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Résumé — Étude par absorption X in situ de la sulfuration d’un catalyseur d’hydrotraitement
dopé par un composé organique non chélatant — Un catalyseur industriel de type CoMoP supporté
sur alumine a été imprégné à sec par une solution aqueuse de diéthyleneglycolbutyléther (DEGbe) puis
séché à 393 K pendant 12 h. Après activation sous H2/H2S, ce catalyseur se révèle plus actif que la
référence non modifiée. Afin de comprendre l’effet de cet additif organique sur la cinétique de
sulfuration, des analyses in situ par EXAFS au seuils K du cobalt et du molybdène ont été réalisées. Ces
caractérisations ont été effectuées sur le catalyseur CoMoP + DEGbe séché à 393 K, sulfuré à température
ambiante, puis à 373 et 473 K. La sulfuration du cobalt et surtout celle du molybdène sont inhibées par la
présence du composé organique jusqu’à environ 473 K. Les résultats EXAFS obtenus dans le cadre de
cette étude ont permis de mieux appréhender le rôle des composés organiques ajoutés aux catalyseurs
d’hydrotraitement. Ces composés ralentissent la sulfuration du Mo et du Co présents sur le catalyseur.

Abstract — In Situ EXAFS Study of the Sulfidation of an Hydrotreating Catalyst Doped with a Non
Chelating Organic Additive — An industrial alumina-supported CoMoP catalyst was impregnated
(incipient wetness method) with an aqueous solution of diethyleneglycolbutylether (DEGbe) and then
dried at 393 K overnight. After sulfidation under H2/H2S, this catalyst has a higher activity than the non
impregnated CoMoP. In order to check if the presence of such an organic additive in contact with the
oxidic form of the active phase influences the kinetics of sulfidation of the cobalt and the molybdenum,
EXAFS spectroscopy (K-Co or K-Mo edges) experiments were performed in situ during the sulfidation of
CoMoP + DEGbe catalyst  and of the non DEGbe treated one. The results showed that the sulfidation of
Co and Mo is inhibited by DEGbe up to 473 K. EXAFS helped to understand the role of the organic
compounds added to the oxidic catalysts and to establish the role of the organic compound in the
sulfidation of Co and Mo elements. 
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INTRODUCTION

In the recent past, numerous paper have been dealing with
the improvement of the catalytic activity of hydrodesul-
furization (HDS) catalysts in order to allow refiners to
respect the new stringent regulations concerning the
maximum sulfur contents in gasoline and diesel fuel imposed
by federal laws in United-States, Japan or by the EEC [1]. 

Several patents have been recently published claiming the
unusual effect of organic additives on the activity of hydro-
treating catalysts [2-4]. Some of the organic compounds are
almost infinitely water soluble and can be added during the
incipient wetness impregnation of the active metals [2] or
impregnated directly on the oxidic form of the catalyst in a
second step [3]. In the Sumitomo patents [2, 3], the organic
additive is still present on the surface of the catalyst when the
sulfidation starts. The organic additive is selected from the
group of compounds comprising at least two hydroxyls
groups and 2-10 carbon atoms and the (poly)ethers of these
compounds, for example triethyleneglycol or diethylene-
glycolbutylether. Some studies in the academic literature
explain the positive role played by the organic compound on
the hydrodesulfurization activity of hydrotreating catalysts.
Van Veen et al. [5] were the first to use nitrilotriacetic acid
(NTA) or ethylenediaminetetraacetic acid (EDTA) to prepare
different catalysts at iso dispersion on different model
carriers. They obtained a CoMo + NTA supported on
alumina twice as active in thiophene HDS than the same non
treated CoMo catalyst [6]. A higher percentage of type II
CoMoS phase was proposed to explain this promoting effect.
For the CoW system, the organic agent seems to favour the
synergistic effect of cobalt with the WS2 phase, effect that
was never observed with the cobalt-tungsten sulfide system.
The proposed explanation for the improved activity of the
doped catalysts was a delayed sulfidation of the promotor,
favouring the sulfidation of molybdenum or tungsten [7, 8].
The promoting effect of the chelating agent is also effective
in the conversion of refractory sulphur compounds such as
4,6 dimethyldibenzothiophene [9]. More recently, Hensen et
al. [10, 11] studied NTA addition to Mo-based catalysts and
showed an increasing activity in thiophene HDS when using
NTA. In this particular case of an unpromoted catalyst, the
positive effect was attributed to a higher stacking of MoS2
slabs and a lower interaction between the active phase and
the carrier. In these studies, NTA-treated catalysts are
sulfided without pre calcination of the oxidic form containing
the organic agent and are compared to the corresponding
calcined oxidic form. This point is of particular importance,
since several patents recently pointed out the beneficial effect
of omitting the calcination step of the oxidic form of NiMo
or CoMo type catalyst doped with phosphorus on the
catalytic activity [12]. 

