acquisition in 2D. 

Figure 12b

Two possible choices of offset class function. The source-
receiver pairs that constitute the offset class appear as
samples of the graph of the selected offset class function.
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the nodes of a regular grid). To create a synthetic acquisition
we consider a discrete function w(k) that gives the source-
receiver pair ( ) associated with node k of the grid of
midpoints: the values w(k) define the samples of the
considered offset class function. These values will be
obtained from the realization of a random function, involving
possible correlations.

4.1.1 Fixed Source-Receiver Distance 
and Non-Correlated Random Mixing of Azimuths

We consider here non-correlated variations in the azimuth:
the values taken by the offset class function are those
associated with the realization of a non-correlated random
function with uniform density that defines the azimuth, the
norm being set to 3000 m. We consider azimuth α
uniformly distributed within [–18°, 18°] and [–90°, 90°],
successively (for α ∈ [–18°, 18°] source locations are
displayed in Figures 14a-14c). Figures 15 and 16 give the
migrated cubes produced by migration by offset class. We
observe that in both cases the geometry of the migrated event
is the one of the reflector, which is not surprising since, for
an exact migration velocity, all source-receiver pairs
contribute to the construction of a single envelope (which is
precisely the geometry of the reflector). Nevertheless the
mixing of azimuths, involving fluctuations of offset in the
data, introduces artifacts in the images; the larger the
fluctuation in azimuths, the stronger is this contamination
(we recall that these artifacts are not shown from 1 km above
the reflector because of the restricted imaging domain). For
the most critical azimuth range [–90°, 90°], Figure 17 displays
the section y = 5200 m of the migrated cube for different
offset norms ( = 100 m, 500 m, 1000 m, 2000 m, 2500 m

and 3000 m). We observe that, for small source-receiver
distances, artifacts are almost inexistent and that they
increase with the offset norm. This is understandable as, in
the limit, azimuth does not influence the zero offset data.

For an erroneous migration velocity v = 4000 m/s, offset
norm = 3000 m and azimuth range [–90°, 90°], artifacts
due to the mixing of azimuths are added to the deformation
of the reflector due to the velocity perturbation (Fig. 18).
Nevertheless we observe that, surprisingly, the amplitude of
artifacts is lower than those appearing with an exact
migration velocity. Besides, it can be shown that artifacts
increase with the offset norm also in the case of an erroneous
migration velocity.

4.1.2 Fixed Source-Receiver Distance 
and Correlated Random Mixing of Azimuths

The values that define the azimuth at the different midpoints
are given by the realization of a 2D Gaussian random
function with exponential covariance. The covariance
operator is defined by:

where:
– σ2 is the variance; 
– and define midpoint locations; 
– λ is the correlation length. 

The variance governs the amplitude of the fluctuations of
the random function and the correlation length governs the
central frequency of these fluctuations.

For offset norm = 3000 m, we present in Figures 
19a-19c the source locations associated with a random 
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function with an expectation of − π/2, a standard deviation σ
of π and a correlation length of 20 km (low-frequency
fluctuations). The migrated cube obtained with these data 
(Fig. 20) presents artifacts which are not as strong as when the
correlation length λ = 1 km (high-frequency fluctuations)
(Figs. 21a-21c and 22). Hence as it was predicted by theory,

Figure 14

Source locations of a synthetic survey for = 3000 m and 
a non-correlated random mixing of azimuths ranging within 
α ∈ [–18°, 18°]. The midpoint spacing is 50 m both in the x
and y directions. 

(a) Overview of source locations. 

(b) Source locations for midpoints at y = 8000 m. 

(c) Source locations for midpoints at x = 10 000 m.

high-frequency, i.e. non-smooth variations of the offset, gives
rise to important artifacts: such variations must be avoided in
the perspective of a high-quality imaging. For a fixed
correlation length and azimuth range, we observe that, as for
the non-correlated case, artifacts increase with offset norm
(Figs. 23 and 24).

