N. Jacquemet, J. Pironon, and E. Caroli, A new experimental procedure for simulation of H 2 S and CO 2 geological storage: application to well cement ageing, Oil Gas Sci. Technol, vol.60, pp.193-203, 2005.

V. Barlet-gouédard, G. Rimmelé, B. Goffé, O. Porcherie, V. Barletgouédard et al., Mitigation strategies for the risk of CO 2 migration through wellbores, IADC/SPE 98924, IADC/SPE Drilling Conference, vol.62, pp.325-334, 2006.

D. D. Onan and R. A. Bruckdorfer, Effects of supercritical carbon dioxide on well cements, SPE 12593, Permian Bassin Oil & Gas Recovery Conference, 1984.

, SPE/IADC 18618, SPE/IADC Drilling Conference

G. W. Groves, A. Brough, I. G. Richardson, C. M. Dobson, and M. Thiery, Modélisation de la carbonatation atmosphérique des matériaux cimentaires-Prise en compte des effets cinétiques et des modifications microstructurales et hydriques. Thesis, École Nationale des Ponts et Chaussées, vol.74, pp.2891-2896, 1991.

T. Van-gerven, D. Van-baelen, V. Dutré, and C. Vandecasteele, Influence of carbonation and carbonation methods on leaching of metals from mortars, Cement Concrete Res, vol.34, pp.149-156, 2004.

Z. Krilov, B. Loncaric, and Z. Miksa, Investigation of a long-term cement deterioration under a high-temperature, sour gas downhole environment, SPE 58771, International Symposium on Formation Damage Control, pp.23-24, 2000.

E. Lécolier, A. Rivereau, N. Ferrer, A. Audibert, and X. Longaygue, Durability of oilwell cement formulations aged in H 2 S-containing fluids, IADC/SPE 99105, IADC/SPE Drilling Conference, pp.21-23, 2006.

E. B. Nelson, Well Cementing, Schlumberger Educational Services, 1990.

H. F. Taylor, Cement Chemistry, 2nd Edn, 1997.

T. C. Powers, Structure and Physical Properties of Hardened Portland Cement Paste, J. Am. Ceram. Soc, vol.41, pp.1-6, 1958.

L. Nachbaur, J. C. Mutin, A. Nonat, and L. Choplin, Dynamic mode rheology of cement and tricalcium silicate pastes from mixing to setting, Cement Concrete Res, vol.31, pp.183-192, 2001.

S. P. Jiang, J. C. Mutin, and A. Nonat, Studies on the Mechanism and Physico-Chemical Parameters at the Origin of Cement Setting. I. The Fundamental Processes involved during Cement Setting, Cement Concrete Res, vol.25, pp.779-789, 1995.

S. P. Jiang, J. C. Mutin, and A. Nonat, Studies on the Mechanism and Physico-Chemical Parameters at the Origin of Cement Setting. II. Physico-Chemical Parameters determining the Coagulation Process, Cement Concrete Res, vol.26, pp.491-500, 1996.

L. Nachbaur, P. C. Nkinamubanzi, A. Nonat, and J. C. Mutin, Electrokinetic Properties which control the Coagulation of Silicate Cement Suspensions during Early Age Hydration, J. Colloid Interf. Sci, vol.202, pp.261-268, 1998.

S. Garrault-gauffinet and A. Nonat, Experimental Investigation of Calcium Silicate Hydrate (C-S-H) Nucleation, J. Cryst. Growth, pp.565-574, 0200.

R. Maggion, S. Bonnamy, P. Levitz, and H. Van-damme, A scaling model of the microstructural evolution in C 3 S/C-S-H pastes, The Modeling of Microstructure and its Potential for Studying Transport Properties and Durability, vol.304, pp.137-155, 1996.

P. Levitz, Toolbox for 3D imaging and modeling of porous media: Relationship with transport properties, Cement Concrete Res, 2006.

R. Maggion, D. Tinet, P. Levitz, and H. Van-damme, Microtextural evolution of CSH pastes during hydration, Hydration and Settings of Cement, vol.16, 1992.

©. Copyright, Institut français du pétrole Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than IFP must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee: Request permission from Documentation, 2007.

. Lea, Chemistry of cement and concrete, Fourth Edition, 1998.