Shimizu et al. studied the effect of NTA, EDTA or
CyDTA (1,2 cyclohexanediamine N, N, N’, N’ tetraacetic

acid) on NiMo, CoMo and NiW type catalysts [13-15]. They
observed, as did van Veen et al., a beneficial effect of the
organic molecule on the CoMo and NiW catalysts, and, to a
lesser extent, on the NiMo. No promotional activity was
observed with Mo/Al2O3, Co/Al2O3, Ni/Al2O3 or W/Al2O3.
They also proposed the hypothesis of a delayed sulfidation
of the promoter due to the formation of a complex between
the promoter and the organic molecule and a better
dispersion of the promoter on the surface. By EXAFS
measurements, they observed an increased coordination
number of Mo-Mo and Mo-S in the modified catalyst. Prins
et al. also studied the effect of chelating agents on NiMo
supported on silica [16-20] and alumina [21]. On silica, it
appears that the formation of a complex between Ni and the
chelating agent limits the carrier-promoter interaction and
favors the Ni dispersion. No significant effect on Mo is
observed unless high concentrations of chelating agent are
used. Moreover, delayed sulfiding kinetic of the Ni is
observed with chelating molecules other than ethylene-
diamine. With this molecule, an increase in activity is
observed without any effect on the nickel sulfidation. This
strongly supports the idea of a decreasing interaction
between the carrier and the active phase precursor when
organic chelating additives are used. Blanchard et al. [22]
also thoroughly studied the influence of ethylenenediamine
(En) on Mo and CoMo supported on alumina. Only the Co
promoted catalyst is more active when using En, whereas
Mo/alumina is unchanged even at high Mo loading.
Ethylenenediamine seems to inhibit the formation of cobalt
molybdate and Co3O4 and to increase the cobalt dispersion.
It appears that the effect of chelating agents is still not
completely understood. 

The effect of non chelating agents has been studied in a
much lesser extent. Recently, Sun et al. [23] published results
on the effect of glycol based organic compounds (molecules
chosen according to references [2, 3]) on the activity of
CoMoP type catalysts. When using triethyleneglycol they did
not observe, by 31P NMR and Raman spectroscopy, any
chelating effect of this compound with Co2+ species in
solution, and have checked that molybdenum species are
present as the P2Mo5O23

6- phosphomolybdate anion. They
supposed that glycols may bind to the coordinatively
unsaturated Al3+ located on the surface of γ-alumina.
According to these authors [23] these acidic sites play a
fundamental role in the anchoring of the metal precursors on
the surface. When using glycols, these sites could be blocked
and only a weak metal-support interaction could prevail,
leading to the highly active type II Co-Mo-S phase. Nicosia
and Prins [24, 25] studied catalysts prepared from MoO3
H3PO4 and CoCO3 as reported in ref. [2]. EXAFS exper-
iments showed that in presence of glycols, the sulfidation
mechanism is modified and a faster sulfidation is observed
but HDS activity is not increased. Nevertheless, this
sulfidation step for such catalysts needs to be better
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understood since it is a key stage in obtaining high catalytic
activities. This is the major aim of this study, which is
focused on the effect on the kinetics of sulfidation of an
industrial CoMoP catalyst impregnated with a model glycol
compound (diethyleneglycol n-butylether or DEGbe). 

1 EXPERIMENTAL

1.1 Catalyst Preparation

An industrial CoMoP catalyst (12 wt% Mo, 3 wt% Co,
2 wt% P, specific surface area—BET method—of 149 m2/g)
supported on alumina was impregnated with an aqueous
solution of DEGbe with a molar ratio Mo/DEGbe = 0,75.
After the incipient wetness impregnation, the CoMoP
+ DEGbe is matured at 293 K overnight then dried at 393 K
for 10 h under air. 