4.1.3 Fixed Azimuth and Random Mixing of Norms

In these experiments, for a fixed azimuth α = 0, the offset
norm varies randomly around a given offset norm .
Figure 25 gives the section y = 5200 m of the migrated cube
for an exact migration velocity, for = 3000 m and for
source-receiver distances ranging randomly and without
correlation within [–5 m, 5 m], [–50 m, 50 m], [–500 m, 500
m], successively. We observe that significant artifacts do not
appear unless the range in source-receiver distance becomes
unrealistic ([–500 m, 500 m]). Even for that case, the
amplitude of these artifacts is not as strong as for a low, non-
correlated mixing of azimuths α ∈ [–18°, 18°] (see Fig. 15
for comparison). Note also that the amplitude of these arti-
facts increases with average offset norm (Fig. 26).

Random mixing of norms involving spatial correlations
yields similar results.

Thus, the mixing of norms within an offset class is not as
critical as the mixing of azimuths regarding the quality of the
imaging.

4.2 Non-Uniform Distribution of Midpoints 
for a Fixed Offset

We now study the effects on the migrated images of a non-
uniform distribution of midpoints for a fixed offset.

For this we remove or duplicate lines in the regular survey
in Figure 3a (source locations are respectively displayed in
Figures 27a and 28a).

It is thus created local heterogeneities of density of
midpoints, in the first case featured by holes and in the
second one by overdensities. 

Such a perturbation in the acquisition gives rise to strong
artifacts and a drastic degradation in the quality of the
imaging (Figs. 27b and 28b, respectively).

With such an acquisition, we cannot expect the numerical
formula (7) to approximate the continuous expression (8) for
the migrated image: our oversimple diffraction stack, which is
used in most 3D common offset migration industrial packages2

should be upgraded so as to compensate for non-uniformly
sampled midpoints. Such an upgrade, which turns out to be no
that simple, is the aim of some of our future studies,

(2) These industrial packages make use of filters (often called antialiasing
filters) to remove these artifacts, which turns out to be effective but at
the expense of the ability to image strongly dipping events.
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Figure 15

y sections in the cube of offset class migrated images with v = 3000 m/s, = 3000 m and non-correlated random azimuths uniformly
distributed within [–18°, 18°].
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Figure 16

y sections in the cube of offset class migrated images with v = 3000 m/s, = 3000 m and non-correlated random azimuths uniformly

distributed within [–90°, 90°].
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Sections y = 5.2 km in the cube of offset class migrated images with v = 3000 m/s, for different offset norms and non-correlated random
azimuths uniformly distributed within [–90°, 90°].

Figure 18

y sections in the cube of offset class migrated images with a too high migration velocity v = 4000 m/s, = 3000 m and non-correlated
random azimuths uniformly distributed within [–90°, 90°]. The three cusp branches colored in green give the geometry of the migrated event.
Other events are the so-called migration smiles due to data truncation.
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Figure 19

Source locations of a synthetic survey associated with a correlated
random mixing of azimuths. The spacing between midpoints is 
50 m both in the x and y directions and the source-receiver
distance is fixed to = 3000 m. The parameters that define the
random function are: expectation −π/2, exponential covariances
with standard deviation σ = πand correlation length λ = 20 km.

(a) Overview of source locations. 

(b) Source locations for midpoints at y = 8000 m. 

(c) Source locations for midpoints at x = 10 000 m.
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y sections in the cube of offset class migrated images with = 3000 m, v = 3000 m/s. The parameters associated with the random function
that defines the azimuth are: expectation −π/2, exponential covariances with standard deviation σ = πand correlation length λ = 20 km.
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Figure 21

Source locations of a synthetic survey associated with a
correlated random mixing of azimuths. The spacing between
midpoints is 50 m both in the x and y directions and the
source-receiver distance is fixed to = 3000 m. The
parameters that define the random function are: expectation 
−π/2, exponential covariances with standard deviation σ = π
and correlation length λ = 1 km.

(a) Overview of source locations. 

(b) Source locations for midpoints at y = 8000 m. 

(c) Source locations for midpoints at x = 10 000 m.
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Figure 22

y sections in the cube of offset class migrated images with = 3000 m, v = 3000 m/s. The parameters associated with the random function
that defines the azimuth are: expectation −π/2, exponential covariances with standard deviation σ = πand correlation length λ = 1 km.
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Figure 23

Sections y = 5.2 km in the cube of offset class migrated images with v = 3000 m/s, for different offset norms. The parameters associated with
the random function that defines the azimuth are: expectation −π/2, exponential covariances with standard deviation σ = π and correlation
length λ = 20 km.
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Figure 24

Sections y = 5.2 km in the cube of offset class migrated images with v = 3000 m/s, for different offset norms. The parameters associated with
the random function that defines the azimuth are: expectation −π/2, exponential covariances with standard deviation σ = π and correlation
length λ = 1 km.