S. Diamond, Mercury porosimetry: An inappropriate method for the measurement of pore size distributions in cementbased materials, Cement Concrete Res, vol.30, pp.1517-1525, 2000.

R. A. Olson, C. M. Neubauer, and H. M. Jennings, Damage to the pore structure of hardened porltand cement paste by mercury intrusion, J. Am. Ceram. Soc, vol.80, pp.2454-2458, 1997.

W. P. Halperin, J. Jehng, and Y. Song, Application of spin-spin relaxation to measurement of surface area and pore size distributions in a hydrating cement paste, Magn. Reson. Imaging, vol.12, pp.169-173, 1994.

J. Korb, D. Petit, S. Philippot, H. Zanni, V. Maret et al., Nuclear relaxation of water confined in reactive powder concrete, 1998.

, Nuclear Magnetics Resonance Spectroscopy of Cement-Based Materials

A. Plassais, M. Pomiès, N. Lequeux, P. Boch, J. Korb et al., Micropore size analysis by NMR in hydrated cement, Magn. Reson. Imaging, vol.21, pp.369-371, 2003.

L. Saoût, G. Lécolier, E. Rivereau, A. Zanni, and H. , Micropore size analysis in oil-well cement by proton nuclear relaxation, Magn. Reson. Imaging, vol.23, pp.371-373, 2005.

L. Saoût, G. Lécolier, E. Rivereau, A. Zanni, and H. , Study of oilwell cements by solid-state NMR, C. R. Chimie, vol.7, pp.383-388, 2004.

T. C. Powers, L. E. Copeland, and M. Mann, Capillary continuity or discontinuity in cement pastes, J. Portland Cem. Assoc. Res. Dev. Lab, pp.38-48, 1959.

B. K. Nyame and J. M. Illston, Capillary pore structure and permeability of hardened cement pastes, Proc. 7th Int. Conf. Cement Chem, vol.III, 1988.

R. D. Hooton, What is needed in a permeability test for evaluation of concrete quality?, Pore structure and permeability of cementitious materials, vol.137, pp.141-149, 1989.

N. Banthia, A. Biparva, and S. Mindess, Permeability of concrete under stress, Cement Concrete Res, vol.35, pp.1651-1655, 2005.

S. Masse, Synthèse hydrothermale d'hydrates de silicate tricalcique : Analyse structurale en phase solide-Etude comparative avec les ciments utilisés pour chemiser les puits de pétrole, 1993.

L. H. Eilers and R. L. Root, Long-term effects of high temperature on strength retrogression of cements. 49th Annual Fall Meeting of the SPE of AIME, SPE, vol.5028, 1974.

E. Grabowski and J. E. Gillot, The effect of initial curing temperature on the performance of oilwell cements made with different types of silica, Cement Concrete Res, vol.19, pp.703-714, 1989.

F. Méducin, Etude des phases silicatées du ciment hydraté sous haute pression et haute température, 2001.

C. Noïk, A. ;. Rivereau, A. Rivereau, and C. Vernet, Novel cements materials for high-pressure/high-temperature wells, Annual Technical Conference and Exhibition, vol.56538, pp.20-22, 1998.

K. O. Kjellsen, R. J. Detwiler, and O. E. Gjørv, Backscattered electron imaging of cement pastes hydrated at different temperatures, Cement Concrete Res, vol.20, pp.308-311, 1990.

K. O. Kjellsen, R. J. Detwiler, and O. E. Gjørv, Pore structure of plain cement pastes hydrated at different temperatures. Cement Concrete Res, vol.20, pp.927-933, 1990.

L. Saoût, G. Lécolier, E. Rivereau, A. Zanni, and H. , Chemical structure of cement aged at normal and elevated temperatures and pressures-Part I, Class G oilwell cement. Cement Concrete Res, vol.36, pp.71-78, 2006.

S. Kamali, Comportement et simulation des matériaux cimentaires en environnements agressifs : lixiviation et température, 2003.

C. Carde, Caractérisation et modélisation de l'altération des propriétés mécaniques due à la lixiviation des matériaux cimentaires, 1996.

N. Neuville, Caractérisation et modélisation de l'altération physico-chimique des ciments utilisés dans les puits pétroliers

Z. ?-ivica and V. , The quality of cement composites after longterm contact with hydrocarbon media, Arab. J. Sci. Eng, vol.20, pp.467-479, 1995.