1.2 Catalytic Activity Measurements

1.2.1 Tetralin Hydrogenation in the Presence of H2S

Catalytic activity has been checked for DEGbe modified
catalysts and compared with the reference industrial CoMoP
by using a model molecule test (tetralin hydrogenation in the
gas phase under pressure and in the presence of H2S). 

The hydrogenation of tetralin (1,2,3,4-tetrahydronaph-
thalene) was performed in a fixed-bed gas-flow microreactor
at 573 K, at a constant H2 pressure of 4.6 MPa (45 atm). The
total flow rate was 56 mL/min. The partial pressure of
tetralin (Fluka, purity >99%) was kept constant at 6.1 kPa
by using a gas-phase saturator system (corresponding flow
of tetralin, 5.48 10–8 mol/s). The products of tetralin
hydrogenation were analyzed every 30 min by gas chroma-
tography. Cis and trans decalins were always obtained,
together with small amounts of naphthalene, while no
detectable amounts of isomerization or cracking products
were observed. The amount of catalyst (about 500 mg) was
chosen in order to obtain a conversion below 15%, ensuring
the validity of a differential model for the determination of
the specific rates. The deactivation of the catalyst appeared
always to be negligible and within the experimental errors.
The catalyst is almost fully sulfided before the test by a
conventional treatment under a H2/H2S mixture (15% vol
H2S) at 400°C (5°C/min) for 2 h at atmospheric pressure. 

1.2.2 4,6 Dimethyldibenzothiophene (DBT) Conversion

The reactor used to evaluate the conversion of 4,6-DMBT
was a 200 cm3 stirred slurry tank reactor (STR) operated
in the batch mode. The autoclave was equipped with a
four blade mechanically driven turbine (900 rpm). A baffle
was also placed into the reactor to achieve a perfectly
stirred system.

The samples were collected through a 1/16 in. diameter
tube and the liquid remaining in the tube was forced back into
the reactor by H2, so that the dead volume was minimized.
Hydrogen was introduced into the reactor through a pressure
controller which keeps the pressure constant during the
course of the experiment.

In every case the reactants (1.2 mmole of 4,6-DMDBT,
0 to 8.3 mmole of aromatic or nitrogen compound) was
dissolved in n-dodecane (80 ml) and then introduced in the
reactor. 50 mg of freshly presulfided catalyst was then placed
into the reactor and the system was closed. To avoid any air
contamination N2 was bubbled through the solution for 
10 minutes. Still under N2 atmosphere, the reactor was heated
up to the reaction temperature of 573 K and stirring was
switch on. N2 was then replaced by H2 by pressurizing the
reactor to 5 MPa. This last step was taken as the starting time
of the reaction. Sampling was periodically performed during
the reaction. The samples were analyzed using hexadecane
(SIGMA Aldrich) as an internal standard. HDS and hydro-
genation products of 4,6-DMDBT and aromatics were
analyzed qualitatively by GC-MS and quantitatively by GC-
FID equipped with a silicone capillary column (HP-5
crosslinked 5% PhMe Silicone 30 m × 0.53 mm × 0.88 mm
film thickness) at a temperature between 373 and 573 K.
Response factors of reactants and products were measured
from solutions of known concentrations.

1.3 Catalysts Characterizations

1.3.1 C-S Analysis

Carbon and sulfur contents of the catalysts were determined
by combustion at 1623 K and IR analysis of the produced
SO2 and CO2 in a C,S-mat 5500 (Jüwe Instrument). Data are
accurate within +/- 10%. This elemental analysis technique
gives consistent S/Co+Mo data as compared to other
techniques such as XPS or TEM-EDS [26].

1.3.2 TEM Analysis

High resolution electron microscopy was performed using
a JEOL 2010 TEM microscope (point to point resolution
0.19 nm) equipped with a EDS Link-Isis detector. For sample
preparation, the catalysts were ultrasonically dispersed in
ethanol and the suspension was then collected on a carbon-
coated copper grid.