Figure 25

Sections y = 5.2 km in the cube of offset class migrated images with v = 3000 m/s, for an offset class with fixed azimuth (α = 0) and a non-
correlated random fluctuation in source-receiver distance. The parameters that define these fluctuations are: average 3000 m, range of
fluctuations defined by parameter ∆.
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Figure 26

Sections y = 5.2 km in the cube of
offset class migrated images with v
= 3000 m/s, for an offset class with
fixed azimuth (α = 0) and a non-
correlated random fluctuation in
source-receiver distance. The para-
meters that define these fluctuations
are: range of fluctuations [–500 m,
500 m], average defined by .
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Local holes in the acquisition created by removing some in-lines in the regular survey shown in Figures 3a and 3b. 

(a) Source locations. 

(b) y sections of the corresponding cube of offset class migrated images with v = 3000 m/s.
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CONCLUSION

In 3D seismics, offset is a vector and irregularities in the
acquisition make data associated with a given offset
constituted of very few traces. In turn common offset
migration does not make sense any longer: this notion is quite
naturally extended to migration by offset class. Our goal was
to analyze difficulties that can be met with such an imaging.

Offset class migration is a procedure that relies on a sound
theoretical basis whenever the offset varies smoothly with the
midpoint coordinates: seismic events give rise to migrated
events whose supports are localized at the vicinity of the
envelope of the isochrons, this whatever the migration
velocity model (at least whenever it is smooth). However,
this theory says almost nothing on how to constitute offset
classes for a good imaging (we just know that smoothness is
required): to what extent can we allow the offset to vary in
norm, in azimuth? What is the influence, on the quality of the

migrated images, of the distribution of midpoints involved in
the offset class?

We have carried out an experimental study to answer
those questions and, more generally, to understand how the
offset classes have to be constituted. In a first part we have
studied, for a uniform distribution of midpoints, the influence
of the non-uniformity (in norm or in azimuth) of the different
offsets involved. The conclusion is that we can mix
substantially different offsets and this all the more than the
offset varies slowly with the midpoint coordinate and that the
mean offset is small. In a second part, we have studied, for a
perfectly homogeneous distribution of offsets, the influence
of a non-uniform distribution of midpoints. The conclusion is
that the quality of the migrated image is very sensitive to
such a non-uniformity: severe artifacts appear in case of
missing traces (locally too small midpoint density), but also
in case of overabundant data (locally too strong midpoint
density), at least for the algorithm that we have used. 
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Figure 28

Local overdensities in the acquisition created by duplicating some in-lines in the regular survey shown in Figures 3a and 3b. 

(a) Source locations. 

(b) y sections of the corresponding cube of offset class migrated images with v = 3000 m/s.
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From these observations different possibilities can be envi-
saged to constitute offset classes suited for a good imaging:
– use of interpolators to obtain a regular sampling in

midpoints;
– use of a trace selection procedure yielding a distribution of

midpoints as uniform as possible: elimination of traces
giving rise to overabundant data, inclusion of traces with
offsets far from the mean offset so as to fill holes in the
coverage (we exploit here the robustness of the imaging
regarding offset heterogeneities);

– use of a stacking formula more sophisticated than a mere
diffraction stack, involving in particular weights that can
account for a non-uniform distribution of midpoints.
Ongoing studies should provide us very soon with

operational solutions.
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APPENDIX

KINEMATIC ANALYSIS OF OFFSET CLASS
MIGRATION

The goal of this Appendix is to give a theoretical basis to
“offset class migration” and to provide us with insights into
the kinematic properties of offset class migrated images. The
theory below is nothing but a mere transposition of the theory
of Bleistein (1987) to the specific case of offset class gathers
and in the context of a simplified imaging formula (basically
we do not pay attention to amplitudes). Our presentation
follows the presentation that Géoltrain and Léger (1990)
gave in the context of shot record migration. 