1.3.3 EXAFS Experiments

All the EXAFS experimentations and spectrum recordings
were performed on the storage ring of the Laboratoire
d’Utilisation du Rayonnement Electromagnétique (LURE).
The spectra were recorded in transmission mode at the
K-edge of Co (7709 eV) and of Mo (20 keV) using a
dedicated cell to perform in situ analysis [27]. In some cases,
dilution with boron nitride was used to obtain an absorbance
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of 1.5. In situ sulfiding was performed with a H2/H2S mixture
(10% H2S volume) at the desired temperature (5°C.min–1) for
30 minutes then the sulfided catalyst was cooled down to
room temperature under a nitrogen flow.

Standard analysis of the EXAFS spectra (normalization,
background removal, Fourier transformation, and curve
fitting) were carried out using the SEDEM software [28] with
FEFF [29] theoretical phase and amplitude functions. The
curve fitting procedure was performed in R-space. Fourier
transformation of the normalized k3-weighted EXAFS signal
was performed over the 2.5-16 Å–1 k-range with Kaiser
window functions. Coordination numbers (N), interatomic
distances (R), Debye-Waller parameters (σ2), and energy
shifts (∆E0) were used as variables in the fitting procedure.
Scale factors S0

2 were fixed at 0.8. 

2 RESULTS AND DISCUSSION

Catalytic activity measurements in tetralin conversion are
summarized in Table 1. A promoting effect is observed when
the catalyst is treated with an organic compound. If a
calcination step is performed before sulfidation, the activity
enhancement is suppressed. 

One can estimate simply the impact of the organic
compound on the sulfidation procedure by analyzing carbon
and sulphur content after step-wise treatments under
H2/H2S. Figure 1 shows the evolution of the S/Co+Mo ratio
and C content (weight %) determined after the activation

treatment at various temperatures. The presence of DEGbe
slows down the sulfidation below 100°C, i.e. in the
temperature range where the organic compound is still
mainly present at the surface of the catalyst as suggested by
C analysis. These data illustrate the complex behaviour of
this kind of organic compound since Nicosia et al. observed
no promotion and a faster sulfidation in the case of TEG
[25]. In order to discriminate if this slowing down process
concerns Co or Mo or both elements, XAS studies were
performed at both K-edges after in situ sulfidation at various
temperatures.

TABLE 1

Activity rate in tetralin hydrogenation
of non treated and DEGbe treated CoMoP catalyst

Catalyst
rHYD(300°C) Activity increase

10–7mol.g–1.s–1 (%)

CoMoP 0,9 /

CoMoP + DEGbe 1,2 30

2.1 Effect of DEGbe on Sulfidation at the Co K-Edge 

During sulfidation, the white line intensity of the XANES
spectra (see Fig. 2) diminishes, indicating, as observed
previously [30], the partial sulfidation of Co. This can also be
seen on the evolution of the Fourier transform on sulfidation,
the maximum of the first peak of the Fourier transform being
shifted to higher distances, corresponding to the evolution of
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Evolution of S content and carbon content on sulfidation of CoMoP prepared with DEGBE (A and B) or diA-EDTA (B and C) and
comparison with the CoMoP  reference catalyst.
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a short Co-O bond to a longer Co-S bond (see Fig. 3). Both
XANES and EXAFS spectra show that in the presence of
DEGbe, this transformation is slower than for the reference
catalyst. In order to estimate locally the extent of sulfidation
at each temperature, structural parameters were fitted and
the results are presented in Tables 2 and 3. At 100°C, the
presence of DEGbe on the catalyst surface inhibits the
sulfidation of Co, sulfur coordination being half that of the

reference compound at the same sulfidation temperature.
However, at 150°C, both catalysts present almost the same
coordination sphere for Co with a remaining contribution
of O. At 573 K, only sulfur atoms surround Co atoms. 

From this study, we can conclude that the presence
of DEGbe slows down the sulfidation of Co atoms below
423 K but to a much lesser extent as compared to chelating
agents. 
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XANES spectra in the oxidic state and after sulfidation at 100 and 200°C at the Co K-edge of CoMo on alumina (a) and CoMo on alumina
treated with DEGbe. 
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2.2 Effect of DEGbe on Sulfidation at the Mo K-edge 