Offset class migration, whose goal is to construct an image
of a reflector from an aerial measurement of its reflected field
and a given velocity field v, consists in migrating all traces
that belong to a given offset class. Considering that the choice
of an offset class is done, the set of source-receiver pairs is
then described, in a continuous standpoint, by an offset class
function that is assumed to remain in the vicinity of offset

. Instead of the midpoint location , we have chosen to
parameterize the study with the source location , so that the
offset class function is now defined by:

The offsets now depend on the source location .
Note that the assumed existence of an offset class function

implies that, this function being defined, there is a unique
receiver associated with any source . We will also
assume that this function is continuously differentiable.

Note that, thanks to the assumptions above, it is easy to

construct the function once is known: 

The definition (8) of the offset class migrated image can
be expressed in terms of the new offset class function :

(9)

where S is the set of sources that belong to the considered
offset class and is the Jacobian of the map:

More precisely, with a kinematic version of “Prestack
Kirchhoff Depth Migration”, we can rewrite the definition of
a migrated image:

where: 

is the asymptotic representation in the Fourier domain of the
record associated with the source-receiver pair parameterized
by , with:

− , the specular scattering amplitude;
− ω, the angular frequency;
− and f(ω), the source spectrum. 

We recall that and are
the total traveltime from source and receiver to M and the
arrival time of the considered event, respectively.

Then: 

where:

We introduce the phase:

We assume that Φ has a stationary point of order one
(higher orders are ignored since they exist only for isolated
values of M), namely:

Considering that f (ω) is a high-pass filter, the multi-
dimensional stationary phase method (see for instance
Bleistein, 1984) provides an evaluation of the -integral in
the high-frequency limit, namely:

(11)

where:

is an amplitude term which is independent of frequency. 
Consequently, the migrated image is a bandlimited

singular function with support on points M that satisfy the
zero-phase condition:
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Thus, the geometry of the migrated event is given by the
set of points M that satisfy both zero-phase and stationary
phase conditions:

It is the envelope of the family of isochrons generated by
the different shots.

Stationary Phase Condition and Rays

The goal of this section is to characterize the set of points M
that satisfy, for a given , the stationary phase condition:

(13)

The right-hand side in Equation (13) is interpreted as the
slope at , in the i direction, of the event in the offset class
gather: this quantity is known (it is directly read in the data).
To evaluate:

we have to evaluate the first-order perturbation in the total
traveltime tm that results from a perturbation in the source
location.

A perturbation in the source location gives rise to a
perturbation in the receiver location so as to follow the
considered offset class: 

and therefore the total traveltime: 

( and are the traveltimes between point M
and source and between point M and receiver , respec-
tively) is perturbed of an amount dtm: 

where and are the i components of the ray parameter
of the ray starting from source at and reaching M and 
of the ray starting from M and reaching receiver at ,
respectively.

Note that we use Einstein’s summation convention on
repeated indices.

Thus the perturbation dtm is linked to by: 

and ∂tm/∂si is given by: 

Therefore the stationary phase condition (13) defines a set

of points M located both on the ray that starts from the source

at  with the direction given by ( is now a parameter)

and on the ray that starts from M and reaches receiver at

with a direction given by , solution of the system: 

(14)

The set of such points M appears as one-dimensional
(considering the coordinates (x, y, z) of M we can deduce 

and and System (14) gives two relations that link the
three coordinates). The intersection of this one-dimensional
set with the isochron will, of course, give the point of the
isochron that contributes in the migrated event.

Dip of a Migrated Event

System (12) also gives indications on the dip of the migrated
event at point M.

At M the dip of the migrated event (plane that is tangent to
the envelope) is the plane that is tangent to the isochron. This
plane is, as it is well known (it is the generalization of the
result that states that the normal to an ellipse at a point M is the
bisector of the angle made by the segments that join M to the
foci), orthogonal to the bisector of the angle made by the rays
that arrive at M from and , respectively (Fig. 29).

Figure 29

Migrated dip in 2D. At point M, the dip of the migrated event
is the straight line tangent to the isochron, i.e. orthogonal to
the bisector of the angle made by the rays that arrive at M and
originating in S and R, respectively.
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Partitioning of the Data by Offset Class

Until now, we have considered a single offset class defined
by function . We are now going to consider a series (in
fact a continuum) of offset classes and to introduce the
adequate formalism.