The near edge spectra of the reference and DEGbe
impregnated samples are shown in Figure 4. Oxidic samples
present a characteristic pre-edge peak attributed to a 1s-4d
bound state transition corresponding to a dissymmetric
octahedral surrounding of the Mo atoms. During sulfidation,
this pre-edge contribution shifts to lower energies and
disappears due to the reduction reaction. In the presence of
DEGbe, this shift is less pronounced and the shape of the
edge is closer to that of the oxidic sample, indicating that the
sulfidation is slowed down. This is also visible in the Fourier
transforms in Figure 5. The first contribution due to oxidic
environment is shifted to a new contribution at a longer
distance. At 423 K, the comparison of the Fourier transforms

of the two samples shows that sulfidation is strongly
inhibited at Mo edge. For the reference compound, the sulfur
contribution is clearly seen, whereas such a contribution is
not visible on the DEGbe treated sample. Even at 473 K, it
seems that oxidic contribution is higher on the DEGbe
treated sample than on the reference. This is confirmed by
the analysis of the structural parameters obtained from the
fitting of the EXAFS signal as reported in Tables 4 and 5.
The oxidic form is composed of several O contributions,
illustrating the complex signature of a variety of Mo-O bond
lengths in these distorted systems [31]. Upon sulfidation,
samples with both oxidic and sulfidic neighbours are highly
disordered. For the reference compound, the contribution of
one sulfur neighbour appears at 373 K whereas it was not
possible to introduce such a contribution with the DEGbe
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Figure 4

XANES spectra in the oxidic state and after sulfidation at 100 and 200°C at the Mo K-edge of CoMo on alumina (a) and CoMo on alumina
treated with DEGbe. 

TABLE 2

Structural parameters obtained from fitting the EXAFS
of the CoMoP sample (Co K-edge)

in the oxidic form and treated by H2/H2S
at various sulfidation temperatures

Oxide Room Temp 100°C 150°C 200°C

RCo-O (Å) 2.018 2.046 1.99 1.98

N(O) 5.7 6.1 2.7 2.2

σ2.102 (Å2) 1 0.8 0.8 0.7

∆ E0 (eV) –1.1 6 –5.7 –6.9

RCo-S (Å) 2.22 2.21 2.18

N(S) 3.3 3.8 4.3

σ2.102 (Å2) 1.2 1.1 1.0

∆ E0 (eV) –3.6 –4.3 –9

TABLE 3

Structural parameters obtained from fitting the EXAFS 
of the CoMoP sample treated with DEGbe (Co K-edge)

in the oxidic form and treated by H2/H2S
at various sulfidation temperatures

Oxide Troom 100°C 150°C 200°C

RCo-O (Å) 2.03 2.05 2.00 2.02

N(O) 6.1 6 3.1 1.98

σ2.102 (Å2) 0.9 0.76 0.62 0.74

∆ E0 (eV) –1.28 3.83 –2.48 –7

RCo-S (Å) 2.25 2.210 2.19

N(S) 1.75 4.02 4.33

σ2.102 (Å2) 0.69 1.17 0.92

∆ E0 (eV) –5.27 –6 –9.8
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sample. At 473 K this slowing down effect is still observed,
the ratio between oxidic and sulfidic neighbours being
respectively 0.2 and 0.46 for the reference and the DEGbe
treated sample. This study at Mo Kedge shows the drastic
effect of DEGbe on the sulfidation of Mo atoms. Mo-S
sulphur bonds determined by EXAFS on the non treated
sample corresponds to those of MoS2, no longer distances
attributed to MoS3 such as those reported by Nicoisa et al.
[25] were observed. 

TABLE 4

Structural parameters obtained from fitting the EXAFS

of the CoMoP sample (Mo K-edge) in the oxidic form

and treated by H2/H2S at various sulfidation temperatures

Oxide 100°C 200°C

RMo-O1 (Å) 1.674 1.74 1.699

N(O1) 0.97 0.63 0.46

σ2.102 (Å2) 1.8 0.12 0.09

∆ E0 (eV) 4.6 3.18 –2.68

RMo-O2 (Å) 1.758 – –

N(O2) 1.8 – –

σ2.102 (Å2) 0.8 – –

∆ E0 (eV) 4.61 – –

RMo-O3 (Å) 1.969 –

N(O3) 1.4 – –

σ2.102 (Å2) 1.2 – –

∆ E0 (eV) 4.6 –

RMo-S (Å) – 2.413 2.417

N(S) – 0.84 2.41

σ2.102 (Å2) – –9 –2.18

∆ E0 (eV) – 0.82 1.1

TABLE 5

Structural parameters obtained from fitting the EXAFS
of the CoMoP sample treated with DEGbe (Mo K-edge)

in the oxidic form and treated by H2/H2S
at various sulfidation temperatures

Oxide 100°C 200°C

RMo-O1(Å) 1.775 1.76 1.76
N(O1) 2.3 1.2 0.55

σ2.102 (Å2) 0.37 0.2 0.25
∆ E0 (eV) 7.28 10.3 13
RMo-O2 (Å) 1.92 1.93

N(O2) 0.94 1.56
σ2.102 (Å2) 0.37 1.24
∆ E0 (eV) 7.28 5.55
RMo-S (Å) 2.43

N(S) 1.2
σ2.102 (Å2) 0.64
∆ E0 (eV) –0.65

The comparison between the K edges demonstrates that
DEGbe affects mainly Mo atoms, even if the sulfidation of
Co is also slightly slowed down, but not to the extent
observed with chelating agents. In this later case, the positive
effect of the organic compound is attributed to the fact that,
by slowing down Co sulfidation, more CoMoS active
structures are formed and consequently enhanced catalytic
activities are obtained. Our EXAFS study demonstrates that
the effect of the organic compounds is mostly related to the
sulfidation of Mo. Statistical analysis of TEM pictures were
performed on the samples after sulfidation at 673 K. More
than 500 crystallites were analyzed in terms of length and
stacking associated with the MoS2 sheet-like structure, and
the results are reported in Table 6. We cannot attribute the
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Magnitude of the Fourier transformed k3- weighted data at the Mo K-edge of CoMoP on alumina reference catalyst and DeGBe modified
catalyst in the oxidic state and after sulfidation at room temperature, at 100°C and at 200°C. 
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positive effect observed in tetralin hydrogenation to a strong
morphological modification, since no visible drastic evolu-
tion of the catalyst impregnated with DEGbe is observed.
Thus, we attempted to check if, as in the case of chelating
agents, more CoMoS-like phases were formed. To test this
possibility, we investigated the catalytic performances in the
conversion of 4,6-dimethyldibenzothiophene.

TABLE 6

Average length and stacking of CoMoS nanocrystallites
determined by TEM

Catalyst Average length (nm) Average stacking

CoMo 2.5 1.8

CoMo + EGbe 2.7 2

2.3 Catalytic Conversion
of 4,6-dimethyldibenzothiophene

4,6-DMDBT is well recognized as one of the major refractory
compounds for HDS of gas oils. There is a general agreement
on the HDS mechanism: the transformation of DBT follows
two different pathways i.e. a direct desulfurization one (DDS)
and a hydrogenation route (HYD) [32, 33]. It has been
demonstrated by Bataille et al. [34] that the main effect of the
promoter (Co or Ni) is to enhance the rate of the DDS
pathway. Thus, we can consider that the analysis of the
selectivity in DDS and HYD products is an indicator of the
amount of promoted sites on our CoMo catalysts. Catalytic
activities and selectivities obtained on CoMo and CoMo
DEGbe doped catalysts are summarized in Table 7. The use
of the organic compound clearly enhances the catalytic
activity but also favors the DDS route as compared to the
reference catalyst. We can therefore suggest that the slowing
down effect during sulfidation, affecting mainly Mo element,
favors also the formation of promoted “CoMoS” phases, but
in a different way than that proposed for chelating agents. 

TABLE 7

Influence on the catalytic activity and selectivities
in 4,6-DMDBT conversion of the impregnation

of DEGbe on a CoMo/alumina catalyst

Sample
rHDS tot

(10–8 mol.g–1.s–1)
% HYD % DDS

CoMo 2,1 84 16

CoMo + DEGbe 3,1 78 22

CONCLUSION

Simple impregnation of an industrial catalyst with DEGbe
allows the enhancement of hydrodesulfurization and hydro-
genation catalytic activities. This promotion can be attributed

to the formation of more promoted “CoMoS” type active
sites during the activation treatment. The presence of the
alcohol slows down the sulfidation process in the range 293-
473 K. This is clearly demonstrated by the help of XAS
studies at Co K-egde and Mo K-edge. This effect is more
pronounced for Mo species and differs from that of chelating
agents for which a similar slowing down process was
observed but mainly affecting Co elements. 
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