Case of a 2D Acquisition 

We start by setting the basis of the formalism in the 2D case
which is much simpler to understand and which, in
particular, allows graphical illustrations. Looking at
Figure 30, offset classes can be understood as contour lines
of some function g(s, r): the offset class λ (λ ∈ RR) is the set
of source-receiver pairs such that g(s, r) = λ. We can readily
realize that such a definition generalizes the notion of
common offset gathers (we consider g(s, r) = r – s). Also, λ
being given, the associated offset class function hλ(s) is
obtained from the definition of function g.

Figure 30

Three different offset classes. An offset class can be
understood as the contour line of a function g(s, r): the offset
class λ is the set of source-receiver pairs such that g(s, r) = λ.

Case of a 3D Acquisition 

In 3D, a source-receiver pair consists in a vector in RR4. The
source location being given, two data are required to
obtain the two coordinates of the receiver location in the
offset class . The following equation: 

(15)

involves now the equality between two vectors in RR2.

We assume that, for and given, Equation (15) admits

a unique solution . This assumption makes the offset class

function single-valued. We can also notice that, the

offset class being defined by means of the contour lines of

some function , a source-receiver pair can belong to one

offset class only. Finally, we will assume function to

be continuously differentiable and the Jacobian is

never zero: this makes Equation (15) to admit a unique

solution in , for and given.

Stack of Offset Class Migrated Images

Considering the offset class associated with some ∈ RR2,
we define the offset class migrated image at point M by (this
is nothing but a change in the notations as compared to
Definition (10)):

with te the arrival time of the event for source and receiver

, tm the travel time from to M to ( denotes, for and

given, the receiver solution of Equation (15)), and:

where:
− is the specular scattering amplitude;

− is the Jacobian of the map:

We have shown previously that the support of the offset
class migrated event is localized at the vicinity of points M
such that there exists so that the pair ( , M) is solution of
the system:

where Φ is defined by:

As acquisitions with vector depending continuously of
two parameters and thus covering a domain of RR2 are rarely
available (we can hardly consider that we have data associated
with arbitrary offset that is arbitrary norm and azimuth), we
consider that vector ranges within a one-dimensional
subset of RR2: we suppose that depends continuously of a
scalar parameter α ( gives the parametric representation
of the considered one-dimensional subset).
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The stack of offset class migrated images is then defined
quite naturally: the value at point M of the post-migration
stack is given by:

(16)

It is classical to evaluate Equation (16) by means of the
stationary phase formula: the support of the event in the post-
migration stack is localized at the vicinity of points M such
that there exists that makes the following system
fulfilled: 

(17)

The geometry of the event imaged in the post-migration
stack thus appears as the envelope of the family (with
generator α) of offset class migrated events. Note also that
Condition (17c) shows that the offset class migrated event
appears horizontal when seen in the α direction (migration
coherency panel) for (M, α) solution of System (17).

Post-Migration Stack and Zero Offset

The goal of this section is to show that, whatever the
migration velocity model, the zero offset events constitute a
subset of the events imaged in the post-migration stack.
Namely we are going to show that if a pair is such that
the unique receiver solution of: 

(18)

coincides with (we thus consider, in the offset class asso-
ciated with α, a trace, the one associated with , which is
actually a zero offset trace), then the point M imaged in the
offset class migrated event (this point is defined once is
known) will be such that Equation (17c) is fulfilled or, in
other words, the offset class migrated event will be part of
the post-migration stack.

We thus consider, for and α given, receiver such that
Equation (18) is fulfilled and M solution of Equations (17a)
and (17b). We give α a perturbation dα, being unchanged.
It results: 
• a perturbation:

• and therefore a perturbation solution of the system
([ ] is a 2 × 2 matrix): 

(19)

• and, hence, a perturbation:

(· denotes the Euclidian scalar product between vectors
and in RR2) of .

We are going to establish that dΦ = 0 which will prove
that Equation (17c) is fulfilled. 

We introduce function defined by:

Perturbation dΦ is also equal to:

(20)

with solution of Equation (19).
If we now consider another perturbation in the source-

receiver pair solution of the 4 × 4 system: 

(21)

(this is a system in which and are 2 × 2

matrices; this system shows that perturbation does

not perturb : we remain within the same offset class), then

the resulting perturbation in Ψ will be: 

As perturbation is a constant perturbation, dΦ
is zero as a consequence of Equation (17b).
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